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1. Introduction

Abstract convexity extends the main ideas and results from classical convex
analysis to much more general classes of functions, mappings and sets. It is
well known that every convex, proper and lower semicontinuous function is the
upper envelope of a set of affine functions. Therefore, affine functions play a
crucial role in classical convex analysis. In abstract convexity, the role of the set
of affine functions is replaced by an alternative set H of functions, and their up-
per envelopes constitute the set of abstract convex functions. Different choices
of H lead to different classes of envelope functions, which are applied to global
optimization problems (see [7–9, 11–13]). Moreover, if a family of functions is
abstract convex with respect to a specific choice of H, then we can use some
key ideas of convex analysis in order to gain new insights on these functions.
On the other hand, some classical concepts such as subdifferential, support set
and conjugation theory can be generalized to abstract convex scheme.
Characterizing the maximal elements of a support set plays a crucial role in or-
der to minimize a DAC function (difference of two abstract convex functions);
for instance, see [2, 4, 9].
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Recall that a function p : Rn −→ Rm is said to be sub-topical (see also Defini-
tion 2.3) if this function is increasing (x ≥ y =⇒ p(x) ≥ p(y)) and plus-sub-
homogeneous (p(x+ λ1) ≤ p(x) + λ1, for all x ∈ Rn and all λ ≥ 0), where 1 is
the vector of appropriate dimension with all coordinates equal to one. These
functions are studied and extended in [1,3,10,14] and have found many appli-
cations in various parts of applied mathematics (see, for instance, [5, 6]).
Here, we study the problem

min
x∈X

f(x) := p(x)− q(x),

where p and q are sub-topical functions and X is an ordered real Banach space.
We establish a necessary and sufficient condition for global minimum of f . We
also outline a dual approach to study the global optimization problem for this
function. These observations extend the results of [2]. Our approach is based
on the Toland-Singer formula ( [15]) and abstract convexity.
The layout of the paper is as follows. In Section 2, we give definitions, notations
and preliminary results used throughout the paper. In Section 3, we examine
and identify the maximal elements of support sets of sub-topical functions.
Finally, necessary and sufficient conditions for global minimum of the difference
of two sub-topical functions are obtained.

2. Preliminaries

Let X be a Banach space with the norm ‖.‖ and let C be a closed convex
cone in X such that C ∩ (−C) = {0} and intC 6= ∅. We assume that X is
equipped with the order relation ≥ generated by C : x ≥ y (or y ≤ x) if and
only if x − y ∈ C (x, y ∈ X). Also, we say x < y if y − x ∈ int C. Moreover,
we assume that C is a normal cone. Recall that a cone C is called normal if
there exists a constant m > 0 such that ‖x‖ ≤ m‖y‖, whenever 0 ≤ x ≤ y, and
x, y ∈ X. Let 1 ∈ intC and let

B = {x ∈ X : −1 ≤ x ≤ 1}.

It is well known and easy to check that B can be considered as the unit ball of
a certain norm ‖.‖1, which is equivalent to the initial norm ‖.‖. We assume in
the sequel, without loss of generality, that ‖.‖ = ‖.‖1.
Some definitions in abstract convex framework are given next.

Definition 2.1. Let Z be a non-empty subset of X and let L be a set of
functions defined on X. A function f : Z → [−∞,+∞] is called abstract
convex or L-convex on the set Z if there exists a set U ⊂ L such that

f(z) = sup{l(z) : l ∈ U},∀z ∈ Z.

The set L in Definition 2.1 is called the set of all elementary functions. Also
we just say f is L-convex if Z = X.
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Definition 2.2. Let L be a set of elementary functions defined on X. A
function h of the form

(2.1) h(x) = l(x)− c, (∀x ∈ X)

with l ∈ L, c ∈ R is called L-affine function. The set of all L-affine functions
is denoted by HL.

Recall that the support set of an L-convex function f is defined by

supp(f, L) = {l ∈ L : l(x) ≤ f(x) ∀x ∈ X},
where L is the set of elementary functions. Also, l ∈ supp(f, L) is called a
maximal element if l(x) ≤ k(x) (∀x ∈ X), for some k ∈ supp(f, L), then l = k.

The L-subdifferential at a point x0 ∈ X is defined by

∂Lf(x0) = {l ∈ L : f(x)− f(x0) ≥ l(x)− l(x0) ∀x ∈ X}.

Recall that the Fenchel-Moreau conjugation function of an L-convex function
f : X → (−∞,+∞], which is the function f∗L : L→ [−∞,+∞] defined by

(2.2) f∗L(l) = sup
x∈dom f

[l(x)− f(x)] ,

where dom f = {x ∈ X : f(x) < +∞}. Also, it is easy to see that
f∗L(l) = l(x)− f(x) if and only if l ∈ ∂Lf(x).
For the sake of simplicity, when there is no confusion, we will drop L and use
f∗ instead of f∗L.

Definition 2.3. [1, 10] A function f : X −→ R := [−∞,+∞] is called topical
if it is increasing (x ≥ y =⇒ f(x) ≥ f(y)) and plus-homogeneous (f(x+λ1) =
f(x) + λ, for all x ∈ X and all λ ∈ R).
A function f : X −→ R̄ := [−∞,+∞] is called sub-topical if it is increasing
(x ≥ y =⇒ f(x) ≥ f(y)) and plus-sub-homogeneous (f(x + λ1) ≤ f(x) + λ,
for all x ∈ X and all λ ≥ 0).

The following observations are straightforward consequences of the definition.

Lemma 2.4. A function f : X → R is plus-sub-homogeneous if and only if

f(x+ µ1) ≥ f(x) + µ, ∀x ∈ X, ∀µ ≤ 0.

Lemma 2.5. Let f : X → R be a sub-topical function. Then, the following
assertions hold.
(i) If f(x) = +∞, for some x ∈ X, then f ≡ +∞.
(ii) If f(x) = −∞, for some x ∈ X, then f ≡ −∞.

Now, we present some examples of sub-topical functions.
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Example 2.6. Let f : X → R. Then the followings hold.
(i) If f is topical, then it is sub-topical.
(ii) Assume that f is a proper sub-linear function such that f(1) ≤ 1. Then,

f(x+ µ1) ≤ f(x) + µf(1) ≤ f(x) + µ, ∀µ > 0,

and hence f is plus-sub-homogeneous.

Consider ψ : X ×X × R→ R defined by

ψ(x, y, α) := sup{λ : λ ≤ α, λ1 ≤ x+ y}.
This function was introduced and examined in [1]. It follows from (2.1) that
the set {λ : λ ≤ α, λ1 ≤ x+ y} is nonempty and bounded. Clearly, this set is
a closed subset of R. So, we deduce that

(2.3) ψ(x, y, α)1 ≤ x+ y, ∀x, y ∈ X and ∀α ∈ R.

The next fact provides some basic (but essential) properties of this function.

Proposition 2.7. ( [1], Proposition 3.1) Let ψ be defined as above. Then, for
all x, x′, y, y′ ∈ X, α ∈ R and µ ≥ 0, we have

ψ(x+ µ1, y, α) ≤ ψ(x, y, α) + µ;(2.4)

ψ(x, y, α) = ψ(y, x, α);(2.5)

x ≤ x′ ⇒ ψ(x, y, α) ≤ ψ(x′, y, α);(2.6)

y ≤ y′ ⇒ ψ(x, y, α) ≤ ψ(x, y′, α);(2.7)

α ≤ α′ ⇒ ψ(x, y, α) ≤ ψ(x, y, α′);(2.8)

ψ(x, y + t1, α) = ψ(x+ t1, y, α) = ψ(x, y, α− t) + t, ∀t ∈ R;(2.9)

ψ(x,−x+ α1, α) = α.(2.10)

Let us consider the function ψy,α : X → R defined by ψy,α(x) := ψ(x, y, α), for
all x, y ∈ X, and denote Ψ := {ψy,α : y ∈ X,α ∈ R}.

Remark 2.8. According to (2.4) and (2.6), the function ψy,α is sub-topical.

The next results play a crucial role in optimizing the difference of two sub-
topical functions. For more details, see [1].

Theorem 2.9. Let f : X → R be a function. Then, f is sub-topical if and
only if there exists a set A ⊂ X × R such that

f(x) = sup
(y,α)∈A

ψy,α(x).

In this case, one can take A = {(y, α) ∈ X × R : f(−y + α1) ≥ α}.

Proposition 2.10. Let f : X → R be a sub-topical function. Then,

supp(f,Ψ) = {ψy,α ∈ Ψ : f(−y + α1) ≥ α}.
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Theorem 2.11. Let f : X → R be a sub-topical function and x0 ∈ X. Then,

∂Ψf(x0) = {ψy,α ∈ Ψ : f−y(α) = f(x0)− ψy,α(x0)}.

3. Maximal elements of support set

In this section, we shall identify the maximal elements of the support set of
sub-topical functions. These results will be applied in Section 4 to optimize
functions being the difference of two sub-topical functions.

Proposition 3.1. Let ψy1,α, ψy2,β ∈ Ψ. Then, ψy1,α(x) ≤ ψy2,β(x), for all
x ∈ X, if and only if y1 ≤ y2 and α ≤ β. Moreover, if y1 < y2, then there
exists z ∈ X such that ψy1,α(z) < ψy2,α(z).

Proof. Assume that ψy1,α(x) ≤ ψy2,β(x), ∀x ∈ X. Then,

α = ψy1,α(−y1 + α1) ≤ ψy2,β(−y1 + α1) ≤ β.
This fact with (2.3) imply that

α1 ≤ ψy2,β(−y1 + α1)1 ≤ y2 − y1 + α1,

and so, y1 ≤ y2.
The converse follows from (2.7) and (2.8).
Now, consider y1 < y2 (i.e., y2 − y1 ∈ intS). Since 1 ∈ intS, there is a λ > 0
such that y1 + λ1 < y2. Put z := −y1 − λ1 + α1. Since λ > 0, one has

ψy1,α(z) = α− λ < α = ψy2,α(−y2 + α1) ≤ ψy2,α(z).

Hence, the proof is complete. �

By the following proposition, a necessary condition for maximality of an
element is presented.

Proposition 3.2. Assume p : X → R is a sub-topical function and ψy,α ∈
supp(p,Ψ) is a maximal element. Then, p(−y + α1) = α.

Proof. Since ψy,α ∈ supp(p,Ψ), (using Proposition 2.10) p(−y + α1) ≥ α.
Assume that p(−y + α1) > α. So, there is λ > 0 such that

p(−y − λ1 + α1) ≥ p(−y + α1)− λ > α,

where the first inequality follows from Lemma 2.4. Put y′ := y+λ1. Therefore,
p(−y′ + α1) > α implies that ψy′,α ∈ supp(p,Ψ). On the other hand, Proposi-
tion 3.1 and the fact that y < y′ imply that ψy,α(x) ≤ ψy′,α(x), for all x ∈ X
and ψy,α 6= ψy′,α. This is a contradiction with the maximality of ψy,α. �

It is worth noting that the converse of Proposition 3.2 is not valid. Consider
the sub-topical function p : R→ R defined by p(x) = x+ 1, for all x. Trivially,
ψ1,α ∈ supp(p,Ψ) for all α and p(−1 + α) = α, but the maximal element of
support set does not exist. To avoid this nonexistence, we consider an extra
condition as follows. First, recall that p : X → R is called strictly sub-topical
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if p is plus-sub-homogeneous and strictly increasing (the latter means, if x ≤ y
and x 6= y, then p(x) < p(y)).

Proposition 3.3. Let p : X → R be a strictly sub-topical function. Assume
that ε ∈ R and y is an element of X. Then, ψy,ε is a maximal element of
supp(p,Ψ) if and only if ε = max{α; p(−y + α1) ≥ α} and p(−y + ε1) = ε.

Proof. Applying Proposition 3.2 and (2.8), if ψy,ε is a maximal element of
supp(p,Ψ), then p(−y + ε1) = ε and ε = max{α; p(−y + α1) ≥ α}.
Conversely, assume that ψy′,ε′ ∈ supp(p,Ψ) and ψy,ε ≤ ψy′,ε′ . Using Proposi-
tion 3.1, one has y ≤ y′ and ε ≤ ε′. Since ψy,ε′ ≤ ψy′,ε′ and ψy′,ε′ ∈ supp(p,Ψ),
we have

p(−y + ε′1) ≥ ε′.
This and the fact that ε = sup{α : p(−y + α1) ≥ α} imply that ε′ ≤ ε.
Therefore, ε = ε′.
Moreover, if y 6= y′, then by strictly monotonicity of p,

p(−y′ + ε′1) < p(−y + ε1) = ε = ε′.

This implies that ψy′,ε′ /∈ supp(p,Ψ), which is impossible. Hence, y = y′ and
the proof is complete. �

Let p : X → R be a sub-topical function. In the sequel of this paper we denote
by Ξp the following set:

Ξp := {y ∈ X : ψy,α ∈ supp(p,Ψ), for some α ∈ R}.

Corollary 3.4. Let p : X → R be strictly sub-topical such that εy = max{α :
p(−y+α1) ≥ α} ∈ R, for each y ∈ Ξp. Then, for each ψy,α ∈ supp(p,Ψ) there
exists a maximal element ψỹ,α̃ of support set such that ψy,α ≤ ψỹ,α̃. In this
case, α̃ = p(−y + εy1) and ỹ = y + (α̃− εy)1.

Proof. Let ψy,α ∈ supp(p,Ψ). Using Proposition 3.1 and the fact ψy,εy ∈
supp(p,Ψ), we have

ψỹ,α̃ = ψy+[p(−y+εy1)−εy ]1,p(−y+εy1) ≥ ψy,εy ≥ ψy,α.

Now, we are going to show that ψỹ,α̃ is maximal. To this end, let δ ∈ R be such
that p(−ỹ + δ1) ≥ δ. Put γ := δ + εy − p(−y + εy1). Since p(−y + εy1) ≥ εy,
we have

p(−y + γ1) = p(−ỹ + δ1) ≥ δ ≥ δ + [εy − p(−y + εy1)] = γ.

This means that γ ∈ {α : p(−y + α1) ≥ α}. Therefore,

δ + εy − p(−y + εy1) = γ ≤ εy,
which implies that δ ≤ p(−y + εy1) = α̃. Hence,

α̃ = max{δ : p(−ỹ + δ1) ≥ δ}.
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Since p(−ỹ + α̃1) = α̃, the result follows from Proposition 3.3. �

4. Necessary and sufficient conditions for the minimum value of the
difference of strictly sub-topical functions

Here, we first present a dual optimality condition for the difference of two
sub-topical functions, and then we obtain the necessary and sufficient condi-
tions for the minimum value of the difference of two strictly sub-topical func-
tions.
Let p, q : X → R be sub-topical functions. Consider the following extremal
problem:

(4.1) q(x)− p(x)→ min subject to x ∈ X,
where infx∈X q(x)− p(x) > −∞.
Now, consider the following problem:

(4.2) p∗(ψy,α)− q∗(ψy,α)→ min subject to ψy,α ∈ domq∗.

The problem defined by (4.2) is called the dual problem with respect to (4.1).
Recall the well-known Singer-Toland formula (see [15]), which is:

inf{g(x)− h(x) : x ∈ X} = inf{h∗(l)− g∗(l) : l ∈ L},
where g, h : X → R are proper HL-convex functions such that inf(g(x) −
h(x)) > −∞ and HL is the set of L−affine functions defined in Definition 2.2.
So, the following observation can be obtained directly from the Toland-Singer
formula.

Proposition 4.1. Let p, q : X → R be sub-topical functions such that infx∈X(q(x)

− p(x)) > −∞. Then,

inf{q(x)− p(x) : x ∈ X} = inf{p∗(ψy,α)− q∗(ψy,α) : ψy,α ∈ Ψ}.

We now obtain some results on the intersection of subdifferentials in order to
characterize the problems defined by (4.1) and (4.2).

Lemma 4.2. Let p, q : X → R be sub-topical functions. Let x ∈ X, α ∈ R and
y := −x+ α1. Then, ψy,α ∈ ∂Ψp(x) ∩ ∂Ψq(x). Moreover,

p∗(ψy,α)− q∗(ψy,α) = q(x)− p(x).

Proof. Applying (2.5) and (2.10), we get

ψy,α(x) = ψx,α(−x+ α1) = α.

This implies that

p−y(α) = p(−y + α1)− α = p(x)− ψy,α(x).

Using this and Theorem 2.11, we have ψy,α ∈ ∂Ψp(x). The same argument
shows that ψy,α ∈ ∂Ψq(x). The rest of the proof is trivial. �
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Theorem 4.3. Let p, q : X → R be sub-topical functions.
(i) If x0 ∈ X is a global minimizer of problem (4.1), then ψ−x0+α01,α0

is a

global minimizer of problem (4.2), for all α0 ∈ R.
(ii) If ψy0,α0

∈ Ψ is a global minimizer of problem (4.2), then x0 := −y0 +α01
is a global minimizer of problem (4.1).

Proof. (i) : Let α0 ∈ R and y0 := −x0+α01. Using Lemma 4.2 and Proposition
4.1, we have

p∗(ψy0,α0
)− q∗(ψy0,α0

) = q(x0)− p(x0)

= inf
x∈X

q(x)− p(x)

= inf
ψy,α∈Ψ

p∗(ψy,α)− q∗(ψy,α).

Thus, ψy0,α0
is a global minimizer of problem (4.2).

(ii): Applying again Proposition 4.1 and the fact that ψy0,α0
∈ ∂Ψp(x0) ∩

∂Ψq(x0), we have

q(x0)− p(x0) = p∗(ψy0,α0
)− q∗(ψy0,α0

)

= inf
ψy,α∈Ψ

p∗(ψy,α)− q∗(ψy,α)

= inf
x∈X

q(x)− p(x).

Hence, the proof is complete. �

Now, we are going to investigate the necessary and sufficient conditions of
the minimum value of problem (4.1).

Proposition 4.4. Let p, q : X → R be sub-topical functions. Assume that
η = infx∈Xq(x) − p(x) > −∞ and γ ≤ η. Then, q(x) ≥ p(x) + γ, for all
x ∈ X, if and only if supp(p, L) + γ ⊂ supp(q, L).

Proof. It is easy to see that if q(x) ≥ p(x) + γ, for all x ∈ X, then supp(p, L) +
γ ⊂ supp(q, L). For the converse implication, let x ∈ X be arbitrary. So, by
Theorem 2.9 and Proposition 2.10, we have

p(x) + γ = sup
ψy,α∈supp(p,Ψ)

ψy,α(x) + γ

≤ sup
ψy,α∈supp(q,Ψ)

ψy,α(x)

= q(x).

�

The following result plays a crucial role in reaching our goal.
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Proposition 4.5. Let p, q : X → R be strictly sub-topical functions. Assume
that εy, ηz ∈ R, for all y ∈ Ξp and z ∈ Ξq, where εy = sup{α : p(−y+α1) ≥ α}
and ηz = sup{β : q(−z + β1) ≥ β}. Then, the following statements are
equivalent.
(i) Supp(p,Ψ) ⊂ supp(q,Ψ).
(ii) For each maximal element ψy1,α1

of supp(p,Ψ), there exist a maximal
element ψy2,α2 of supp(q,Ψ) such that ψy1,α1(x) ≤ ψy2,α2(x), for all x ∈ X.

Proof. (i) ⇒ (ii): Let supp(p,Ψ) ⊂ supp(q,Ψ). Let ψy1,α1
be a maximal

element of supp(p,Ψ). So, ψy1,α1 ∈ supp(q,Ψ). By Corollary 3.4, there is a
maximal element ψy2,α2 in supp(q,Ψ) such that ψy1,α1 ≤ ψy2,α2 .
(ii)⇒ (i): Let ψy,α ∈ supp(p,Ψ). By Corollary 3.1, there is a maximal element
ψy1,α1

such that ψy,α ≤ ψy1,α1
. By the hypothesis, there is a maximal element

ψy2,α2
∈ supp(q,Ψ) such that ψy1,α1

≤ ψy2,α2
. Then, ψy2,α2

≥ ψy,α, which
implies ψy,α ∈ supp(q,Ψ). Hence, supp(p,Ψ) ⊂ supp(q,Ψ). �

Remark 4.6. Assume that p̃(x) = p(x) +m, for all x ∈ X and for some m ∈ R.
It is easy to see that supp(p̃,Ψ) = supp(p,Ψ) + m. Also, if ψy,α is a maximal
element of supp(p̃,Ψ), then ψy−m1,α−m is a maximal element of supp(p,Ψ)
and vice versa.

In the following, we present the necessary and sufficient conditions for the
minimum value of the difference of strictly sub-topical functions.

Theorem 4.7. Let p, q : X → R be strictly sub-topical functions and infx∈Xq(x)
− p(x) > −∞. Assume that εy, ηz ∈ R, for every y ∈ Ξp and z ∈ Ξq, where
εy = sup{α : p(−y + α1) ≥ α} and ηz = sup{β : q(−z + β1) ≥ β}. Let
m ∈ R. Then, m ≤ infx∈Xq(x) − p(x) if and only if for every y ∈ Ξp with
p(−y + εy1) = εy, there exists z ∈ Ξq with q(−z + ηz1) = ηz such that

y +m1 ≤ z and εy +m ≤ ηz.

Moreover, if m ≤ infx∈X q(x)−p(x) and there are y, z ∈ X such that y+m1 = z
and εy +m = ηz, then, m = infx∈X q(x)− p(x) and also −y+ εy1 is the global
minimizer.

Proof. Let p̃(x) = p(x)+m. Due to Proposition 4.4, q(x) ≥ p(x)+m (∀x ∈ X)
if and only if

(4.3) supp(p̃, L) ⊂ supp(q, L).

Using Remark 4.6, Proposition 3.3 and Proposition 4.5, (4.3) holds if and only if
for each y ∈ X with p(−y+εy1) = εy, there exist z ∈ X with q(−z+ηz1) = ηz
such that

ψy,εy +m ≤ ψz,ηz .
Applying Proposition 3.1 and (2.11), the results follow.
Assume now that there are y, z ∈ X such that y + m1 = z and εy + m = ηz.
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Using the above, we have

p(−y + εy1) +m = q(−y + εy1).

Hence, the proof is complete. �

Remark 4.8. Applying Corollary 3.4 and Proposition 4.5, one has in Theorem
4.7 that ηz := q(−y + εy1) and z = y + [ηz − εy]1.

Finally, let us give a simple example for Theorem 4.7.

Example 4.9. Suppose that p, q : R→ R are defined by

p(x) =

{
x− 1, x ≤ 2,
1, x ≥ 2,

and

q(x) =

{
x+ 1, x ≤ 1,√
x+ 1, x ≥ 1.

Clearly, p and q are sub-topical functions. Consider the function q − p:

q(x)− p(x) =

 2, x ≤ 1,√
x− x+ 2, 1 ≤ x ≤ 2,√
x, x ≥ 2.

Clearly, Ξp = (−∞,−1] and εy = 1, for all y ∈ Ξp. Also, Ξq = (−∞, 1] and

ηz = 3+
√

5−4z
2 , for all z ∈ Ξq. Since m ≥ 0, for every y ∈ Ξp, there is z ∈ Ξq

such that εy +m ≤ ηz.
According to Theorem 4.7 and Remark 4.8,

p(−y + 1) = p(−y + εy) = εy = 1 ⇒ y = −1,

and then,

q(2) = q(−y + εy) = ηz = m+ εy = 1 +m ⇒ m =
√

2.

Moreover, x = −y + εy = 2 is a global minimizer.
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