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1. Introduction

Let Fq be a finite field of order q where q is a power of a prime p. In 1960, a
conjecture by Higman [5] on the number k(Un(q)) of conjugacy classes of the
unitriangular group Un(q) of degree n over Fq was that k(Un(q)) is a polynomial
in q with integral coefficients. From the relation between conjugacy classes and
ordinary irreducible characters, Higman’s Conjecture is also studied from the
point of view of character theory. Isaacs [8] showed that the character degrees
of Un(q) are powers of q.

The unitriangular group Un(q) is also known as a maximal unipotent sub-
group of the special linear group SLn(q). A generalization of Higman’s Con-
jecture on the maximal unipotent subgroups U(q) of other finite groups G(q)
of Lie type is that k(U(q)) is a polynomial in q with integral coefficients.

By α0 we denote the highest root of the root system Φ of G(q). It is well
known that α0 is a positive integral linear combination of the fundamental
roots of Φ. So without loss α0 =

∑r
i=1 aiαi where the αi’s are fundamental

roots of Φ. Recall that a prime s is bad to the Lie type of G(q) if s is a divisor
of some ai. A prime s is good to the Lie type of G(q) if it is not bad. Except
for type A, the other Lie types have their own bad primes.

Many results have been obtained on the conjugacy classes and irreducible
characters of maximal unipotent subgroups U(q) of finite groups G(q) of Lie
type, see [11, 4, 12, 3]. The common behavior of small Lie ranks comes up

Article electronically published on October 31, 2016.

Received: 2 March 2015, Accepted: 18 August 2015.

c⃝2016 Iranian Mathematical Society

1279



Characters of Sylow p-subgroups of 3D4(q
3) 1280

as follows. For all good primes p, k(U(q)) is a polynomial in q with integral
coefficients. If p is bad, then k(U(q)) is still a polynomial in q with integral
coefficients but different from the one of good primes. Furthermore, in the bad
prime cases, some character degrees of U(q) are not powers of q, see [11], [7],
[9]. In [7], all irreducible characters of Sylow p-subgroups U(q) of the Chevalley
groups D4(q) ∼= PΩ+

8 (q) have been computed. In this paper, we construct all
irreducible characters of Sylow p-subgroups of the Steinberg triality groups
3D4(q

3). Denote by U a Sylow p-subgroup of 3D4(q
3) and let F×

− := F− −{0}.
We prove the following result.

Theorem 1.1. The irreducible characters of U are classified into five families
as listed in Table 1.

Table 1. Irreducible characters of Sylow p-subgroups U of 3D4(q
3)

Family Notation Parameter set Number Degree

F6 χa,b
6,q4 F×

q × Fq3 (q − 1)q3 q4

F5 χa1,a2,b
5,q3 F×

q × Fq × Fq3 (q − 1)q4 q3

Fodd
4 χb,a

4,q3 F×
q3 × Fq (q3 − 1)q q3

Feven
4 χb

4,q3 F×
q3 q3 − 1 q3

χb,a,c1,c2
4,q3/2 F×

q3 × F×
q × F2 × F2 4(q3 − 1)(q − 1) q3/2

F3 χb1,b2
3,q F×

q3 × (Fq3/Fq) (q3 − 1)q2 q

Flin χb,a
lin Fq3 × Fq q4 1

Here are some explanations of Table 1. There are five families of irreducible
characters of U and each row represents one of them. The first column gives a
name for each family. Notice that the family Fodd

4 exists only for q odd, while
Feven
4 exists only if q is even. The index j of this notation describes the j-th

positive root of maximal height such that Yj is not contained in the kernel
of any character of this family. (The positive root set of 3D4 is presented in
Subsection 2.3.) The family Flin contains all linear characters of U . The second
column gives the notation of irreducible characters in each family. The lower
indices indicate their family and degree. The upper indices are the parameters
to confirm their uniqueness in the family where a, ai ∈ Fq, b, bi ∈ Fq3 and
ci ∈ F2. These parameters take values from the set in the third column. The
fourth column lists the cardinality of each family and the last column gives their
degrees. More details will be given during the constructions of each family in
Section 3.
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Corollary 1.2. If q is odd then k(U) = 2q5 + 2q4 − q3 − q2 − q. Otherwise, if
q is even, then k(U) = 2q5 + 5q4 − 4q3 − q2 − 4q + 3.

It is well known that the primes 2 and 3 are bad for the Chevalley groups
of type G2. Since the Steinberg triality groups 3D4(q

3) also has the Dynkin
diagram of type G2, we are curious that if the primes 2 and 3 show up as
the bad primes of 3D4(q

3) in terms of the representation theory of the Sylow
p-subgroup. Theorem 1.1 and Corollary 1.2 point out that only the prime
2 affects on the structure of U and k(U), which is compatible to the global
computation on character degrees of 3D4(q

3), see [10].
We approach Sylow p-subgroups U of 3D4(q

3) by its root system. The
method to construct all irreducible characters of U is quite elementary, mainly
using Clifford theory. In addition, we study the actions of F×

q3 on its Fq-

hyperplane set and on Fp-hyperplane set. We obtain the structures of U and
its factor groups U/Z where Z is generated by some root subgroups.

Let B be a Borel subgroup of 3D4(q
3), i.e. the normalizer of U . Notice that

the conjugacy classes of B have been computed by Geck [2], and the irreducible
characters of B have been computed by Himstedt [6]. Using the character table
of B, one can also obtain all irreducible characters of U by Clifford theory.
However, the parameterizations may be different from the ones in Table 1.

This paper is organized as follows. First we introduce some relevant finite
field properties and some character theory notations which are used later for the
proof of Theorem 1.1. Next we construct Sylow p-subgroups of the Steinberg
triality groups 3D4(q

3) from its root system. Finally, we prove Theorem 1.1 in
Section 3.

2. Basic set-up and notations

In this section we present some finite field properties, some fundamental
notations of character theory and a construction of Sylow p-subgroups of the
Steinberg triality 3D4(q

3).

2.1. Some fundamental field results. Throughout this paper, for each prime
power q, we consider the field extension Fq3/Fq. Fix nontrivial linear characters
ϕ : Fq → C×, and φ : Fq3 → C×. For each a ∈ Fq, b ∈ Fq3 , we define ϕa and
φb by ϕa(x) := ϕ(ax) for all x ∈ Fq, and φb(y) := φ(by) for all y ∈ Fq3 . Hence,
Irr(Fq) = {ϕa : a ∈ Fq} and Irr(Fq3) = {φb : b ∈ Fq3}. Recall the Frobenius
map ρ : Fq3 → Fq3 , t 7→ tq.

Definition 2.1. For each t ∈ Fq3 , we define

(i) At := {tuq + tquq2 + tq
2

u : u ∈ Fq3},
(ii) Bt := {tqu+ tuq : u ∈ Fq3}.

Notice that A0 = {0} = B0. Now we observe a few important properties of
At, Bt.
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Lemma 2.2. We have At = Fq for all t ∈ F×
q3 .

Proof. It is clear that At ⊂ Fq since its elements are ρ-invariant. So |At| ≤ q.
It suffices to show that |At| ≥ q.

For each a ∈ Fq, the equation tq
2

u+ tuq+ tquq2 = a has at most q2 solutions
for u in Fq3 . Therefore, when u runs all over Fq3 , At has at least |Fq3 |/q2 = q
elements. This completes the proof. □

For each t ∈ F×
q3 , we define an Fq-homomorphism ft : Fq3 → Fq3 given by

ft(u) := tqu+ tuq for all u ∈ Fq3 . By Definition 2.1 (ii), Bt = im(ft).

Lemma 2.3. For all t ∈ F×
q3 , the following hold.

(i) Bt is an Fq-vector space and Btx = Bt = xBt for all x ∈ F×
q .

(ii) If q is odd, then Bt = Fq3 .
(iii) If q is even, then ker(ft) = tFq and Bt ≤ (Fq3 ,+) of order q2.

Proof. Part (i) is clear by the Fq-homomorphism property of ft. Thus, it
suffices to show parts (ii) and (iii) by finding the kernel of ft.

We have tqu + tuq = tqu(1 + (t−1u)q−1). So ft(u) = 0 if and only if u = 0
or (t−1u)q−1 = −1. Now we have two cases.

Case 1: If q is odd: Since F×
q3 is cyclic of order q3 − 1 = (q − 1)(q2 + q + 1)

and (q2 + q + 1) is odd, there is no z ∈ F×
q3 such that zq−1 has order 2. So

the equation (t−1u)q−1 = −1 has no solution for u ∈ Fq3 . This shows that
ker(ft) = {0} and im(ft) = Fq3 .

Case 2: If q is even: The equation (t−1u)q−1 = 1 implies that t−1u ∈ F×
q ,

i.e. u ∈ tF×
q . It is clear that tFq ⊂ ker(ft). So ker(ft) = tFq and |Bt| = q2. □

Lemma 2.4. If q is even, i.e. q = 2a, then the following hold.

(i) ker(f1) = Fq and Fq3 = ker(f1)⊕ B1.

(ii) Bt = tq+1B1 for all t ∈ F×
q3 .

(iii) {Bt : t ∈ F×
q3} is the Fq-hyperplane set of Fq3 . Moreover, Bt = Br if

and only if t ∈ rFq.
(iv) There is a unique t ∈ F×

q3 , up to a scalar of F×
q , such that Bt ⊂ ker(φ).

Proof. (i) By Lemma 2.3 (iii), ker(f1) = Fq and B1 = {u + uq : u ∈ Fq3} is a
2-dimensional Fq-vector space. It suffices to show that ker(f1) ∩ B1 is trivial.
Suppose that ker(f1) ∩ B1 is nontrivial, i.e. there exist x ∈ F×

q and u ∈ F×
q3

such that x = u+ uq.
If u ∈ Fq, then x = u+ uq = 2u = 0 since char(Fq) = 2, contrary to x ∈ F×

q .

Notice that Fq2 ̸⊂ Fq3 . If u ̸∈ Fq, from uq2 + uq + u ∈ Fq, we have u+ uq ̸∈ Fq,
contrary to x = u+ uq ∈ Fq. So ker(f1) ∩ B1 = {0}.

(ii) From tqu+ tuq = tq+1(ut−1 + (ut−1)q) ∈ tq+1B1, the claim is clear.
(iii) Since q is even and q3 − 1 = (q − 1)(q2 + q + 1), gcd(q + 1, q3 − 1) = 1

and {tq+1 : t ∈ F×
q3} = F×

q3 . By part (ii), F×
q3 acts transitively on the set of
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all Bt’s. Since the left multiplication action of F×
q3 is also transitive on the

Fq-hyperplane set of Fq3 , {Bt : t ∈ F×
q3} is the Fq-hyperplane set of Fq3 .

Here the cardinality of the Fq-hyperplane set of Fq3 is (q3 − 1)/(q − 1). By

the transitive action of F×
q3 on {Bt : t ∈ F×

q3}, we have |StabF×
q3
(B1)| = q − 1.

By Lemma 2.3 (i), StabF×
q3
(B1) = F×

q . Thus, by part (ii), Bt = Br if and only

if (tr−1)q+1 ∈ StabF×
q3
(B1) = F×

q , if and only if t ∈ rF×
q .

(iv) The uniqueness follows from part (iii) since Bt + Bs = Fq3 ⊋ ker(φ)
for any Bt ̸= Bs. Since {ker(φr) : φr ∈ Irr(Fq3)

×} is the F2-hyperplane set
of Fq3 , B1 ⊂ ker(φb) for some φb ∈ Irr(Fq3)

×. The existence follows from the

transitive action of F×
q3 on the F2-hyperplane set of Fq3 . □

2.2. Character theory. Let G be a group. Denote G× := G−{1}, Irr(G) the
set of all complex irreducible characters of G, and Irr(G)× := Irr(G) − {1G}.
Let χ be a character of G and λ be a character of a subgroup H of G. We
write λG for the induced character of λ to G and χ|H for the restriction of
χ to H. We denote Irr(G,λ) := {χ ∈ Irr(G) : (χ, λG) > 0} the irreducible
constituent set of λG, ker(χ) := {g ∈ G : χ(g) = χ(1)} the kernel of χ, and
Z(χ) := {g ∈ G : |χ(g)| = χ(1)} the center of χ. Furthermore, for N ⊴ G, let
Irr(G/N) be the set of all irreducible characters of G with N in the kernel. For
the others, our notations will be quite standard.

2.3. Root systems of 3D4 and Sylow p-subgroups of 3D4(q
3). Let α1,

α2, α3, α4 be fundamental roots of the root system Φ of type D4. Here is the
Dynkin diagram of Φ, see Carter [1, Chapter 3].

t t t
t

α2 α1 α4

α3

The positive roots are those which can be written as linear combinations
of the fundamental roots α1, α2, α3, α4 with nonnegative coefficients and we

write Φ+ for the set of positive roots. We use the notation 1
1 2 1

for the root

2α1 + α2 + α3 + α4 and we use a similar notation for the remaining positive
roots. The 12 positive roots of Φ are given in Table 2.

Fix a power pf . Let Xα := {xα(t) : t ∈ Fpf } be the root subgroup corre-
sponding to α ∈ Φ. The group generated by all Xα, α ∈ Φ is known as the
Chevalley group D4(p

f ) ∼= PΩ+
8 (p

f ). Let UD4(p
f ) be the group generated by

all Xα, α ∈ Φ+. So UD4(p
f ) is a Sylow p-subgroup of D4(p

f ).
For positive roots, we use the abbreviation xi(t) := xαi(t), i ∈ [1, 12]. Let γ

be the permutation (2, 3, 4)(5, 6, 7)(8, 9, 10). By [1, Proposition 12.2.3] the map
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Table 2. Positive roots of the root system Φ of type D4.

Height Roots

5 α12 := 1

1 2 1

4 α11 := 1
1 1 1

3 α8 := 1
1 1 0

α9 := 1
0 1 1

α10 := 0
1 1 1

2 α5 :=
0

1 1 0
α6 :=

1

0 1 0
α7 :=

0

0 1 1

1 α1 := 0
0 1 0

α2 := 0
1 0 0

α3 := 1
0 0 0

α4 := 0
0 0 1

τ : UD4(p
f ) → UD4(p

f ) defined by τ(xi(t)) = xiγ(t) induces an automorphism
of UD4(p

f ) of order 3.
The commutators [xi(t), xj(u)] = xi(t)

−1xj(u)
−1xi(t)xj(u) are given in Ta-

ble 3. All [xi(t), xj(u)] not listed in this table are equal to 1.

Table 3. Commutator relations for type D4.

[x1(t), x2(u)] = x5(tu), [x1(t), x3(u)] = x6(tu),
[x1(t), x4(u)] = x7(tu), [x1(t), x11(u)] = x12(tu),
[x2(t), x6(u)] = x8(tu), [x2(t), x7(u)] = x10(tu),
[x2(t), x9(u)] = x11(tu), [x3(t), x5(u)] = x8(tu),
[x3(t), x7(u)] = x9(tu), [x3(t), x10(u)] = x11(tu),
[x4(t), x5(u)] = x10(tu), [x4(t), x6(u)] = x9(tu),
[x4(t), x8(u)] = x11(tu), [x5(t), x9(u)] = x12(tu),
[x6(t), x10(u)] = x12(tu), [x7(t), x8(u)] = x12(tu).

Notice that the signs in Table 3 are chosen to satisfy this choice of τ , and
τ is also known as the restriction of a triality automorphism of the Chevalley
group D4(p

f ) to UD4(p
f ).

Under the action of the permutation γ on the positive roots of Φ, there are
six orbits of roots as follows.

S1 := {α1 = 0

0 1 0
},

S2 := {α2 =
0

1 0 0
, α3 =

1

0 0 0
, α4 =

0

0 0 1
},

S3 := {α5 = 0
1 1 0

, α6 = 1
0 1 0

, α7 = 0
0 1 1

},

S4 := {α8 = 1
1 1 0

, α9 = 1
0 1 1

, α10 = 0
1 1 1

},

S5 := {α11 = 1
1 1 1

},
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S6 := {α12 = 1

1 2 1
}.

For the construction of 3D4, it requires an automorphism σ = τρ of D4(p
f )

where ρ is a nontrivial field automorphism of Fpf such that ρ3 = 1, see [1,
Section 13.4]. The existence of an order 3 field automorphism ρ of Fpf forces
f = 3m for some m ∈ N. So from now on we consider the field Fq3 . By [1,
Proposition 13.6.3], the σ-fixed points of UD4(q

3) corresponding to each root
orbit are as follows.

Y1 := {y1(t) := x1(t) : t = tq ∈ Fq3} = {y1(t) : t ∈ Fq},
Y2 := {y2(t) := x2(t)x3(t

q)x4(t
q2) : t ∈ Fq3},

Y3 := {y3(t) := x5(t)x6(t
q)x7(t

q2) : t ∈ Fq3},
Y4 := {y4(t) := x8(t)x9(t

q)x10(t
q2) : t ∈ Fq3},

Y5 := {y5(t) := x11(t) : t = tq ∈ Fq3} = {y5(t) : t ∈ Fq},
Y6 := {y6(t) := x12(t) : t = tq ∈ Fq3} = {y6(t) : t ∈ Fq}.

Let {pi}i be Euclidian coordinates of the roots {αi}i, see [1, Section 3.6].
By [1, Section 13.3.4], set P1 := p1, P2 := 1

3 (p2+p3+p4), P3 := 1
3 (p5+p6+p7),

P4 := 1
3 (p8+p9+p10), P5 := p11, P6 := p12. It is easy to check that P3 = P1+P2,

P4 = P1 + 2P2, P5 = P1 + 3P2, P6 = 2P1 + 3P2. So {Pi : i ∈ [1, 6]} is the
positive root set of 3D4 of type G2, where P2 is short and P1 is long.

We call each Yi a root subgroup in the σ-fixed-point group 3D4(q
3). It is

clear that each Yi is abelian, the subgroup generated by all Yi’s is a maximal
unipotent subgroup and a Sylow p-subgroup of 3D4(q

3), denote it by U . Since
Y1, Y5, Y6 have order q and Y2, Y3, Y4 have order q3, the order of U is q3·3+3 =
q12. Using Table 3, we compute commutator relations among root subgroups
Yi as below. All [yi(t), yj(u)] not listed are equal to 1. For all t, u in the
appropriate fields to root subgroups Yi, we have

[y1(t), y2(u)] = y3(tu)y4(−tuq+1)y5(tu
q2+q+1)y6(t

2uq2+q+1),

[y2(t), y3(u)] = y4(tu
q + tqu)y5(−tq+1uq2 − tq

2+qu− tq
2+1uq)

y6(−tuq2+q − tquq2+1 − tq
2

uq+1),

[y2(t), y4(u)] = y5(tu
q + tquq2 + tq

2

u),

[y3(t), y4(u)] = y6(tu
q + tquq2 + tq

2

u),
[y1(t), y5(u)] = y6(tu).

From commutator relations, it is clear that Z(U) = Y6, Z(U/Y6) = Y5Y6,
Z(U/Y5Y6) = Y4Y5Y6, Z(U/Y4Y5Y6) = Y3Y4Y5Y6, and U/Y3Y4Y5Y6 is abelian
of order q4. To classify all irreducible characters of U , we come up with the
definition of almost faithful irreducible characters.

Definition 2.5. An irreducible character χ of a group G is said to be almost
faithful if Z(G) ̸⊂ ker(χ).

Due to the center series of U and the inflations of irreducible characters from
quotient groups, Irr(U) are classified as follows.
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F6 := {χ ∈ Irr(U) : Y6 ̸⊂ ker(χ)}, the set of all almost faithful irreducible
characters of U .

F5 := {χ ∈ Irr(U) : Y5 ̸⊂ ker(χ) and Y6 ⊂ ker(χ)}, the set of all almost
faithful irreducible characters of U/Y6.

F4 := {χ ∈ Irr(U) : Y4 ̸⊂ ker(χ) and Y5Y6 ⊂ ker(χ)}, the set of all almost
faithful irreducible characters of U/Y5Y6.

F3 := {χ ∈ Irr(U) : Y3 ̸⊂ ker(χ) and Y4Y5Y6 ⊂ ker(χ)}, the set of all almost
faithful irreducible characters of U/Y4Y5Y6.

Flin := {χ ∈ Irr(U) : Y3Y4Y5Y6 ⊂ ker(χ)}, the linear character set of U .

Remark 2.6. For i ≥ 3, each χ ∈ Fi satisfies Yi ≤ Z(χ) and Yi ̸⊂ ker(χ). Thus,
χ|Yi = χ(1)µ for some µ ∈ Irr(Yi)

×.
The definition of Fi’s provides an algorithm to construct their characters as

follows (except F6). We shall work with the corresponding quotient group, e.g.
with F5 we study U/Y6. Let Ū be the quotient group and µ be a nontrivial linear
character of Z(Ū). We extend µ to some maximal normal abelian subgroup of
Ū . For each extension λ of µ, we compute the inertia subgroup IŪ (λ) and use

Clifford theory to count all constituents of λŪ , as well as the ones of µŪ .

3. Characters of Sylow p-subgroups of the triality groups 3D4(q
3)

Let χ ∈ Irr(U). In this section we shall prove Theorem 1.1 by constructing χ
through each family from F6 to F5, ...,Flin as discussed above. Recall that for
the uniform of parameters of irreducible characters in Table 1, we use a, ai ∈ Fq,
b, bi ∈ Fq3 and ci ∈ F2.

3.1. Family F6 where χ is almost faithful. First we show that every char-
acter in this family has degree q4.

Let T := Y1Y3Y4Y5Y6 and V := Y4Y5Y6. It is easy to check that V is
abelian, V ◁ T ◁ U and Z(T ) = Y6. By Lemma 2.2 and Clifford theory with
the transversal Y1Y3 of V in T , all λ ∈ Irr(V ) such that λ|Y6 ̸= 1Y6 satisfy
λT ∈ Irr(T ) of degree q4. Thus all almost faithful irreducible characters of T
have degree q4. Since χ|T decomposes into sum of almost faithful irreducible
characters, χ(1) ≥ q4. Since λT |Y4Y5 is the regular character of the abelian
group Y4Y5, χ|V has a linear constituent θ such that θ|Y5 = 1Y5 .

LetH := Y6Y5Y4Y2. ClearlyH ≤ U and Z(H) = Y5Y6. By the existence of θ,
let ξ be an irreducible constituent of χ|H such that ξ|Y5 = ξ(1)1Y5 . Since Y5 ≤
ker(ξ), ξ can be considered as a character of H/Y5

∼= Y6Y4Y2, which is abelian.
So ξ is linear. We shall show that ξU ∈ Irr(U), which implies that χ is the
unique constituent in Irr(U, ξ), i.e. χ = ξU . Since H ∩T = V and U = HT , by

Mackey formula for the double coset H\U/T we have ξU |T = ξ|H∩T
T ∈ Irr(T ).

Thus ξU ∈ Irr(U) as claimed. So all almost faithful irreducible characters of U
have degree q4.
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By the extension of each λT to U through Y2, we obtain (q − 1)q3 almost
faithful irreducible characters, parameterized by (Y ×

6 , Y2) ∼= (F×
q ,Fq3) and de-

noted by χa,b
6,q4 where (a, b) ∈ (F×

q ,Fq3).

3.2. Family F5 where Y6 ⊂ ker(χ) and Y5 ̸⊂ ker(χ). We study the quotient
group Ū := U/Y6. Abusing terminology slightly we call the image under the
natural projection of a root group of U , a root group of Ū .

Let H := Y5Y4Y3Y1. Clearly H is an abelian normal subgroup of Ū . Let
λ ∈ Irr(H) such that λ|Y5 ̸= 1Y5 . By Lemma 2.2, for each y2(t) ∈ Y ×

2 , there

exists y4(u) ∈ Y4 such that [y4(u), y2(t)] = y5(tu
q + tquq2 + tq

2

u) ̸∈ ker(λ), i.e.
y2(t)λ(y4(u)) ̸= λ(y4(u)). So the inertia group IŪ (λ) = H. By Clifford theory,

λŪ ∈ Irr(Ū).
Since H has (q− 1)q7 linear characters λ such that λ|Y5 ̸= 1Y5 , by the above

argument we obtain (q− 1)q4 irreducible characters of degree q3 in this family,

parameterized by (Y ×
5 , Y1, Y3) ∼= (F×

q ,Fq,Fq3) and denoted by χa1,a2,b
5,q3 where

(a1, a2, b) ∈ (F×
q ,Fq,Fq3).

3.3. Family F4 where Y5Y6 ⊂ ker(χ) and Y4 ̸⊂ ker(χ). We study the quo-
tient group Ū := U/Y6Y5. Recall that Z(Ū) = Y4 and the commutator relations
in Ū are as follows.

[y1(t), y2(u)] = y3(tu)y4(−tuq+1),
[y2(t), y3(u)] = y4(tu

q + tqu).

Let H := Y4Y3Y1. Clearly H is an abelian normal subgroup of Ū and Y2 is
a transversal of H in Ū . Let λ ∈ Irr(H) such that λ|Y4 = φb4 where b4 ∈ F×

q3 .

First we compute the stabilizer StabY2(λ|Y4Y3). For y2(t) ∈ Y2 and y3(u) ∈ Y3,
we have

y2(t)λ(y3(u)) = λ(y3(u))λ([y3(u), y2(t)])
= λ(y3(u))λ(y4(−(tuq + tqu)))
= λ(y3(u))φb4(−(tuq + tqu)).

So y2(t) ∈ StabY2(λ|Y4Y3) if and only if φb4(−(tuq + tqu)) = 1 for all u ∈ Fq3 .

3.3.1. The case where q is odd. We have StabY2(λ) ≤ StabY2(λ|Y4Y3) = {1}
by Lemma 2.3 (ii). Thus, the inertia group IŪ (λ) = H and λŪ ∈ Irr(Ū) by
Clifford theory. So there are (q3 − 1)q irreducible characters of degree q3 in

this family, parameterized by (Y ×
4 , Y1) ∼= (F×

q3 ,Fq) and denoted by χb,a
4,q3 ∈ Fodd

4

where (b, a) ∈ (F×
q3 ,Fq).

3.3.2. The case where q is even. Recall the function ft(u) := tqu+ tuq defined
right before Lemma 2.3, and Bt = im(ft). From

y2(t)λ(y3(u)) = λ(y3(u))λ(y4(tu
q + tqu)) = λ(y3(u))φb4(ft(u)),

we have y2(t)λ|Y4Y3 = λ|Y4Y3 if and only if φb4(ft(u)) = 1 for all u ∈ Fq3 , i.e.

im(ft) = Bt ⊂ ker(φb4). By Lemma 2.4 (iv), there exists uniquely t0 ∈ F×
q3 , up
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to a scalar of F×
q , such that Bt0 ⊂ ker(φb4). So we have St2 := StabY2(λ|Y4Y3) =

{y2(rt0) : r ∈ Fq}.
Let λ|Y3

= φb3 , b3 ∈ Fq3 . Now we compute St := StabY2
(λ) = StabSt2(λ).

For y1(v) ∈ Y1 and y2(rt0) ∈ St2, we have

y2(rt0)λ(y1(v)) = λ(y1(v))λ([y1(v), y2(rt0)])
= λ(y1(v))λ(y3(vrt0)y4(−v(rt0)

q+1))
= λ(y1(v))φb4(vrt0(b3b

−1
4 + rtq0)).

So y2(rt0)λ = λ if and only if φb4(vrt0(b3b
−1
4 + rtq0)) = 1 for all v ∈ Fq. Thus

we find r ∈ F×
q such that vrt0(b3b

−1
4 + rtq0) ∈ ker(φb4) for all v ∈ Fq, where

b3 ∈ Fq3 is a conditional parameter.

If b3b
−1
4 t−q

0 ∈ F×
q then it is a nontrivial solution for r. Later we shall see

that this is the unique nontrivial solution for r and St = {1, y2(rt0)}.
Now we suppose that b3b

−1
4 t−q

0 ̸∈ F×
q . Thus b3b

−1
4 + rtq0 ̸= 0 for all r ∈

F×
q . For each r ∈ F×

q , let T (r, b3) := {vrt0(b3b−1
4 + rtq0) : v ∈ Fq} be a one-

dimensional Fq-subspace of Fq3 .

We claim that T (r, b3) ⊂ ker(φb4) if and only if rt0(b3b
−1
4 + rtq0) ∈ Bt0 . If

T (r, b3) ∩ Bt0 = {0}, then Fq3 = T (r, b3) ⊕ Bt0 ⊂ ker(φb4), a contradiction.
So T (r, b3) ∩ Bt0 is nontrivial. By Lemma 2.3 (i), we have T (r, b3) ⊂ Bt0 . So
rt0(b3b

−1
4 + rtq0) ∈ Bt0 as claimed.

By Lemma 2.4 (ii) with Bt0 = tq+1
0 B1, if T (r, b3) ⊂ ker(φb4), then there

exists y ∈ B1 such that rt0(b3b
−1
4 + rtq0) = tq+1

0 y. Solve this equation for b3
with parameter r ∈ F×

q , we have b3 ∈ {b4tq0(r−1y + r) : r ∈ F×
q , y ∈ B1} =: I3.

Here it is clear that St ̸= {1} if and only if b3 ∈ I3.
We claim |I3| = (q−1)q2 by proving that if there are r, s ∈ F×

q and y, z ∈ B1

such that r−1y + r = s−1z + s then r = s and y = z. Since B1 is an Fq-vector
space, r−1y+s−1z ∈ B1. From r−1y+r+s−1z+s = 0 ∈ B1, we have r+s ∈ B1.
By Lemma 2.4 (i) with Fq3 = Fq ⊕ B1, we have r + s ∈ Fq ∩ B1 = {0}, i.e.
r = s.

This shows that each b3 ∈ I3 determines uniquely r0 ∈ F×
q and y ∈ B1 such

that b3 = b4t
q
0(r

−1
0 y + r0). Thus, St = {1, y2(r0t0)}.

Remark 3.1. For r ∈ F×
q and y ∈ B1, we have r−1y + r ∈ F×

q if and only

if y = 0. This confirms our above claim when b3b
−1
4 t−q

0 ∈ F×
q , the solution

r0 = b3b
−1
4 t−q

0 = r ∈ F×
q is unique corresponding to b3 = b4t

q
0r ∈ I3.

The |I3×Y1| = (q−1)q3 linear characters λ ofH with λ|Y3 = φb3 , b3 ∈ I3 sat-
isfy St = StabY2(λ) = {1, y2(r0t0)} and IŪ (λ) = HSt. This set is partitioned
into q − 1 orbits under the action of Y2.

It is easy to check that [HSt,HSt] ≤ ker(λ). Thus, these (q − 1)q3 linear
characters extend to 2(q − 1)q3 linear characters (of their inertia groups) and
induce irreducibly to Ū , which gives 4(q − 1) irreducible characters of degree
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q3/2. Together with all b4 ∈ F×
q3 , we obtain 4(q3 − 1)(q− 1) irreducible charac-

ters of degree q3/2, parameterized by (Y ×
4 , I∗3 , Y

∗
2 , Y

∗
1 )

∼= (F×
q3 ,F

×
q ,F2,F2) and

denoted by χb,a,c1,c2
4,q3/2 ∈ Feven

4 where (b, a, c1, c2) ∈ (F×
q3 ,F

×
q ,F2,F2), which is

proven below in details.
The other q3 linear characters λ of H with λ|Y3 = φb3 , b3 ∈ Fq3 − I3 have

St = StabY2(λ) = {1}. By Clifford theory and the fact that b4 ∈ F×
q3 , we obtain

q3 − 1 irreducible characters of Ū of degree q3, parameterized by (Y ×
4 ) ∼= (F×

q3)

and denoted by χb
4,q3 ∈ Feven

4 where b ∈ F×
q3 .

3.3.3. The parametrization (Y ×
4 , I∗3 , Y

∗
2 , Y

∗
1 )

∼= (F×
q3 ,F

×
q ,F2,F2) of χb,a,c1,c2

4,q3/2 .

Here b = b4 ∈ F×
q3 and a = b3 ∈ I∗3 which is a representative set of q − 1 orbits

of Irr(H,λ|Y4) with b3 ∈ I3 under the action of Y2 as above. It suffices to show
the parametrization (Y ∗

2 , Y
∗
1 )

∼= (F2,F2).
Let µ := λ|Y4Y3 . So µ extends to M := IŪ (λ) = HSt where H = Y4Y3Y1

and St = {1, y2(r0t0)}. Let η1, η2 be two extensions of µ to M . Here µ also
extends to K := Y4Y3St2 where St2 = {y2(rt0) : r ∈ Fq} since [K,K] ≤ ker(µ).
Let θ be an extension of µ to K and S1 := StabY1(θ).

We prove the following statements.

(i) |S1| = 2 and θ extends to N := IŪ (θ) = KS1.
Let γ be an extension of θ to N .

(ii) (ηŪi , γ
Ū ) = 1 if and only if ηi|St = γ|St and ηi|S1 = γ|S1 for i = 1, 2.

(iii) (ηŪ1 , η
Ū
2 ) = 1 if and only if η1|St = η2|St and η1|S1 = η2|S1 .

An easy way to see these is described in the following diagram.

Y4Y3 : µ
↙ ↘

H = Y4Y3Y1 : λ θ : Y4Y3St2 = K
↓ ↓

M = HSt : ηi γ : KS1 = N
↘ ↙

Ū : ηŪi , γ
Ū ∈ Irr(Ū)

Proof. (i) From the proof of θ|Y3 = µ|Y3 = φb3 where b3 ∈ I3, all elements
in Irr(Ū , θ) have degree q3/2. By Clifford theory, the inertia group IŪ (θ) has
order 2|K| = 2q7 and θ extends to IŪ (θ).

Let T2 be a transversal of St2 in Y2. It is clear that T2Y1 is a transversal
of K in Ū . There is no y2(t)y1(s) ∈ StabŪ (θ) ≤ StabŪ (µ) where 0 ̸= t ̸= r0t0
since otherwise y2(t) ̸= y2(r0t0) ∈ StabY2(λ) = St. Since Y4Y3Y1 is abelian, we
have StabT2Y1(θ) = StabY1(θ). Thus S1 = StabY1(θ) has order 2.

(ii) Set η = ηi. We show that (ηŪ , γŪ ) = 1 if and only if η|St = γ|St and

η|S1 = γ|S1 . Notice that both ηŪ , γŪ ∈ Irr(Ū) by Clifford theory.
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Since M ◁ Ū = MK2, by Mackey formula for the double coset M\Ū/N and
Frobenius reciprocity we have

(ηŪ , γŪ ) = (ηŪ |N , γ)

= (η|M∩N
N
, γ)

= (η|M∩N , γ|M∩N ).

Since M ∩N = Y4Y3StS1 and both η, γ are linear, the claim holds.
(iii) Choosing γ ∈ Irr(N) such that γ|M∩N = η1|M∩N , by part (ii) we have

ηŪ1 = γŪ . Again by part (ii) we have (ηŪ2 , γ
Ū ) = 1 if and only if η2|M∩N =

γ|M∩N , which completes the proof. □

Notice that the parameterizations of Y ∗
2 and Y ∗

1 correspond to St ≤ Y2 and
S1 ≤ Y1 respectively, which both are cyclic of order 2.

3.4. Family F3 where Y4Y5Y6 ⊂ ker(χ) and Y3 ̸⊂ ker(χ). We study Ū :=
U/Y6Y5Y4. The commutator relation in Ū is [y1(t), y2(u)] = y3(tu). Let H :=
Y3Y2. Clearly H is an abelian normal subgroup Ū and Y1 is a transversal of H
in Ū . Let λ ∈ Irr(H) such that λ|Y3 = φb3 where b3 ∈ F×

q3 .

Now we compute StabY1(λ). For y1(t) ∈ Y1 and y2(u) ∈ Y2, we have

y1(t)λ(y2(u)) = λ(y2(u))λ([y2(u), y1(t)])
= λ(y2(u))λ(y3(tu))
= λ(y2(u))φb3(tu).

So y1(t) ∈ StabY1(λ) if and only if φb3(tu) = 1 for all u ∈ Fq3 , if and only if

t = 0. Thus, IŪ (λ) = H and λŪ ∈ Irr(Ū) of degree q by Clifford theory.
For each b3 ∈ F×

q3 , let Y
∗
2 be a representative set of q2 orbits of Irr(H,λ|Y3)

under the action of Y1. So F3 contains (q3 − 1)q2 irreducible characters of

degree q, parameterized by (Y ×
3 , Y ∗

2 )
∼= (F×

q3 ,Fq3/Fq) and denoted by χb1,b2
3,q

where (b1, b2) ∈ (F×
q3 ,Fq3/Fq).

3.5. Family Flin where Y3Y4Y5Y6 ⊂ ker(χ). We study Ū := U/Y6Y5Y4Y3.
Since Ū is abelian, this family is the set of all linear characters of Ū . Here we
obtain q4 linear characters parameterized by (Y2, Y1) ∼= (Fq3 ,Fq) and denoted

by χb,a
lin where (b, a) ∈ (Fq3 ,Fq).
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