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Abstract. Here, we aim to develop a new algorithm for solving a mul-
tiobjective linear programming problem. The algorithm is to obtain a

solution which approximately meets the decision maker’s preferences. It

is proved that the proposed algorithm always converges to a weak effi-
cient solution and at times converges to an efficient solution. Numerical

examples and a simulation study are used to illustrate the performance

of the proposed algorithm.
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1. Introduction

Multiobjective linear programming (MOLP) is a famous model used for mul-
ticriteria optimization [14]. Zopounidis et al. [38] used MOLP as a decision tool
for the selection of stock portfolios. Xiao et al. [35] proposed a MOLP model
on injection oil field recovery system. Ipsilandis [19] introduced a MOLP model
for scheduling linear repetitive projects. Shao and Ehrgott [29] considered the
beam intensity optimization problem of radiotherapy treatment planning and
formulated it as a MOLP problem. For an overview of MOLP, we refer the
reader to [14,31,37] and the references therein.

A MOLP problem deals with several linear objective functions subject to a
set of linear constraints, for which we are to find a suitable efficient or weak
efficient solution to satisfy the decision maker (DM). An efficient solution is
an element of the feasible set for which an object value can not be improved
without sacrificing the others. On the other hand, a weak efficient solution is
a solution for which all the objective functions can not be improved simulta-
neously. Several methods have been developed to obtain efficient and/or weak
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efficient solutions of a MOLP problem. Some only obtain a single efficient (or
weak efficient) solution while others obtain all efficient (or weak efficient) solu-
tions. The entire efficient set is of interest when the DM’s preferences are not
provided. Some simplex-based algorithms are available for generating the en-
tire efficient set of a MOLP problem [6,20,36] and other algorithms provide the
set of efficient solutions by maximal efficient faces [5, 13, 27]. However, finding
all efficient solutions can be rather time-consuming and may not be possible
for large-scale problems. On the other hand, since the number of efficient solu-
tions can be quite large, it is not an easy task to select just one [17]. Therefore,
algorithms that are able to find a suitable efficient (weak efficient) solution are
of interest.

The well-known weighted sum, ε−constraint, minmax, and lexicographic
methods are the most popular methods for obtaining a single efficient (weak
efficient) solution of a MOLP problem [14, 31]. More comprehensive methods
have been developed in the literature ( e.g., see [8, 10, 12, 34]). These methods
solve either a single optimization problem or a finite number of optimization
problems interactively. The simplex method is commonly used, since the mod-
els are usually single objective linear programs. An important feature of the
methods is modelling of the decision process and the type of information re-
quested from the DM. We may ask the DM for his/her preferences in terms
of the weights of the objectives, a reference or target point or the lower or
upper bounds of the objective functions. For instance, if the DM can provide
information in the form of target values and weights for the objective functions,
then the well-known goal programming technique [21] can be used. Also, the
reference point method [10, 22] allows the DM to offer reference points (or as-
piration levels) for an objective. Moreover, one can change the reference point
to improve the attained value of an objective function [23].

As mentioned, most MOLP methods are simplex-based. The simplex algo-
rithm moves from one extreme point on the boundary of the feasible region to
another one to attain an efficient solution. To accomplish this, some methods
need efficiency tests in moving through the extreme points [20, 27, 31]. The
number of extreme points, and also iterations, increases rapidly as the size of
the problem increases. An alternative approach in such cases is moving through
the interior of the feasible region instead of the boundary. In this context, ap-
plying interior point methods to solve a MOLP problem is quite popular [1,3].
Some methods use the center of polytopes for moving towards a single efficient
(or weak efficient) solution.

The center of a region can be defined in several ways, each leading to a differ-
ent analytic and geometrical implication [4]. Trafalis and Alkahtani [33] used
the analytic center of polytopes to construct an algorithm for MOLP problems.
They computed the analytic centers of the restricted feasible regions obtained
by inducing cuts in the main feasible region. Aghezzaf and Ouaderhman [2]
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constructed a sequence of smaller and smaller polytopes which shrank towards
a compromise solution of a MOLP problem. Their algorithm moves from the
center of a polytope to the center of the next polytope using a local optimiza-
tion involving maximization of a linear function over an ellipsoid. However,
both methods need to approximate the utility function of the DM. Tarek [32]
suggested the method of centers algorithm for multiobjective programming
problems which proceeded without such a utility function. Arbel and Var-
gas [4] addressed various issues associated with the derivation of the Euclidean
center and illustrated an application to MOLP problems.

Recently, Murty and Oskoorouchi [24, 26] used the concept of the ball cen-
ter of a polytope and applied it to solve a linear programming problem ef-
fectively. The current research aims to use the concept of ball center of a
polytope to develop an algorithm for obtaining a suitable solution of a MOLP
problem. In fact, the idea of the proposed algorithm is similar to Aghezzaf
and Ouaderhman’s [2] algorithm. In other words, it constructs a sequence of
smaller and smaller polytopes, shrinking towards a solution. However, it does
not need a utility function or its approximation. Indeed, it only asks the DM
for target values and weights of the objectives. It is proved that the proposed
algorithm always converges to a weak efficient solution. Furthermore, its con-
vergency to an efficient solution in special cases is also proved. In fact, the aim
of the proposed algorithm is not to determine all efficient (or weak efficient) so-
lutions. It is intended to find a suitable solution which meets the DM’s desires
satisfactorily.

The rest of the paper is organized as follows. Section 2 introduces the MOLP
problem and some preliminaries. Section 3 defines the ball center of a polytope
and describes methods to approximate it. Section 4 presents an algorithm to
obtain a solution for a MOLP problem. The main results are given in Section
5. The satisfactory performance of the proposed algorithm is illustrated by
numerical examples as well as a simulation study in Section 6. Finally, Section
7 contains conclusions and suggestions for further research.

2. A survey of multiobjective linear programming

To compare vectors in MOLP, it is necessary to define an ordering. For
x1, x2 ∈ Rn, common orders are as follows [14]:

• x1 = x2 ⇔ x1i > x
2
i , ∀ i = 1, ..., n, (weak componentwise order);

• x1 ≥ x2 ⇔ x1 = x2 and x1 6= x2, (componentwise order);
• x1 > x2 ⇔ x1i > x2i , ∀ i = 1, ..., n, (strict componentwise order).

Throughout our work here, ei (i = 1, ..., n) will denote the ith coordinate vector
in Rn; i.e., a vector with zero components except for a 1 in the ith position.
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A MOLP problem can be formulated as [14,27]:

(2.1)
max Cx = (C1.x,C2.x, ..., Cp.x)T

s.t. x ∈ X = {x ∈ Rn|Ax 5 b},
where C is a p× n matrix, whose rows are row vectors Cj., j = 1, ..., p, x ∈ Rn

and b ∈ Rm are column vectors, A is an m × n matrix, and T stands for
transpose.
In problem (2.1), every constraint in X defines a half space. In general, the set
{x ∈ Rn | α′x 6 β}, where 0 6= α ∈ Rn and β ∈ R, is called a half space. The
intersection of a finite number of half spaces is a polyhedron and a bounded
polyhedron is a polytope. Therefore, in problem (2.1), X is a polyhedron,
Rn and X ⊆ Rn are repectively called the decision space and the feasible set.
Moreover, let Y = C(X ) = {y ∈ Rp | y = Cx, x ∈ X}, where y = Cx is
the criterion vector of x ∈ X . Then, Rp and Y ⊆ Rp are respectively called
the criterion space and the image of the feasible set in the criterion space,
respectively [14].

Definition 2.1. ( [14]) A solution x̂ ∈ X is called (a) an (weak) efficient
solution of problem (2.1) if there does not exist x ∈ X such that Cx (>) ≥ Cx̂.
(XWE) XE denotes the set of all (weak) efficient solutions of problem (2.1).

Definition 2.2. ( [14]) A solution x̂ ∈ X is called a strictly efficient solution
of problem (2.1) if there does not exist (x̂ 6=) x ∈ X such that Cx = Cx̂ (or
equivalently, x̂ ∈ XE and {x ∈ X | Cx = Cx̂} = {x̂}). XSE denotes the set of
all strictly efficient solutions of problem (2.1).

Definition 2.3. ( [14]) The points yI = (yI1 , ..., y
I
p)T and yN = (yN1 , ..., y

N
p )T

are called the ideal point and the nadir point of problem (2.1), respectively,
when yIj = maxx∈XCj.x and yNj = minx∈XE

Cj.x, for j = 1, ..., p.

In fact, yI and yN are respectively tight lower and upper bounds on the
efficient set. The ideal point can be found by solving p single objective linear
programs. On the other hand, computation of yN involves optimization over
the efficient set which is a hard task. There is no exact method to determine
the nadir point of a general multiobjective programming problem [14] and its
components are usually estimated using a pay-off table. However, in general,
this estimation is not good enough [14].

Definition 2.4. ( [14]) A point yU = yI + ε, where 0 < ε ∈ Rp has small
positive components, is called a utopia point of problem (2.1).

Although different methods exist to generate efficient (or weak efficient)
solutions, most of them use a common idea. Indeed, many approaches are based
on converting the multiobjective programming problem to a single objective
optimization problem. In this context, the use of scalarization techniques is
very popular. Scalarization methods usually need auxiliary variables and/or
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parameters to be provided by the DM. Although the form of the scalarizing
functions as well as the values of parameters depend on the assumptions made
concerning the DM’s preferences and behaviors, the DM is not often satisfied
with the attained solution. Thus, the problem needs to be solved again with
different parameters to meet the DM’s preferences. On the other hand, these
methods guarantee to achieve efficient (or weak efficient) solutions.

In the following, three well-known scalarization methods are mentioned
briefly [14, 31]. Let wj , j = 1, ..., p, be the weight assigned by the DM to
the jth objective function. Then, associated with problem (2.1), the weighted
sum method solves a linear program as follows:

(2.2) max
x∈X

p∑
j=1

wjCj.x.

The ε-constraint method, as one of the best known techniques, optimizes only
one of the objective functions, while the other functions are transformed to
constraints. Hence, to solve problem (2.1), the ε-constraint method solves the
following linear program:

(2.3)
max Ci.x
s.t. Cj.x > εj j = 1, ..., p, j 6= i

x ∈ X ,

where εj ∈ R (j = 1, ..., p, j 6= i) is the assigned lower bound to the jth objective
function by the DM and Ci.x is the selected objective function for optimization.
The reference point method as another approach ask the DM to provide a
reference (or target) point yR, which is formed by the values that the DM
wishes to achieve for the objective functions. Then, a reference point method
aims to achieve solutions as close as possible to the reference point by the aid of
an achievement function. For instance, a well-known achievement scalarizing
function for solving problem (2.1) is s(yR, Cx,w) used in the following problem
[22]:

(2.4) max
x∈X

s(yR, Cx,w),

where s(yR, Cx,w) = minj=1,...,p (wj(Cj.x − yRj )) + ρ
∑p

j=1(Cj.x − yRj ), the
value wj > 0 is the weight assigned to the jth objective function, and the
parameter ρ > 0 is the so-called augmentation coefficient.
Solving problem (2.4) leads to an efficient solution which is presented to the
DM. If the DM is not satisfied with the computed solution, the reference point
method acts interactively by taking different values of wj , and/or yRj , for j =
1, ..., p. Then, problem (2.4) is solved again to generate a new efficient solution.

As seen, scalarization methods use different scalarizing functions to achieve
the DM’s desires. Selecting a suitable scalarizing function, which can generate
a good solution, is not an easy task. Our current work here is to introduce
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a new method to achieve the DM’s targets without using a scalarizing or an
achievement function.

3. Ball center of a polytope

The center of a polytope is an interesting concept in mathematics and has
been used to solve optimization problems [4, 7]. Huard [18] applied the con-
cept of center to solve a mathematical programming problem with nonlinear
constraints. Huard’s method was used by Boggs [9] to enhance interior-point
methods using dual affine trajectories. Sonnevend [30] defined the “analytic
center” and used it to develop a linear programming (LP) approach. Fagan
and Falk [16] introduced a method based on Euclidean centers for solving sin-
gle objective LP problems. Recently, the concept of ball center was used by
Murty [24] to solve an LP problem.

Let ‖x‖p (1 6 p <∞) be the p-norm of x ∈ Rn, where ‖x‖p = (
∑n

i=1 |xi|p)
1
p .

Then, a closed ball of radius δ > 0 centered at x0 ∈ Rn is defined by B(x0, δ) =
{x ∈ X | ‖x− x0‖p 6 δ}.

Definition 3.1. ( [26]) Let X be a polytope with a nonempty interior repre-
sented by X = {x ∈ Rn | Ax 5 b}, where A ∈ Rm×n and b ∈ Rm. x∗ ∈ X is
called ball center of X if B(x∗, δ∗) ⊆ X , where δ∗ = max{δ | B(x, δ) ⊆ X , x ∈
X , δ > 0}.

As a matter of fact, the ball center of a polytope is the center of a largest
closed ball inside it. One strategy for finding such a point is maximizing the
minimum of its distance from every hyperplane in the polytope [26]. To find
a ball center of the set X = {x ∈ Rn | Ax 5 b}, Murty and Oskoorouchi [26]
suggested solving the following problem:

(3.1) max
x∈X

min
i=1,...,m

bi −Ai.x,

where Ai. is the ith row of A and moreover, ‖Ai.‖2 = 1, i = 1, ...,m. Problem
(3.1) can be rewritten as

(3.2)
max δ
s.t. δ +Ai.x 6 bi, i = 1, ...,m

δ > 0.

Theorem 3.2 below shows that the optimal solution of problem (3.2) is a ball
center of the feasible set of problem (2.1).

Theorem 3.2. Let (x∗, δ∗) be the optimal solution of problem (3.2). Then,
B(x∗, δ∗) = {x ∈ Rn | ‖x − x∗‖2 6 δ∗} ⊆ X = {x ∈ Rn | Ax 5 b} and x∗ is a
ball center of X .
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Proof. Let x̂ ∈ B(x∗, δ∗). Then, ‖x̂ − x∗‖2 6 δ∗. Suppose that x̂ 6∈ X . In
other words, ∃ l ∈ {1, ...,m} such that bl − Al.x̂ < 0. Now, we have: 0 6 δ∗ 6
bl − Al.x

∗ = bl − Al.x̂+ Al.x̂− Al.x
∗ = bl − Al.x̂+ Al.(x̂− x∗) < Al.(x̂− x∗).

Using the Cauchy-Schwartz inequality, we have

δ∗ < |Al.(x̂− x∗)| 6 ‖Al.‖2‖x̂− x∗‖2 = ‖x̂− x∗‖2,

which is a contradiction.
To prove the second part, suppose that B(x̄, δ̄) = {x ∈ Rn | ‖x− x̄‖2 6 δ̄} is a
closed ball inside X such that δ̄ > δ∗. Thus, B(x̄, δ̄) ⊆ X and the distance of x̄
from every hyperplane in the polytope is greater than or equal to δ̄ . Therefore,

bi −Ai.x̄ =
bi −Ai.x̄

‖Ai.‖2
> δ̄ ∀ i = 1, ...,m.

Consequently, (x̄, δ̄) is a feasible solution of problem (3.2). Since (x∗, δ∗) is an
optimal solution of problem (3.2), δ̄ 6 δ∗, which is a contradiction. Therefore,
x∗ is a ball center of X and the proof is complete. �

Lemma 3.3. Let X = {x ∈ Rn | Ax 5 b} be bounded and int(X ) 6= ∅. Then,
the ball center of X is an interior point.

Proof. Problem (3.2) is feasible and has an optimal solution, since X is nonempty
and bounded. On the other hand, int(X ) 6= ∅ implies that there exists x̂ ∈ X
such that Ax̂ < b. Thus, problem (3.2) has an optimal solution (x∗, δ∗) with
δ∗ > 0. Now, by Theorem 3.2, x∗ is a ball center of X , which is also an interior
point. �

3.1. Approximating a ball center. To compute a ball center exactly using
problem (3.2), we need an LP algorithm. This may require tedious calculation.
Murty and Oskoorouchi [26] have proposed two approaches called LSFN (Line
Search steps in Facetal Normal directions) and LSCPD (Line Search steps
using Computed Profitable Directions) to obtain a ball center of a polytope
approximately. In this paper, only the LSFN strategy is used. LSFN moves
along a profitable direction to obtain a new point such that the ball centered
at it has a radius greater than that of the one centered at a starting point.
Clearly, the radiuses of all balls are selected so that every ball is in the feasible
set. The following theorem plays an important role in the LSFN approach and
suggests a criterion for recognizing a profitable direction at a specific interior
feasible solution.

Theorem 3.4. ( [26]) Consider X = {x ∈ Rn | Ax 5 b}. A given direction
y ∈ Rn is a profitable direction at the current interior feasible solution x̂ if and
only if Ai.y < 0, for all i ∈ T (x̂), where T (x̂) = {i ∈ {1, ...,m} | bi − Ai.x̂ =
δ(x̂)} and δ(x̂) = mini=1,...,m (bi − Ai.x̂). Also, x̂ is a ball center of X if and
only if the system Ai.y < 0, for every i ∈ T (x̂), has no solution in Rn.
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The LSFN approach uses directions normal to the facetal hyperplanes of
X as the candidates for obtaining a profitable direction; i.e., directions y in
Γ = {AT

i. ,−AT
i. , i = 1, ...,m}. Let x̂ ∈ X be a feasible solution and y ∈ Rn be

a profitable direction. It is easy to show that the minimum distance of x̂ from
all facetals is increased when it moves in direction y. Thus, to find a maximal
length step at direction y, the following two variables LP problem should be
solved [26]:

(3.3)
max δ
s.t. δ +Ai.(x̂+ αy) 6 bi i = 1, ...,m

δ, α > 0.

The LSFN approach continues as long as profitable directions are found in Γ
satisfying the criterion mentioned in Theorem 3.4, and terminates with the
final point as an approximation to a required ball center of X . To see more
technical details, we refer to [24].

Remark 3.5. It is clear that to find a profitable direction all vectors in Rn should
be checked. However, this increases the number of needed calculations. Hence,
the LSFN approach only considers the vectors in Γ. For a better approximation,
here we suggest using the vectors in Γ̄ = {AT

i. ,−AT
i. , i = 1, ...,m, (AT

j. +

AT
(j+1).), −(AT

j. +AT
(j+1).), j = 1, ...,m− 1, (AT

m. +AT
1.),−(AT

m. +AT
1.)}.

4. Using ball centers to solve a multiobjective linear programming
problem

Consider the MOLP problem (2.1). Suppose that X is bounded and int(X ) 6=
∅. Without loss of generality, assume that Cx > 0,∀x ∈ X . In fact, if this
assumption is not valid, one can shift the origin of coordinates in the criterion
space (i.e., Y) to a suitable point. A candidate for such a point is a utopia
point of minx∈XCx. Let yU be a utopia point of minx∈XCx. Then, the

MOLP problem maxx∈X Ĉx = Cx − yU is equivalent to the MOLP problem

(2.1) and Ĉx > 0,∀x ∈ X . Without loss of generality, we make the following
assumptions in problem (2.1):

(1) ‖Ai.‖2 = 1, for i = 1, ...,m,
(2) ‖Cj.‖2 = 1, for j = 1, ..., p.

It is sufficient to divide both sides of the ith constraint by ‖Ai.‖2, i = 1, ...,m,
and the jth objective function can be divided by ‖Cj.‖2, for j = 1, ..., p. The
following lemma shows that this modification does not change the efficient (or
weak efficient) set.

Lemma 4.1. The efficient (or weak efficient) sets of problem (2.1) and problem

(4.1) maxx∈X (a1C1.x, a2C2.x, ..., apCp.x)′,

where aj > 0, ∀ j = 1, ..., p, are the same.
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Proof. The proof is straightforward. �

To deal with MOLP problem (2.1), our proposed algorithm here (Algorithm
1) needs the desirable value (or target level), tj , for the objective function Cj.x
(j = 1, ..., p) to be provided by the DM. It is assumed that more is preferred
to less in each objective function for the DM. Moreover, since Cx > 0,∀x ∈ X ,
we suppose that t = (t1, ..., tp)T > 0 is the target vector of the DM’s desires.
Furthermore, the DM may provide the vector (w1, ..., wp)T ≥ 0 as the weight
vector, showing the relative importance of the objective functions. It is assumed
that weights are normalized so that their sum is equal to 1. Furthermore, if the
DM is not able to decide upon the weights, equal weights (1/p) are considered
for the objective functions. Indeed, Algorithm 1 aims to solve the given MOLP
problem by generating a sequence of ball centers. It first obtains the ball center
of the feasible set. Then, new constraints are added to the problem to reduce
the feasible set. Subsequently, the ball center of the new feasible set is obtained.
This process is repeated until the radius of the last obtained ball is smaller than
or equal to a given tolerance.

Algorithm 1.
Input: An instance of MOLP problem (2.1) with the stated parameters and
assumptions, t = (t1, ..., tp)T > 0, (w1, ..., wp)T ≥ 0, and 0 < ε ∈ R, as the
given tolerance.

Step 1. Set k := 1, t̂ :=
(w1t1,...,wptp)

T

‖(w1t1,...,wptp)T ‖2 , X k := X , and θk := 0.

Step 2. Find xk as the ball center of the polytope X k. Let δk denote
the radius of the largest closed ball inside X k centered at xk. If δk 6 ε
then go to Step 4.
Step 3. Set
xk0 := xk;
xk1 := xk + δke1, ..., x

kn := xk + δken;
xkn+1 := xk − δke1, ..., xk2n := xk − δken;

θki := minj∈{j|j=1,...,p, t̂j>0}
Cj.x

ki

t̂j
, i = 0, 1, ..., 2n;

θks := maxi∈{0,1,...,2n}{θki}, θk+1 := θks ;

X k+1 := {x ∈ Rn | Cx = θk+1t̂, Ax 5 b};
k := k + 1 and go to Step 2.
Step 4. Stop, xk is the desired solution.

Output: A solution to the given MOLP problem.

The main idea of Algorithm 1 is illustrated in Figure 1. Suppose that X 1 is
the feasible set of the given MOLP problem. In the first iteration of Algorithm
1, x1 is obtained as the ball center of X 1 (see Figure 1). At Step 2, x1 is an
interior point such that its distance from all the defining hyperplanes of X 1 is
at least δ1. Then, in Step 3, first the points x11 , ..., x14 (Figure 1) and then,
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Figure 1. An iteration of Algorithm 1 on a MOLP problem
with two variables and two objective functions.

the values of θ10 , θ11 , ..., θ14 are obtained. Indeed, θ1i is calculated such that
x1i lies on the boundary of {x ∈ Rn | Cx = θ1i t̂}. Then, θ1 is calculated as the
maximum of θ10 , θ11 , ..., θ14 (say, e.g., θ11) and X 2 is set as the intersection of
X and {x ∈ Rn | Cx = θ1t̂}. The procedure guarantees that X 2 6= ∅, since x1s

(here x11) belongs to X 2. Note that X 2 is a new polytope which is a proper
subset of X 1. The same process is repeated for X 2. The algorithm terminates
when the radius of the largest closed ball centered at the ball center of the new
polytope is less than or equal to the given tolerance ε.

5. Main results

In this section, some results are established to show the validity and proper-
ties of Algorithm 1. The first result states that the final solution of Algorithm
1 is a weak efficient solution. First, the following theorem is needed.

Theorem 5.1. ( [11]) Let S ⊆ Rn be a convex set with int(S) 6= ∅. Then,
cl(S) = cl(int(S)), where cl(S) denotes the closure of S.

Theorem 5.2. In Algorithm 1, let δk+1 = 0. Then, xk+1 ∈ XWE.

Proof. If xk+1 6∈ XWE , then ∃ x̂ ∈ X so that Cx̂ > Cxk+1. Now, define f(x) :=
Cx−Cxk+1. It is clear that f is continuous and f(x̂) > 0. Therefore, ∃ r > 0
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so that f(x) > 0, for all x ∈ {x ∈ Rn | ‖x− x̂‖2 < r}. Since x̂ ∈ X , by Theorem
5.1, x̂ ∈ cl(int(X )). So, ∃ x0 ∈ int(X ) such that x0 ∈ {x ∈ Rn | ‖x− x̂‖2 < r}
and thus f(x0) > 0 (or Cx0 > Cxk+1). This implies that x0 ∈ int(X k+1).
Consequently, Lemma 3.3 yields δk+1 > 0, which is a contradiction. �

In the sequel, some interesting properties of Algorithm 1 are proved.

Lemma 5.3. Suppose that Algorithm 1 does not stop at the kth iteration.
Then, θk+1 > θk, for k > 1, and θk > 0, for k > 2.

Proof. It is obvious that δk > 0, since otherwise Algorithm 1 terminates at the
kth iteration. Therefore, the ball center of X k is an interior point of X k and
thus, Cxk > θk t̂. Now, the definition of θk+1 implies that θk+1 > θk0 . Without

loss of generality, suppose that θk0 = Cl.x
k

t̂l
. Hence,

θk+1 > θ
k0 =

Cl.x
k

t̂l
>
θk t̂l

t̂l
= θk,

which completes the proof of the first part. For the second statement, note
that if k > 2, then θk > θ(k−1)0 . Without loss of generality, suppose that

θ(k−1)0 =
Cq.x

k−1

t̂q
. Therefore,

θk > θ
(k−1)0 =

Cq.x
k−1

t̂q
> 0.

�

Corollary 5.4. In Algorithm 1, we have X k+1 & X k, for k > 1.

Proof. By definition of X k+1 and Lemma 5.3, the proof is obvious. �

The following theorem implies that Algorithm 1 is convergent for any ε > 0.

Theorem 5.5. Let 0 < ε ∈ R be any given tolerance in Algorithm 1. Then,
there exists k > 1 such that δk 6 ε.

Proof. If δ1 6 ε, then k = 1 and the proof is complete. For δ1 > ε, consider
the ith (i > 2) iteration of Algorithm 1 being an arbitrary iteration. Let xi be
the ball center of X i = {x ∈ Rn | Cx = θit̂, Ax 5 b} with δi being the radius
of the largest closed ball inside X i centered at xi. If δi = 0, then the proof is
evident. Otherwise, δi > 0 and xi is an interior point of X i. Thus, Cxi > θit̂.
The definition of θi+1 implies that θi+1 > θi0 . Without loss of generality,

suppose that θi0 = Cl.x
i

t̂l
. Hence, θi+1t̂l > Cl.x

i. Moreover, since xi is the

ball center of X i, δi + θit̂j 6 Cj.x
i, ∀ j ∈ {1, ..., p}. Thus, Cl.x

i > δi + θit̂l.

On the other hand, the definition of t̂ implies that ‖t̂‖2 = 1, which yields
−1 6 t̂j 6 1, ∀ j = 1, ..., p. Also, (t1, ..., tp)T > 0 and (w1, ..., wp)T ≥ 0

imply that t̂ ≥ 0, and thus 0 < t̂l 6 1. This leads to the fact that δi > δit̂l.
Hence, θi+1t̂l > Cl.x

i > δi + θit̂l > δit̂l + θit̂l = (θi + δi)t̂l. Consequently,
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θi+1 > θi+δi, ∀ i = 2, 3, ... . Now, on the contrary suppose that δk > ε, ∀ k > 2.
Since xk ∈ X k, ∀ k > 2, then

Cxk = θk t̂ = (θk−1 + δk−1)t̂ > (θk−1 + ε)t̂ = ... > (θ2 + (k − 2)ε)t̂.

Thus, Cxk > θ2t̂ + (k − 2)εt̂, ∀ k = 2, 3, ... . Therefore, Cj.x
k → +∞, ∀ j =

1, ..., p, as k → +∞, which is a contradiction, since C(X ) is bounded. �

Corollary 5.6. Algorithm 1 terminates after a finite number of iterations for
any ε > 0.

Proof. By steps 2 and 4 of Algorithm 1 and Theorem 5.5, the proof is clear. �

The next result shows other important properties of Algorithm 1. Indeed, it
will be proved that Algorithm 1 converges to an efficient or a strictly efficient
solution.

Theorem 5.7. Let x̂ ∈ X be an efficient solution of problem (2.1). In Algo-
rithm 1, suppose that t̂ = γCx̂, where 0 < γ ∈ R, and δk 6 ε, for the given
tolerance ε. Then, x̂ ∈ X k.

Proof. Since x̂ is an efficient solution of problem (2.1), {x ∈ X | Cx ≥ Cx̂} = ∅.
On the other hand, X k = {x ∈ Rn | Cx = θk t̂, Ax 5 b} = {x ∈ X | Cx =
θk t̂} = {x ∈ X | Cx = θkγCx̂}. Moreover, the ball center of X k, i.e., xk,
belongs to X k. It follows that θkγ 6 1. Otherwise, xk ∈ {x ∈ X | Cx ≥ Cx̂},
which is a contradiction. Thus, Cx̂ = θkγCx̂ and x̂ ∈ X k. �

The number of iterations in Algorithm 1 depends on the given tolerance ε. It
increases as ε decreases to zero. In other words, k → +∞ as ε→ 0. The next
theorem expresses an interesting property of Algorithm 1.

Theorem 5.8. Suppose that x̂ ∈ XE and in Algorithm 1 t̂ = γCx̂, where

0 < γ ∈ R. Then,

∞⋂
k=1

X k = {x ∈ X | Cx = Cx̂} as ε→ 0.

Proof. First, we show that limk→∞ γθk = 1. Lemma 5.3 and γ > 0 imply
that γθk+1 > γθk ∀ k = 1, 2, ... . Also, arguments similar to those for Theorem
5.7 lead to γθk 6 1, ∀ k = 1, 2, ... . Thus, the sequence {γθk}∞k=1 is a strictly
increasing and bounded sequence. Therefore, it is convergent. Furthermore,

limk→∞ γθk 6 1. Now, suppose that limk→∞ γθk = α0 < 1. Then,

∞⋂
k=1

X k =

{x ∈ X | Cx = α0Cx̂} and x̂ ∈
∞⋂
k=1

X k, since Cx̂ > α0Cx̂. Consequently,

x̂ ∈ X k, ∀ k = 1, 2, ... . Define f(x) := Cx − α0Cx̂. It is clear that f is
continuous and f(x̂) > 0. Therefore, ∃ r > 0 such that f(x) > 0, for all
x ∈ {x ∈ Rn | ‖x− x̂‖2 < r}. Since x̂ ∈ X , by Theorem 5.1, x̂ ∈ cl(int(X )). So,
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∃ x0 ∈ int(X ) such that x0 ∈ {x ∈ Rn | ‖x− x̂‖2 < r} and thus f(x0) > 0 (or

Cx0 > α0Cx̂). This implies that x0 ∈ int(
∞⋂
k=1

X k). Consequently,

∞⋂
k=1

X k has

a ball center with a positive radius, say δ0. Furthermore, x0 ∈ int(X k), ∀ k =

1, 2, ..., since

∞⋂
k=1

X k ⊆ X k, ∀ k = 1, 2, ... . Thus, δk > δ0 > 0, ∀ k = 1, 2, ... .

This means that δk 9 0, which is a contradiction due to the fact that by
Theorem 5.5, δk should converge to zero, as ε → 0. This proves the assertion

that limk→∞ γθk = α0 = 1. Hence,

∞⋂
k=1

X k = {x ∈ X | Cx = Cx̂}. If ∃ x ∈ X

such that Cx = Cx̂ and Cx 6= Cx̂, then x̂ /∈ XE , which is a contradiction. This

leads to

∞⋂
k=1

X k = {x ∈ X | Cx = Cx̂}. �

Corollary 5.9. Suppose that x̂ ∈ XSE and in Algorithm 1, t̂ = γCx̂, where

0 < γ ∈ R. Then,

∞⋂
k=1

X k = {x̂}, as ε→ 0.

Proof. Since x̂ ∈ XSE , x̂ ∈ XE and {x ∈ X | Cx = Cx̂} = {x̂}. Now, the
assertion follows immediately from Theorem 5.8. �

Remark 5.10. In fact, Theorem 5.8 and Corollary 5.9 show that Algorithm 1
converges to an efficient or a strictly efficient solution x, when the vector t̂ is
any point on the ray emanating from the origin in the direction of the criterion
vector Cx. This fact can help us to obtain a subset of the efficient set. To do
that, we can choose a set of N target vectors which are uniformly scattered on
the set {(t1, ..., tp)T | 0 < tj , j = 1, ..., p and

∑p
j=1 tj = 1} and apply Algorithm

1 N times with each selected target vector.

Further results related to Algorithm 1 are as follows.

Theorem 5.11. In Algorithm 1, X k ∩ XE 6= ∅, for k > 1.

Proof. For an arbitrary k, let x0 ∈ X k. It is clear that X(x0)∩XE 6= ∅, where
X(x0) = {x ∈ Rn | Ax 5 b, Cx = Cx0}. Since X(x0) ⊆ X k, X k∩XE 6= ∅. �

Corollary 5.12. In Algorithm 1, (

∞⋂
k=1

X k) ∩ XE 6= ∅.

Proof. Since X k+1 ⊆ X k, the conclusion is clear. �
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6. Numerical examples and a simulation study

In this section, three numerical examples are presented. They are solved by
Algorithm 1, which is coded in MATLAB software environment. To see the
performance of Algorithm 1, a simulation study is carried out in which different
MOLP problems are generated randomly. Moreover, some comparisons are
given.

Example 6.1. Consider the following MOLP problem:

max Cx =

[
19 2
30 31

] [
x1
x2

]
s.t.

x1 + 3x2 6 150,

5x1 − x2 6 170,(6.1)

2x1 + x2 6 90,

−27x1 + 2x2 6 −30,

x2 > 0.

Let w = (0.6, 0.4)T . Although Algorithm 1 asks the DM one target vector,
Table 1 presents the output of Algorithm 1 for different target vectors. It helps
us to see the output of Algorithm 1 for the different DM’s preferences. Note
that the given data in Table 1 are provided under two scenarios: exact ball
center and approximate ball center.

Table 1. Outputs of Algorithm 1 for the MOLP problem
(6.1) for different target vectors.

t k xk Cxk

(339,2034)T 7 (23.999, 42.000)T (539.99, 2021.98)T

(368,2024)T 13 (24.483, 41.034)T (547.24, 2006.55)T

Exact (400,2000)T 10 (26.707, 36.585)T (580.61, 1935.37)T

ball (402,1809)T 8 (29.221, 31.558)T (618.31, 1854.93)T

center (430,1720)T 10 (32.083, 25.833)T (661.25, 1763.33)T

(476,1666)T 8 (35.373, 19.254)T (710.60, 1658.06)T

(501,1503)T 5 (37.143, 15.714)T (737.14, 1601.43)T

(339,2034)T 8 (24.999, 42.000)T (539.97, 2021.98)T

(368,2024)T 11 (24.483, 41.034)T (547.24, 2006.55)T

Approximate (400,2000)T 9 (26.708, 36.583)T (580.62, 1935.33)T

ball (402,1809)T 9 (29.221, 31.558)T (618.31, 1854.93)T

center (430,1720)T 8 (32.083, 25.833)T (661.25, 1763.32)T

(476,1666)T 6 (35.373, 19.253)T (710.59, 1658.05)T

(501,1503)T 5 (37.142, 15.711)T (737.14, 1601.43)T

It can be seen from Table 1 that the final solution obtained by Algorithm 1
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Figure 2. Feasible region of MOLP problem (6.1) and out-
puts of Algorithm 1 for different target vectors.

varies as the target vector varies. Moreover, the value of the first (second)
objective function increases (decreases) as the first (second) component of the
target vector increases (decreases). This means that the solutions obtained by
Algorithm 1 meets the DM’s preferences. Furthermore, note that the results of
the two cases, exact ball centers and approximate ball centers, are very close
to each other. The feasible region of MOLP problem (6.1) and the outputs
of Algorithm 1 given in Table 1 are depicted in Figure 2. Note that the line
segment between the points A and B (AB) includes all efficient solutions of
problem (6.1).

Example 6.2. This simple example shows that δk = 0 may occur in Algorithm
1. Consider a MOLP problem as follows:

max Cx =

[
1 0
0 1

] [
x1
x2

]
s.t.

−2x1 + 3x2 6 50,(6.2)

x1 6 15,

x1, x2 > 0.
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Let t = (1, 1)T and w = (0.6, 0.4)T . All obtained solutions of Algorithm 1 are
given in Table 2.

Table 2. All obtained solutions of Algorithm 1 for problem (6.2).

k xk Cxk δk
1 (7.50, 10.1051)T (7.50, 10.1051)T 7.5

2 (15.0, 19.4354)T (15.0, 19.4354)T 0

It can be concluded from Table 2 and Theorem 5.2 that (x1, x2)
T=(15.0, 19.4354)T

is a weak efficient solution of problem (6.2).

Example 6.3. Example 6.1 revealed that Algorithm 1 obtains different so-
lutions for different target vectors. This example shows the performance of
Algorithm 1 for different weight vectors. Consider the following MOLP prob-
lem:

max Cx =

[
9 2
−3 13

] [
x1
x2

]
s.t.

4x1 + x2 6 120,

x1 + 3x2 6 90,(6.3)

−x1 + 3x2 6 70,

−6x1 + x2 6 0,

x2 > 0.

Let t = (270, 135)T . Table 3 gives the outputs of Algorithm 1 for different
weight vectors.
It can be seen from Table 3 that the value of the first (second) objective in-
creases (decreases) as its weight increases (decreases). The feasible region of
MOLP problem (6.3) and the outputs of Algorithm 1 given in Table 3 are de-
picted in Figure 3. Note that efficient solutions of problem (6.3) lie on the line
segments AB and BC.

As discussed in Section 1, there are several algorithms to solve MOLP prob-
lems. Most classical methods usually use some extra information to build
a single objective function which is a combination of different criteria (e.g.,
weighted sum method) or a special objective (e.g., ε-constraint method), and
then solve the single objective optimization problem. Although the attained
solutions may be efficient (or weak efficient), the DM is not often satisfied
with them, since these methods suffer from some weaknesses. For instance,
the solution of the weighted sum method may not change when the weights
of the objectives change. On the other hand, it may change extremely when
the weights have slight alterations [31]. Furthermore, sometimes the solution
is completely against the weighting scheme [31]. This is because the weighted
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Table 3. Outputs of Algorithm 1 for the MOLP problem
(6.3) for different weight vectors.

t k xk Cxk

(0.1,0.9)T 5 (10.000, 26.667)T (143.33, 316.67)T

(0.2,0.8)T 6 (11.250, 26.250)T (153.75, 307.50)T

(0.3,0.7)T 10 (18.761, 23.745)T (216.34, 252.40)T

Exact (0.4,0.6)T 9 (24.753, 20.986)T (264.75, 198.56)T

ball (0.5,0.5)T 5 (25.946, 16.216)T (265.95, 132.97)T

center (0.6,0.4)T 4 (26.746, 13.012)T (266.74, 88.920)T

(0.7,0.3)T 4 (27.322, 10.712)T (267.32, 57.284)T

(0.8,0.2)T 4 (27.755, 8.9797)T (267.75, 33.471)T

(0.9,0.1)T 3 (28.086, 7.6325)T (268.04, 14.965)T

(0.1,0.9)T 4 (10.004, 26.665)T (143.36, 316.64)T

(0.2,0.8)T 7 (11.251, 26.250)T (153.75, 307.49)T

(0.3,0.7)T 10 (18.758, 23.747)T (216.31, 252.44)T

Approximate (0.4,0.6)T 8 (24.754, 20.985)T (264.75, 198.54)T

ball (0.5,0.5)T 5 (25.946, 16.216)T (265.95, 132.97)T

center (0.6,0.4)T 5 (26.747, 13.013)T (266.75, 88.924)T

(0.7,0.3)T 4 (27.321, 10.713)T (267.32, 57.310)T

(0.8,0.2)T 4 (27.755, 8.9796)T (267.75, 33.470)T

(0.9,0.1)T 4 (28.092, 7.6325)T (268.09, 14.948)T

sum method merely moves from one extreme point to another. However, Ex-
ample 6.3 showed that Algorithm 1 is sensitive to changes in the weights of the
objectives. Moreover, the output of Algorithm 1 is consistent with the weights
given by the DM. Note that in Algorithm 1 the given MOLP is not converted
to any single objective optimization problem.

In the ε-constraint method, the DM is permitted to assign appropriate
bounds to the objectives. If the bounds are not specified appropriately, model
(2.3) may be infeasible. Indeed, the ε-constraint method suffers from lack of
inflexibility of the constraints [15]. Ehrgott and Ruzika [15] suggested the im-
proved ε-constraint method to overcome the weaknesses of the model (2.3).
They showed that the new formulation is more flexible in terms of finding ef-
ficient solutions, which are close to the bounds of the objectives. In both the
ε-constraint method and the Ehrgott and Ruzika’s method one objective is se-
lected and the others are considered as bound constraints. However, Algorithm
1 deals with all the objectives in the same manner. Moreover, it tries to achieve
efficient (weak efficient) solutions which satisfy the given bounds as much as
possible.

Both Algorithm 1 and the reference point method take weights for the objec-
tives and a target or a reference vector from the DM. However, in the reference
point method, usually for technical reasons, the reference point should lie be-
tween the ideal and the nadir points of the given MOLP problem [28]. Finding
the nadir point is a very difficult task [14]. Furthermore, the reference point
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Figure 3. Feasible set of MOLP problem (6.3) and outputs
of Algorithm 1 for different weight vectors.

method needs an achievement function to convert the MOLP problem to a
single optimization problem. Different kinds of achievement functions exist,
having different performances [22]. Howover, Algorithm 1 does not need the
nadir point or any achievement function.

6.1. A simulation study. Here, the performance of Algorithm 1 on some
randomly generated MOLP problems is shown. MATLAB 7.9.0.529 routines
were used to implement Algorithm 1 and test its performance on the generated
problems. We tested Algorithm 1 on random problems with large number of
variables and constraints (up to 3000) and reasonable number of objectives
(up to 10). MATLAB function “random” was used to generate uniformly
distributed random numbers in (-1,1) for all entries of the coefficient matrices
A and C. To ensure feasibility of the generated MOLP problems, all variables
were considered to be nonnegative and bi ∈ (0, 10) was a uniformly distributed
random number. Moreover, to ensure boundedness, the constraint

∑n
i=1 xi 6

maxi=1,...,mbi was added to the problems. We ran test problems on a PC

with AMD PhenomTMII × 4 840 processor 3.21 GHz and 4 GB of RAM. To
access reliable data, each measure was obtained through the average of 20 runs,
ignoring the five worst and five best values. Table 4 shows the results. The
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last column of Table 4 shows the standard deviation (Std). It can be seen from
Table 4 that the performance of Algorithm 1 on these randomly generated
MOLP problems is acceptable.

Table 4. CPU times for different randomly generated MOLP problems.

Constraints Variables Objectives Average CPU times Std
m n p (sec.) (sec.)

50 2 0.4681 0.0676

100 300 5 0.6918 0.9393

200 10 2.3370 3.1129

50 2 0.2797 0.4909
300 100 5 0.5656 2.3118

200 10 2.1268 2.3118

50 2 0.8371 1.2590

100 500 5 1.2439 2.0585
200 10 2.8959 2.3400

50 2 0.5063 1.0616
500 100 5 0.8410 1.5129

200 10 2.5906 3.8390

50 2 2.6452 3.9409

100 1000 5 3.8052 0.3668
200 10 7.2859 1.0016

50 2 1.1444 0.2981

1000 100 5 2.1116 1.1613
200 10 4.9125 2.4555

100 2 7.1871 0.2950

200 1500 5 11.2565 0.6581
300 10 17.8184 1.2489

100 2 2.0642 0.6234

1500 200 5 4.1991 1.3668
300 10 9.4366 1.9361

100 2 13.0512 0.2855
200 2000 5 19.9915 1.2272

300 10 32.2033 1.7519

100 2 2.1407 0.8103

2000 200 5 6.3292 2.4675
300 10 10.8480 2.6244

100 2 29.7989 0.4448
200 3000 5 44.6041 1.3670

300 10 46.3087 2.1528

100 2 1.2172 0.1621

3000 200 5 3.3515 1.2415
300 10 6.7225 3.1145
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7. Conclusion

We have proposed an algorithm based on finding ball center of some poly-
topes obtained from the feasible region to solve a multiobjective linear program-
ming (MOLP) problem. The main feature of the algorithm is that it converges
to a solution of the MOLP problem through the interior of the feasible region.
In addition, it solves a MOLP problem without the aid of an auxiliary objective
function such as scalarizing, achievement, utility, or other objective functions.
It was proved that the algorithm always converged to a weak efficient solution
of the MOLP problem. Moreover, it converges to an efficient solution in some
special cases. Furthermore, algorithm taken as input the decision maker’s tar-
get vector and weights of the objectives in order to find a solution meeting
the preferences. Furthermore, the algorithm attains different solutions when
the target and/or weight vectors vary. Some randomly generated MOLP test
problems were generated and solved to demonstrate the performance of the
algorithm. Applying the algorithm in an interactive way to deal with a MOLP
problem is a good direction for further research. Also, extending the idea simi-
lar to the one used in our algorithm to solve other multiobjective optimization
problems such as network flows and nonlinear problems can be investigated for
future researches.
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