Bulletin of the
 Iranian Mathematical Society

Special Issue Dedicated to ORO2013 Conference

Vol. 42 (2016), No. 7, pp. 55-66

Title:
An improved infeasible interior-point method for symmetric cone linear complementarity problem

> Author(s):
B. Kheirfam and N. Mahdavi-Amiri

Published by Iranian Mathematical Society
http://bims.ims.ir

AN IMPROVED INFEASIBLE INTERIOR-POINT METHOD FOR SYMMETRIC CONE LINEAR COMPLEMENTARITY PROBLEM

B. KHEIRFAM AND N. MAHDAVI-AMIRI*
(Communicated by Majid Soleimani-damaneh)

Abstract

We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarity problem over symmetric cone (Bull. Iranian Math. Soc., 40, (2014), no. 3, 541-564). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new algorithm demands less work in each iteration and admits a simple analysis of complexity bound. The complexity result coincides with the best-known iteration bound for infeasible interior-point methods. Keywords: Linear complementarity problem, infeasible interior-point method, symmetric cones, polynomial complexity. MSC(2010): Primary: 90C33; Secondary: 90C51.

1. Introduction

Consider a Euclidean Jordan algebra $(\mathcal{J}, \circ,\langle\cdot, \cdot\rangle)$, where o denotes the Jordan product and \mathcal{J} is a finite-dimensional vector space over the real field R equipped with the inner product $\langle\cdot, \cdot\rangle$, and let \mathcal{K} be a symmetric cone in \mathcal{J}. The monotone linear complementarity problem over symmetric cone (SCLCP) requires the computation of a vector pair $(x, s) \in \mathcal{K} \times \mathcal{K}$ satisfying

$$
\begin{equation*}
s=M x+q, x \circ s=0 \tag{1.1}
\end{equation*}
$$

where $q \in R^{n}$ and $M \in R^{n \times n}$ such that $v=M u$ implies that $\langle u, v\rangle \geq 0$. Although SCLCP is not an optimization problem, it is closely related to one, because optimality conditions of several important optimization problems can be written as an SCLCP; e.g., linear optimization (LO) problem over symmetric cone (SCO). Faybusovich was the first to analyze a short-step path-following

[^0]interior-point method (IPM) for SCLCP [2, 3]. In addition to Faybusovich's results, Rangarajan [10] proposed the first infeasible IPM (IIPM) for SCLCP. The primal-dual full-Newton step feasible IPM for LO was first analyzed by Roos et al. [12] and was later extended to infeasible version by Roos [11]. Both versions of the method were extended by Kheirfam and Mahdavi-Amiri [8] to SCLCP by using the Nesterov-Todd (NT) direction as a search direction. The obtained iteration bounds coincide with the ones derived for LO, currently being best known iteration bounds for SCLCP. Subsequently, both versions were extended by Kheirfam and Mahdavi-Amiri [6, 7] to SCLCP based on modified NT-directions using Euclidean Jordan algebra. Recently, Roos [13] proposed a new method for LO by improving the full-Newton step IIPMs so that the centering steps not be needed, whereas the above-mentioned methods require a few (at most three) centering steps in each (main) iteration. Motivated by Roos' recent work, we present a new full-NT step IIPM for SCLCP which uses only a full step in each (main) iteration. The new algorithm starts from an infeasible point, located in a small neighborhood of the central path of a perturbed SCLCP. Then, after a full-NT step the new iterate is well-centered for the new perturbed SCLCP. This kind of strategy reduces the number of iterations and the resulting complexity coincides with the best known bound, while tendering a simple analysis.

In what follows, we briefly recall some concepts, properties, and results from Euclidean Jordan algebras as needed. A comprehensive treatment of Euclidean Jordan algebra can be found in [1].

A Euclidean Jordan algebra is a triple $(\mathcal{J}, \circ,\langle\cdot, \cdot\rangle)$, where $(\mathcal{J},\langle\cdot, \cdot\rangle)$ is an n-dimensional inner product space over R and $(x, y) \rightarrow x \circ y$ on \mathcal{J} is a bilinear mapping satisfying the following conditions for all $x, y, z \in \mathcal{J}$:
(i) $x \circ y=y \circ x$,
(ii) $x \circ\left(x^{2} \circ y\right)=x^{2} \circ(x \circ y)$, where $x^{2}=x \circ x$,
(iii) $\langle x \circ y, z\rangle=\langle x, y \circ z\rangle$,
where the inner product $\langle\cdot, \cdot\rangle$ is defined by $\langle x, y\rangle:=\operatorname{tr}(x \circ y)$ for any $x, y \in \mathcal{J}$.
Note that, by Theorem III.2.1 of [1], the symmetric cone \mathcal{K} coincides with the set of squares $\left\{x^{2}: x \in \mathcal{J}\right\}$ of some Euclidean Jordan algebra \mathcal{J}. We assume that there exists an element e such that $x \circ e=e \circ x=x$, for all $x \in \mathcal{J}$. The rank of $(\mathcal{J}, \circ,\langle\cdot, \cdot\rangle)$ is defined to be

$$
r:=\max \{\operatorname{deg}(x): x \in \mathcal{J}\}
$$

where $\operatorname{deg}(x)$ is the degree of $x \in \mathcal{J}$, given by

$$
\operatorname{deg}(x):=\min \left\{k:\left\{e, x, \ldots, x^{k}\right\} \text { are linearly dependent }\right\} .
$$

For any $x \in \mathcal{J}$, the Lyapunov transformation $L(x): \mathcal{J} \rightarrow \mathcal{J}$ is defined as $L(x) y=x \circ y$, for all $y \in \mathcal{J}$. It follows from (i) and (iii) above that the Lyapunov transformation is symmetric; i.e., $\langle L(x) y, z\rangle=\langle y, L(x) z\rangle$ holds for
all $y, z \in \mathcal{J}$. Specially, $L(x) e=x$ and $L(x) x=x^{2}$, for $x \in \mathcal{J}$. Using the Lyapunov transformation, the quadratic representation of $x \in \mathcal{J}$ is defined as

$$
P(x):=2 L(x)^{2}-L\left(x^{2}\right)
$$

where $L(x)^{2}=L(x) L(x)$. For any $x \in \mathcal{K}, L(x)$ is positive semidefinite; i.e., $\langle L(x) x, x\rangle \geq 0$, and $\langle x, y\rangle=0$ if and only if $x \circ y=0$, for any $x, y \in \mathcal{K}$ (Lemma 2.2 of [2]). An element $c \in \mathcal{J}$ is idempotent if $c \circ c=c \neq 0$, which is also primitive if it cannot be written as a sum of two idempotents. We say that $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is a Jordan frame, if each c_{i} is a primitive idempotent, $c_{i} \circ c_{j}=$ $0(i \neq j)$ and $\sum_{i=1}^{k} c_{i}=e$. Let $(\mathcal{J}, \circ,\langle\cdot, \cdot\rangle)$ be a Euclidean Jordan algebra with $\operatorname{rank}(\mathcal{J})=r$. Then, for any $x \in \mathcal{J}$, there exist a Jordan frame $\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ and real numbers $\lambda_{1}(x), \lambda_{2}(x), \ldots, \lambda_{r}(x)$ such that $x=\sum_{i=1}^{r} \lambda_{i}(x) c_{i}$ (spectral decomposition, Theorem III.1.2 of [1]). Every $\lambda_{i}(x)$ is called an eigenvalue of x. We denote the minimum and maximum eigenvalues of x by $\lambda_{\min }(x)$ and $\lambda_{\max }(x)$, respectively. If two elements x and y share the same Jordan frames in the spectral decompositions, then they operator commute; i.e., they satisfy $L(x) L(y)=L(y) L(x)$ (Theorem 27 of [14]). The trace of x is defined to be $\operatorname{tr}(x):=\sum_{i=1}^{r} \lambda_{i}(x)$ and the Frobenius norm of x is $\|x\|_{F}:=\sqrt{\langle x, x\rangle}=$ $\sqrt{\lambda_{1}(x)^{2}+\ldots+\lambda_{r}(x)^{2}}$. Observe that $\|e\|_{F}=\sqrt{r}$. We also see that $x \in \mathcal{K}$ (respectively, $x \in \operatorname{int} \mathcal{K}$) if and only if $\lambda_{i}(x) \geq 0$ (respectively, $\lambda_{i}(x)>0$), for all $i=1,2, \ldots, r$. For any $x \in \mathcal{J}$, having the spectral decomposition $x=\sum_{i=1}^{r} \lambda_{i}(x) c_{i}$, we denote

$$
x^{\frac{1}{2}}:=\sum_{i=1}^{r} \sqrt{\lambda_{i}(x)} c_{i}, \text { if } \lambda_{i}(x) \geq 0 \text { and } x^{-1}:=\sum_{i=1}^{r} \lambda_{i}(x)^{-1} c_{i}, \text { if } \lambda_{i}(x) \neq 0
$$

The remainder of our work is organized as follows. In the next section, we introduce the perturbed problem and describe our proposed algorithm. Section 3 gives an analysis of the algorithm. In subsection 3.1, we derive an upper bound for the proximity measure after a full step. Subsection 3.2 serves to derive an upper bound for $\omega(v)$. In subsection 3.3 , we fix the values of the parameters θ and τ in the algorithm. Here, τ is a uniform upper bound for the values of the proximity measure, $\delta(x, s ; \mu)$, occurring during the course of the algorithm, and θ determines the progress to feasibility and optimality of the iterates. As a result, we realize the algorithm to be well-defined for the chosen values of θ and τ. Finally, we derive the complexity of the algorithm coinciding with the best known iteration bound for IIPMs.

2. Infeasible full-NT step IPM

In the case of an infeasible method, we call the pair (x, s) an ϵ-solution of (1.1) if the Frobenius norm of the residual vector $s-M x-q$ does not exceed ϵ, and also $\langle x, s\rangle:=\operatorname{tr}(x \circ s) \leq \epsilon$.
2.1. The perturbed problem. In accordance with the available results on IIPMs (e.g., see [8]), it is assumed that there exists a solution $\left(x^{*}, s^{*}\right)$ such that

$$
\begin{equation*}
\left\|x^{*}\right\|_{\infty} \leq \rho_{p}, \max \left\{\left\|s^{*}\right\|_{\infty},\left\|\rho_{p} M e+q\right\|_{F}\right\} \leq \rho_{d} \tag{2.1}
\end{equation*}
$$

where ρ_{p} and ρ_{d} are positive numbers. Furthermore, we choose arbitrarily $\left(x^{0}, s^{0}\right) \in \operatorname{int} \mathcal{K}$ and $\mu^{0}>0$ such that

$$
\begin{equation*}
x^{0}=\rho_{p} e, s^{0}=\rho_{d} e, \text { and } \mu^{0}=\rho_{p} \rho_{d}, \tag{2.2}
\end{equation*}
$$

as the starting point of the algorithm, where ρ_{p} and ρ_{d} are defined as in (2.1). The initial value of the residual vector is denoted to be $r_{q}^{0}=s^{0}-M x^{0}-q$. In general, we have $r_{q}^{0} \neq 0$. However, a sequence of perturbed problems is constructed below in a such a way that the initial iterate is strictly feasible for the first perturbed problem in the sequence.

For any ν, with $0<\nu \leq 1$, we consider the perturbed problem (SCLCP_{ν}), defined by

$$
s-M x-q=\nu r_{q}^{0},(x, s) \in \mathcal{K} \times \mathcal{K}\left(\mathrm{SCLCP}_{\nu}\right)
$$

It is obvious that $(x, s)=\left(x^{0}, s^{0}\right)$ is a strictly feasible solution of $\left(\mathrm{SCLCP}_{\nu}\right)$, when $\nu=1$. This means that the perturbed problem $\left(\mathrm{SCLCP}_{\nu}\right)$ satisfies the interior point condition (IPC), for $\nu=1$; i.e., there exists $\left(x^{0}, s^{0}\right) \in \operatorname{int} \mathcal{K} \times \operatorname{int} \mathcal{K}$ such that $s^{0}-M x^{0}-q=\nu r_{q}^{0}$, which then straightforwardly leads to the following result.

Theorem 2.1. (Theorem 3.1 of [8]) Let (1.1) be feasible and $0<\nu \leq 1$. Then, the perturbed problem $\left(\mathrm{SCLCP}_{\nu}\right)$ satisfies the IPC.

Let (1.1) be feasible and $0<\nu \leq 1$. Then, Theorem 2.1 implies that the problem $\left(\mathrm{SCLCP}_{\nu}\right)$ satisfies the IPC, for $0<\nu \leq 1$, and hence a corresponding central path exists. This means that the system

$$
\begin{gather*}
s-M x-q=\nu r_{q}^{0}, \quad(x, s) \in \mathcal{K} \times \mathcal{K} \tag{2.3}\\
x \circ s=\mu e
\end{gather*}
$$

has a unique solution for every $\mu>0$, as the μ-center of the perturbed problem $\left(\mathrm{SCLCP}_{\nu}\right)$. The set of μ-centers is called the central path. In what follows, the parameters μ and ν always satisfy the relation $\mu=\nu \mu^{0}=\nu \rho_{p} \rho_{d}$. It is also worth noting that, according to (2.2), $x^{0} \circ s^{0}=\mu^{0} e$; hence, $\left(x^{0}, s^{0}\right)$ is the μ^{0} center of the perturbed problem $\left(\mathrm{SCLCP}_{\nu}\right)$ for $\nu=1$. Therefore, the algorithm can easily be started since by construction we have the initial starting point lying exactly on the central path of $\left(\mathrm{SCLCP}_{\nu}\right)$ for $\nu=1$.

Let (x, s) be a feasible solution of $\left(\mathrm{SCLCP}_{\nu}\right)$, and $\mu=\nu \mu^{0}$. Then, we measure proximity to the μ-center of the perturbed problem $\left(\mathrm{SCLCP}_{\nu}\right)$ by the quantity

$$
\delta(x, s ; \mu):=\delta(v):=\frac{1}{2}\left\|v^{-1}-v\right\|_{F}, \text { where } v:=\frac{P\left(w^{-\frac{1}{2}}\right) x}{\sqrt{\mu}}\left[=\frac{P\left(w^{\frac{1}{2}}\right) s}{\sqrt{\mu}}\right]
$$

and $w:=P\left(x^{\frac{1}{2}}\right)\left(P\left(x^{\frac{1}{2}}\right) s\right)^{-\frac{1}{2}}\left[=P\left(s^{-\frac{1}{2}}\right)\left(P\left(s^{\frac{1}{2}}\right) x\right)^{\frac{1}{2}}\right]$ is called the scaling point of x and s (Lemma 3.2 of [4]). As a consequence, we have the following lemma.

Lemma 2.2. (Lemma 4.7 of [5]) If $\delta:=\delta(v)$, then

$$
\frac{1}{\rho(\delta)} \leq \lambda_{\min }(v) \leq \lambda_{\max }(v) \leq \rho(\delta), \text { where } \rho(\delta):=\delta+\sqrt{1+\delta^{2}}
$$

2.2. An iteration of our algorithm. Suppose that for some $\mu \in\left(0, \mu^{0}\right]$ we have x and s satisfying the first equation in (2.3) for $\nu=\frac{\mu}{\mu^{0}}$ and such that $\delta(x, s ; \mu) \leq \tau$. This certainly holds at the start of the first iteration, since $s^{0}-M x^{0}-q=\nu r_{q}^{0}$, when $\nu=1$ and $\delta\left(x^{0}, s^{0} ; \mu^{0}\right)=0$. We reduce μ to $\mu^{+}:=(1-\theta) \mu$ and ν to $\nu^{+}:=(1-\theta) \nu$ with $\theta \in(0,1)$, and find new iterates x^{+}and s^{+}satisfying the first equation in (2.3), with μ replaced by μ^{+}and ν by $\nu^{+}=\frac{\mu^{+}}{\mu^{0}}$, and such that $\delta\left(x^{+}, s^{+} ; \mu^{+}\right) \leq \tau$. Note that $\nu^{+}=(1-\theta) \nu$. So, the relation $\mu=\nu \mu^{0}$ is maintained in every iteration.

Suppose that we have strictly feasible iterates x and s for $\left(S C L C P_{\nu}\right)$. This means that (x, s) satisfies the first equation of (2.3) with $x \in \operatorname{int} \mathcal{K}$ and $s \in \operatorname{int} \mathcal{K}$. With ν replaced by $\nu^{+}=(1-\theta) \nu$, we find displacements Δx and Δs such that

$$
\begin{align*}
M \Delta x-\Delta s & =\theta \nu r_{q}^{0} \tag{2.4}\\
s \circ \Delta x+x \circ \Delta s & =\mu e-x \circ s
\end{align*}
$$

Due to the fact that $L(x) L(s) \neq L(s) L(x)$, in general, the above system does not always have a unique solution. To overcome this difficultly, the second equation of the system (2.3) is replaced by the following equivalent scaled equation (see Lemma 28 of [14]):

$$
P\left(w^{-\frac{1}{2}}\right) x \circ P\left(w^{\frac{1}{2}}\right) s=\mu e
$$

where w is the NT-scaling point of x and s. This scaling point was first proposed by Nesterov and Todd [9] for self-scaled cones and then adapted by Faybusovich [3] for symmetric cones. In this case, the system (2.4) becomes

$$
\begin{gather*}
M \Delta x-\Delta s=\theta \nu r_{q}^{0}, \\
P\left(w^{\frac{1}{2}}\right) s \circ P\left(w^{-\frac{1}{2}}\right) \Delta x+P\left(w^{-\frac{1}{2}}\right) x \circ P\left(w^{\frac{1}{2}}\right) \Delta s= \tag{2.5}\\
\mu e-P\left(w^{-\frac{1}{2}}\right) x \circ P\left(w^{\frac{1}{2}}\right) s .
\end{gather*}
$$

It is easily seen that $x^{+}:=x+\Delta x$ and $s^{+}:=s+\Delta s$ satisfy $s-M x-q=\nu^{+} r_{q}^{0}$. The main part of the analysis is to guarantee that $x^{+} \in \operatorname{int} \mathcal{K}$ and $s^{+} \in \operatorname{int} \mathcal{K}$ satisfy $\delta\left(x^{+}, s^{+} ; \mu^{+}\right) \leq \tau$.
2.3. The algorithm. A formal description of the new algorithm is given in Figure 1.

Infeasible interior - point algorithm
Input :
accuracy parameter $\epsilon>0 ;$
\quad barraier update parameter $\theta, 0<\theta<1 ;$
begin $x:=\rho_{p} e ; s:=\rho_{d} e ; \nu=1 ; \mu=\rho_{p} \rho_{d} ;$
while $\max \left(\operatorname{tr}(x \circ s),\left\\|r_{q}\right\\|_{F}\right)>\epsilon$ do
begin
$(x, s):=(x, s)+(\Delta x, \Delta s) ;$
$\mu:=(1-\theta) \mu ; \nu:=(1-\theta) \nu ;$
end
end

Figure 1: The algorithm

3. Analysis of the algorithm

Let x and s denote the iterates at the start of an iteration, and assume $\delta(x, s ; \mu) \leq \tau$.
3.1. Upper bound for $\delta\left(v^{+}\right)$. As established in subsection 2.2, the full-NT step generates new iterates x^{+}and s^{+}that satisfy the feasibility condition for $\left(S C L C P_{\nu^{+}}\right)$, except for possibly the constraints on the cone \mathcal{K}. A crucial element in the analysis is to show that, after the full-NT step, $\delta\left(x^{+}, s^{+} ; \mu^{+}\right) \leq \tau$.

Defining

$$
\begin{equation*}
d_{x}:=\frac{P\left(w^{-\frac{1}{2}}\right) \Delta x}{\sqrt{\mu}}, d_{s}:=\frac{P\left(w^{\frac{1}{2}}\right) \Delta s}{\sqrt{\mu}} \tag{3.1}
\end{equation*}
$$

the second equation of (2.5) turns to

$$
d_{x}+d_{s}=v^{-1}-v
$$

In this case, using the definition of v and (3.1), we get

$$
\begin{equation*}
x^{+}=\sqrt{\mu} P\left(w^{\frac{1}{2}}\right)\left(v+d_{x}\right), s^{+}=\sqrt{\mu} P\left(w^{-\frac{1}{2}}\right)\left(v+d_{s}\right) \tag{3.2}
\end{equation*}
$$

Since $P\left(w^{\frac{1}{2}}\right)$ and its inverse $P\left(w^{-\frac{1}{2}}\right)$ are automorphisms of int \mathcal{K}, x^{+}and s^{+} belong to int \mathcal{K} if and only if $v+d_{x}$ and $v+d_{s}$ belong to int \mathcal{K}. We have

$$
\begin{gather*}
\left(v+d_{x}\right) \circ\left(v+d_{s}\right)=v^{2}+v \circ\left(d_{x}+d_{s}\right)+d_{x} \circ d_{s} \\
=e+d_{x} \circ d_{s} \tag{3.3}
\end{gather*}
$$

Lemma 3.1. The iterate $\left(x^{+}, s^{+}\right)$is strictly feasible if $e+d_{x} \circ d_{s} \in \operatorname{int} \mathcal{K}$.
Proof. The proof is similar to the proof of Lemma 4.2 in [5], and is therefore omitted.

Corollary 3.2. The iterate $\left(x^{+}, s^{+}\right)$is strictly feasible if $\left\|\lambda\left(d_{x} \circ d_{s}\right)\right\|_{\infty}<1$.
Proof. By Lemma 3.1, the iterate $\left(x^{+}, s^{+}\right)$is strictly feasible if $e+d_{x} \circ d_{s} \in \operatorname{int} \mathcal{K}$. If $\left\|\lambda\left(d_{x} \circ d_{s}\right)\right\|_{\infty}<1$. Then we have $-1<\lambda_{i}\left(d_{x} \circ d_{s}\right)<1$, for all $i=1, \ldots, r$. Therefore,

$$
\lambda_{i}\left(e+d_{x} \circ d_{s}\right)=1+\lambda_{i}\left(d_{x} \circ d_{s}\right)>0, i=1, \ldots, r .
$$

The last inequalities mean that $e+d_{x} \circ d_{s} \in \operatorname{int} \mathcal{K}$, and the proof follows.
In the sequel, we use the notation

$$
\begin{equation*}
\omega(v):=\frac{1}{2}\left(\left\|d_{x}\right\|_{F}^{2}+\left\|d_{s}\right\|_{F}^{2}\right) \tag{3.4}
\end{equation*}
$$

It follows, from Lemmas 2.16 and 2.12 of [5], that

$$
\begin{align*}
\left\|\lambda\left(d_{x} \circ d_{s}\right)\right\|_{\infty} & \leq\left\|d_{x} \circ d_{s}\right\|_{F} \leq \frac{1}{2}\left\|d_{x}^{2}+d_{s}^{2}\right\|_{F} \\
& \leq \frac{1}{2}\left(\left\|d_{x}\right\|_{F}^{2}+\left\|d_{s}\right\|_{F}^{2}\right)=\omega(v) \tag{3.5}
\end{align*}
$$

Corollary 3.3. If $\omega(v)<1$, then the iterate $\left(x^{+}, s^{+}\right)$is strictly feasible.
Proof. Due to (3.5), $\omega(v)<1$ implies $\left\|\lambda\left(d_{x} \circ d_{s}\right)\right\|_{\infty}<1$. By Corollary 3.2, the proof is complete.

Assuming $\omega(v)<1$, which guarantees strict feasibility of the iterate $\left(x^{+}, s^{+}\right)$, we proceed by deriving an upper bound for $\delta\left(x^{+}, s^{+} ; \mu^{+}\right)$. By definition, we have

$$
\delta\left(x^{+}, s^{+} ; \mu^{+}\right):=\frac{1}{2}\left\|v^{+}-\left(v^{+}\right)^{-1}\right\|_{F}
$$

where $v^{+}:=\frac{P\left(\left(w^{+}\right)^{-\frac{1}{2}}\right) x^{+}}{\sqrt{\mu^{+}}}\left[=\frac{P\left(\left(w^{+}\right)^{\frac{1}{2}}\right) s^{+}}{\sqrt{\mu^{+}}}\right]$. In what follows, we denote $\delta\left(x^{+}, s^{+} ; \mu^{+}\right)$ shortly by $\delta\left(v^{+}\right)$.

Lemma 3.4. Let $\omega(v)<1$. Then, we have

$$
\delta\left(v^{+}\right) \leq \frac{\theta \sqrt{r}+\omega(v)}{2 \sqrt{(1-\theta)(1-\omega(v))}}
$$

Proof. Since $\omega(v)<1$, using corollaries 3.3 and 3.2, Lemma 3.1, (3.3) and (3.2), it follows that $v+d_{x}, v+d_{s}$ and $\left(v+d_{x}\right) \circ\left(v+d_{s}\right)$ belong to int \mathcal{K}. Similar to the proof of lemma 3.3 of [8], we have

$$
\sqrt{1-\theta} v^{+} \sim\left[P\left(v+d_{x}\right)^{\frac{1}{2}}\left(v+d_{s}\right)\right]^{\frac{1}{2}}
$$

Using Theorem 4 of [15] and (3.5), we have

$$
\begin{aligned}
\lambda_{\min }\left(v^{+}\right)^{2} & =\lambda_{\min }\left(P\left(\frac{v+d_{x}}{\sqrt{1-\theta}}\right)^{\frac{1}{2}}\left(\frac{v+d_{s}}{\sqrt{1-\theta}}\right)\right) \\
& \geq \lambda_{\min }\left(\left(\frac{v+d_{x}}{\sqrt{1-\theta}}\right) \circ\left(\frac{v+d_{s}}{\sqrt{1-\theta}}\right)\right) \\
& =\frac{\lambda_{\min }\left(e+d_{x} \circ d_{s}\right)}{1-\theta} \\
& =\frac{1+\lambda_{\min }\left(d_{x} \circ d_{s}\right)}{1-\theta} \\
& \geq \frac{1-\left\|d_{x} \circ d_{s}\right\|_{F}}{1-\theta} \\
& \geq \frac{1-\omega(v)}{1-\theta}
\end{aligned}
$$

Hence, using Lemma 2.9 of [10], the above inequality, Lemma 30 of [14], (3.3), the triangle inequality and (3.5), we may write

$$
\begin{aligned}
2 \delta\left(v^{+}\right) & =\left\|v^{+}-\left(v^{+}\right)^{-1}\right\|_{F} \\
& \leq \frac{\left\|\left(v^{+}\right)^{2}-e\right\|_{F}}{\lambda_{\min }\left(v^{+}\right)} \\
& \leq \frac{\sqrt{1-\theta}}{\sqrt{1-\omega(v)}}\left\|P\left(\frac{v+d_{x}}{\sqrt{1-\theta}}\right)^{\frac{1}{2}}\left(\frac{v+d_{s}}{\sqrt{1-\theta}}\right)-e\right\|_{F} \\
& \leq \frac{\sqrt{1-\theta}}{\sqrt{1-\omega(v)}}\left\|\left(\frac{v+d_{x}}{\sqrt{1-\theta}}\right) \circ\left(\frac{v+d_{s}}{\sqrt{1-\theta}}\right)-e\right\|_{F} \\
& =\frac{\sqrt{1-\theta}}{\sqrt{1-\omega(v)}}\left\|\frac{e+d_{x} \circ d_{s}}{1-\theta}-e\right\|_{F} \\
& =\frac{\left\|\theta e+d_{x} \circ d_{s}\right\|_{F}}{\sqrt{(1-\theta)(1-\omega(v))}} \\
& \leq \frac{\theta \sqrt{r}+\omega(v)}{\sqrt{(1-\theta)(1-\omega(v))}}
\end{aligned}
$$

This completes the proof.
3.2. Upper bound for $\omega(v)$. We may easily check that the system (2.5), defining the search directions Δx and Δs, can be expressed in terms of the scaled search directions d_{x} and d_{s} as follows:

$$
\begin{align*}
\bar{M} d_{x}-d_{s} & =\frac{P\left(w^{\frac{1}{2}}\right)}{\sqrt{\mu}} \theta \nu r_{q}^{0} \tag{3.6}\\
d_{x}+d_{s} & =v^{-1}-v
\end{align*}
$$

where $\bar{M}:=P(w)^{\frac{1}{2}} M P(w)^{\frac{1}{2}}$ is positive semidefinite [8].
Lemma 3.5. Let $a \in R^{n}$ and $\bar{M} \in R^{n \times n}$ be positive semidefinite. Then, the solution (u, v) of the linear system

$$
\begin{gather*}
\bar{M} u-v=0 \tag{3.7}\\
u+v=a
\end{gather*}
$$

satisfies

$$
\|u\|_{F}^{2}+\|v\|_{F}^{2} \leq\|a\|_{F}^{2}
$$

Proof. We have

$$
\|u\|_{F}^{2}+\|v\|_{F}^{2}=\|u+v\|_{F}^{2}-2\langle u, v\rangle \leq\|u+v\|_{F}^{2}=\|a\|_{F}^{2}
$$

The inequality follows from \bar{M} being positive semidefinite to complete the proof.

Lemma 3.6. Let a and b be two n-dimensional vectors, and let $\bar{M} \in R^{n \times n}$ be positive semidefinite. Then, the solution (u, v) of the linear system

$$
\begin{align*}
\bar{M} u-v & =b \\
u+v & =a \tag{3.8}
\end{align*}
$$

satisfies

$$
\|u\|_{F}^{2}+\|v\|_{F}^{2} \leq 4\|a\|_{F}^{2}+6\|b\|_{F}^{2} .
$$

Proof. It is easily seen that the system (3.8) can be written as

$$
\begin{align*}
\bar{M} u-\tilde{v} & =0 \tag{3.9}\\
u+\tilde{v} & =a+b
\end{align*}
$$

where $\tilde{v}=v+b$. Applying Lemma 3.5 to (3.9), it follows that

$$
\|u\|_{F}^{2}+\|\tilde{v}\|_{F}^{2} \leq\|a+b\|_{F}^{2}=\|a\|_{F}^{2}+\|b\|_{F}^{2}+2\langle a, b\rangle \leq 2\left(\|a\|_{F}^{2}+\|b\|_{F}^{2}\right)
$$

Therefore, using the above inequality, we get

$$
\begin{aligned}
\|u\|_{F}^{2}+\|v\|_{F}^{2}= & \|u\|_{F}^{2}+\|\tilde{v}-b\|_{F}^{2} \\
& \leq 2\|u\|_{F}^{2}+2\left(\|\tilde{v}\|_{F}^{2}+\|b\|_{F}^{2}\right) \leq 4\|a\|_{F}^{2}+6\|b\|_{F}^{2}
\end{aligned}
$$

This completes the proof.
Comparing the system (3.8) with the system (3.6) and considering $(u, v)=$ $\left(d_{x}, d_{s}\right), b=\frac{P\left(w^{\frac{1}{2}}\right)}{\sqrt{\mu}} \theta \nu r_{q}^{0}$ and $a=v^{-1}-v$ in (3.8), by using Lemma 3.6 and

$$
\begin{aligned}
\left\|P\left(w^{\frac{1}{2}}\right) r_{q}^{0}\right\|_{F}^{2} & =\left\langle P\left(w^{\frac{1}{2}}\right) r_{q}^{0}, P\left(w^{\frac{1}{2}}\right) r_{q}^{0}\right\rangle=\left\langle P(w) r_{q}^{0}, r_{q}^{0}\right\rangle \\
& =\left\langle P(w) r_{q}^{0}, 2 \rho_{d} e\right\rangle-\left\langle P(w) r_{q}^{0}, 2 \rho_{d} e-r_{q}^{0}\right\rangle \leq\left\langle P(w) r_{q}^{0}, 2 \rho_{d} e\right\rangle \\
& =\left\langle P(w)\left(2 \rho_{d} e\right), 2 \rho_{d} e\right\rangle-\left\langle P(w)\left(2 \rho_{d} e-r_{q}^{0}\right), 2 \rho_{d} e\right\rangle \\
& \leq\left\langle P(w)\left(2 \rho_{d} e\right), 2 \rho_{d} e\right\rangle=4 \rho_{d}^{2}\langle P(w) e, e\rangle=4 \rho_{d}^{2} \operatorname{tr}\left(w^{2}\right)
\end{aligned}
$$

where the inequalities hold since $x^{0}=\rho_{p} e, s^{0}=\rho_{d} e$ and $\left\|\rho_{p} M e+q\right\|_{F} \leq \rho_{d}$ imply $2 \rho_{d} e \succeq r_{q}^{0} \succeq 0$, we get

$$
\begin{aligned}
\omega(v) & \leq 2\left\|v^{-1}-v\right\|_{F}^{2}+\frac{3 \theta^{2} \nu^{2}}{\mu}\left\|P\left(w^{\frac{1}{2}}\right) r_{q}^{0}\right\|_{F}^{2} \\
& \leq 8 \delta^{2}+\frac{12 \theta^{2} \nu^{2} \rho_{d}^{2}}{\mu} \operatorname{tr}\left(w^{2}\right)
\end{aligned}
$$

Now, using the inequality $\operatorname{tr}\left(w^{2}\right) \leq \frac{\operatorname{tr}\left(x^{2}\right)}{\mu \lambda_{\min }(v)^{2}}$ (Lemma 4.5 of [5]), Lemma 2.2, $\operatorname{tr}(x) \leq r \rho_{p}\left(2+\rho(\delta)^{2}\right)\left(\right.$ Lemma 3.7 of [8]) and $\mu=\nu \rho_{p} \rho_{d}$, we obtain:

$$
\begin{array}{r}
\omega(v) \leq 8 \delta^{2}+\frac{12 \theta^{2} \nu^{2} \rho_{d}^{2}}{\mu} \times \frac{\operatorname{tr}\left(x^{2}\right)}{\mu \lambda_{\min }(v)^{2}} \leq 8 \delta^{2}+\frac{12 \theta^{2} \rho(\delta)^{2}}{\rho_{p}^{2}} \operatorname{tr}(x)^{2} \\
\leq 8 \delta^{2}+12 \theta^{2} r^{2} \rho(\delta)^{2}\left(2+\rho(\delta)^{2}\right)^{2} \tag{3.10}
\end{array}
$$

3.3. Values for θ and τ. Our aim is to find a positive number τ such that if $\delta:=\delta(v) \leq \tau$, then $\delta\left(v^{+}\right) \leq \tau$. By Lemma 3.4, this holds if $\omega(v)<1$ and

$$
\begin{equation*}
\frac{\theta \sqrt{r}+\omega(v)}{2 \sqrt{(1-\theta)(1-\omega(v))}} \leq \tau \tag{3.11}
\end{equation*}
$$

Assuming $\delta(v) \leq \tau$, we therefore need to find τ such that the above inequality holds, with θ as large as possible. We choose

$$
\begin{equation*}
\theta=\frac{1}{46 r}, \tau=\frac{1}{16} \tag{3.12}
\end{equation*}
$$

Using $\delta \leq \tau$, it follows from (3.10), with the right-hand side of (3.10) being monotonically increasing with respect to δ, that

$$
\begin{aligned}
\operatorname{omega}(v) & \leq 8 \tau^{2}+12 \theta^{2} r^{2} \rho(\tau)^{2}\left(2+\rho(\tau)^{2}\right)^{2} \\
& =8\left(\frac{1}{16}\right)^{2}+12\left(\frac{1}{46 r}\right)^{2} r^{2} \rho\left(\frac{1}{16}\right)^{2}\left(2+\rho\left(\frac{1}{16}\right)^{2}\right)^{2} \\
& =0.0943<1
\end{aligned}
$$

The above inequality means, using Corollary 3.3 , that the iterate $\left(x^{+}, s^{+}\right)$is strictly feasible. From Lemma 3.4, it follows that

$$
\begin{aligned}
\delta\left(v^{+}\right) \leq \frac{\theta \sqrt{r}+\omega(v)}{2 \sqrt{(1-\theta)(1-\omega(v))}} & \leq \frac{\frac{1}{46 \sqrt{r}}+0.0943}{2 \sqrt{\left(1-\frac{1}{46 r}\right)(1-0.0943)}} \\
& =0.0617<\frac{1}{16}=\tau
\end{aligned}
$$

This implies that (3.11) holds. Therefore, the algorithm is well-defined in the sense that the property $\delta(x, s ; \mu) \leq \tau$ is maintained in all iterations.
3.4. Complexity. We have found that if at the start of an iteration the iterate satisfies $\delta(x, s ; \mu) \leq \tau$ and τ and θ are defined as in (3.12), then after the fullNT step, the iterate is strictly feasible and satisfies $\delta\left(x^{+}, s^{+} ; \mu^{+}\right) \leq \tau$. This establishes that the algorithm is well-defined.

In each main iteration, both the barrier parameter μ and the norm of the residual vector are reduced by the factor $1-\theta$. Hence, the total number of main iterations is bounded above by

$$
\frac{1}{\theta} \log \frac{\max \left\{\operatorname{tr}\left(x^{0} \circ s^{0}\right),\left\|r_{q}^{0}\right\|_{F}\right\}}{\epsilon}
$$

Thus, we next state the main result of our work.
Theorem 3.7. If (1.1) has a solution $\left(x^{*}, s^{*}\right)$ such that $\left\|x^{*}\right\|_{\infty} \leq \rho_{p}$ and $\left\|s^{*}\right\|_{\infty} \leq \rho_{d}$, then after at most

$$
46 r \log \frac{\max \left\{\operatorname{tr}\left(x^{0} \circ s^{0}\right),\left\|r_{q}^{0}\right\|_{F}\right\}}{\epsilon}
$$

iterations the algorithm finds an ϵ-solution of (1.1).

Acknowledgments

The first author thanks Azarbaijan Shahid Madani University and the second author thanks Research Council of Sharif University of Technology for supporting this work.

References

[1] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Math. Monogr., Clarendon Press, New York, 1994.
[2] L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, J. Comput. Appl. Math. 86 (1997), no. 1, 149-175.
[3] L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, Positivity 1 (1997), no. 4, 331-357.
[4] L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z. 239 (2002), no. 1, 117-129.
[5] G. Gu, M. Zangiabadi and C. Roos, Full Nesterov-Todd step infeasible interior-point method for symmetric optimization, European J. Oper. Res. 214 (2011), no. 3, 473484.
[6] B. Kheirfam and N. Mahdavi-Amiri, A new interior-point algorithm based on modified Nesterov-Todd direction for symmetric cone linear complementarity problem, Optim. Lett. 8 (2014), no. 3, 1017-1029.
[7] B. Kheirfam and N. Mahdavi-Amiri, An infeasible interior-point algorithm based on modified Nesterov and Todd directions for symmetric linear complementarity problem, Optimization 64 (2015), no. 7, 1577-1591.
[8] B. Kheirfam and N. Mahdavi-Amiri, A full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem, Bull. Iranian Math. Soc. 40 (2014), no. 3, 541-564.
[9] Y. E. Nesterov and M. J. Todd, Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res. 22 (1997), no. 1, 1-42.
[10] B. K. Rangarajan, Polynomial convergence of infeasible interior-point methods over symmetric cones, SIAM J. Optim. 16 (2006), no. 4, 1211-1229.
[11] C. Roos, A full-Newton step $O(n)$ infeasible interior-point algorithm for linear optimization, SIAM J. Optim. 16 (2006), no. 4, 1110-1136.
[12] C. Roos, T. Terlaky and J. Ph. Vial, Theory and Algorithms for Linear Optimization; An Interior-Point Approach, John Wiley \& Sons, Chichester, 1997.
[13] C. Roos, An improved and simplified full-Newton step $O(n)$ infeasible interior-point method for linear optimization, SIAM J. Optim. 25 (2015), no. 1, 102-114.
[14] S. H. Schmieta and F. Alizadeh, Extension of primal-dual interior-point algorithms to symmetric cones, Math. Program. 96 (2003), no. 3, 409-438
[15] J. F. Sturm, Similarity and other spectral relations for symmetric cones, Algebra Appl. 312 (2000), no. 1-3, 135-154.
(Behrouz Kheirfam) Department of Applied Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.

E-mail address: b.kheirfam@azaruniv.edu
(Nezam Mahdavi-Amiri) Faculty of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.

E-mail address: nezamm@sharif.edu

[^0]: Article electronically published on December 18, 2016.
 Received: 23 November 2014, Accepted: 5 February 2015.

 * Corresponding author.

