GENERALIZED DERIVATIONS ON MODULES

GH. ABBASPOUR*, M. S. MOSLEHIAN AND A. NIKNAM

ABSTRACT. Let A be a Banach algebra and M be a Banach right A-module. A linear map $\delta : M \to M$ is called a generalized derivation if there exists a derivation $d : A \to A$ such that

$$\delta(xa) = \delta(x)a + xd(a) \quad (a \in A, x \in M).$$

In this paper we associate a triangular Banach algebra T to a Banach A-module M and investigate the relation between generalized derivations on M and derivations on T. In particular, we prove that the so-called generalized first cohomology group of M is isomorphic to the first cohomology group of T.

1. Introduction

Recently, a number of analysts [1, 6, 17] have studied various generalized notions of derivations in the context of Banach algebras. There are some applications in the other fields of study [11]. Such maps have been extensively studied in pure algebra; cf. [2, 5, 12].

Let, throughout the paper, A denote a Banach algebra (not necessarily unital) and let M be a Banach right A-module. A linear mapping $d : A \to A$ is called a derivation if $d(ab) = d(a)b + ad(b)$ ($a, b \in A$). If $a \in A$ and we define d_a by $d_a(x) = ax - xa$ ($x \in A$), then d_a is a derivation and such derivation is called inner. A linear mapping $\delta : M \to M$
is called a generalized derivation if there exists a derivation $d : A \to A$ such that $\delta(xa) = \delta(x)a + xd(a)$ ($x \in M, a \in A$). For convenience, we say that such a generalized derivation δ is a d-derivation. In general, the derivation $d : A \to A$ is not unique and it may happen that δ (resp. d) is bounded but d (resp. δ) is not bounded. For instance, assume that the action of A on M is trivial, i.e. $MA = \{0\}$. Then every linear mapping $\delta : M \to M$ is a d-derivation for each derivation d on A.

Our notion is a generalization of both concepts of a generalized derivation (cf. [5, 12]) and of a multiplier (cf. [7]) on an algebra (see also [19]). To see this, regard the algebra as a module over itself. The authors in [1] investigated the generalized derivations on Hilbert C^*-modules and showed that these maps may appear as the infinitesimal generators of dynamical systems.

Example 1.1. Let M be a right Hilbert C^*-module over a C^*-algebra A of compact operators acting on a Hilbert space (see [15] for more details on Hilbert C^*-modules). By Theorem 4 of [3], M has an orthonormal basis so that each element x of M can be expressed as $x = \sum_{\lambda} v_\lambda < v_\lambda, x >$. If d is a derivation on A, then the mapping, $\delta : M \to M$ defined by $\delta(x) = \sum_{\lambda} v_\lambda d(< v_\lambda, x >)$ is a d-derivation, since

$$
\delta(xa) = \delta \left(\sum_{\lambda} v_\lambda < v_\lambda, xa > \right)
= \sum_{\lambda} v_\lambda d(< v_\lambda, x > a)
= \sum_{\lambda} v_\lambda d(< v_\lambda, x >)a + \sum_{\lambda} v_\lambda < v_\lambda, x > d(a)
= \delta(x)a + xd(a).
$$

The set $\mathcal{B}(M)$ of all bounded module maps on M is a Banach algebra and M is a Banach $\mathcal{B}(M)-A$-bimodule equipped with $Tx = T(x) \quad (x \in M, T \in \mathcal{B}(M))$, since we have $T(xa) = T(xa) = T(x)a = (Tx)a$ and $\|Txa\| \leq \|T\| \|x\| \|a\|$, for all $a \in A, x \in M, T \in \mathcal{B}(M)$.

We call $\delta : M \to M$ a generalized inner derivation if there exist $a \in A$ and $T \in \mathcal{B}(M)$ such that $\delta(x) = Tx - xa = T(x) - xa$. Mathieu in [16] called a map $\delta : A \to A$ a generalized inner derivation if $\delta(x) = bx - xa$ for some $a, b \in A$. If we consider A as a right A-module in a natural way, and take $T(x) = bx$, then our definition covers the notion of Mathieu.
In this paper we deal with the derivations on the triangular Banach algebras of the form $T = \begin{pmatrix} \mathcal{B}(M) & M \\ 0 & A \end{pmatrix}$. Such algebras were introduced by Forrest and Marcoux [8] that in turn are motivated by work of Gilfeather and Smith in [10] (these algebras have been also investigated by Y. Zhang who called them module extension Banach algebras [22]). Among some facts on generalized derivations, we investigate the relation between generalized derivations on M and derivations on T. In particular, we show that the generalized first cohomology group of M is isomorphic to the first cohomology group of T.

2. Main results

If we consider A as an A-module in a natural way then we have the following lemma about generalized derivations on A.

Lemma 2.1. A linear mapping $\delta : A \to A$ is a generalized derivation if and only if there exist a derivation $d : A \to A$ and a module map $\varphi : A \to A$ such that $\delta = d + \varphi$.

Proof. Suppose δ is a generalized derivation on A. Then there exists a derivation d on A such that δ is a d-derivation. On putting $\varphi = \delta - d$, we have

$$
\varphi(xa) = \delta(xa) - d(xa) = \delta(x)a + xd(a) - (d(x)a + xd(a))
= (\delta(x) - d(x))a = \varphi(x)a,
$$

for all $a, x \in A$. Thus φ is a module map and $\delta = d + \varphi$.

Conversely, let d be a derivation on A, φ be a module map on A and put $\delta = d + \varphi$. Then clearly δ is a linear map and

$$
\delta(xa) = d(xa) + \varphi(xa) = d(x)a + xd(a) + \varphi(x)a
= (d(x) + \varphi(x))a + xd(a) = \delta(x)a + xd(a)
$$

for all $a, x \in A$. Therefore δ is a d-derivation. \qed

The next two results concern the boundedness of a generalized derivation.
Theorem 2.2. Let A have a bounded left approximate identity $\{e_n\}_{n \in I}$ and let δ be a d-derivation on A. Then δ is bounded if and only if d is bounded.

Proof. First we show that every module map on A is bounded. Suppose that φ is a module map on A and let $\{a_n\}$ be a sequence in A converging to zero in the norm topology. By a consequence of Cohen Factorization Theorem (see Corollary 11.12 of [4]) there exist a sequence $\{b_n\}$ and an element c in A such that $b_n \to 0$ and $a_n = cb_n$, $(n \in \mathbb{N})$. Then $\varphi(a_n) = \varphi(cb_n) = \varphi(c)b_n \to 0$. Thus by the closed graph theorem, φ is bounded. Now let δ be a d-derivation. By Lemma 2.1, $\delta = d + \varphi$ for some module map φ on A. Therefore δ is bounded if and only if d is bounded. \hfill \Box

Corollary 2.3. Every generalized derivation on a C^*-algebra is bounded.

Proof. Every derivation on a C^*-algebra is automatically continuous; cf. [13]. \hfill \Box

Let $\varphi : A \to A$ be a homomorphism (algebra morphism). A linear mapping $T : M \to M$ is called a φ-morphism if $T(\varphi(a)) = T(a)\varphi(a)$ $(a \in A, x \in M)$. If φ is an isomorphism and T is a bijective mapping then we say T to be a φ-isomorphism. An id_A-morphism is a module map (module morphism). Here id_A denotes the identity operator on A.

Proposition 2.4. Suppose δ is a bounded d-derivation on M and d is bounded. Then $T = \exp(\delta)$ is a bi-continuous $\exp(d)$-isomorphism.

Proof. Using induction one can easily show that

$$\delta^{(n)}(xa) = \sum_{r=0}^{n} \binom{n}{r} \delta^{(n-r)}(x)d^{(r)}(a).$$

For each $a \in A, x \in M$ we have
\[T(xa) = \exp(\delta)(xa) \]
\[= \sum_{n=0}^{\infty} \frac{1}{n!} \delta^{(n)}(xa) \]
\[= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{r=0}^{n} \frac{n!}{r!} \delta^{(n-r)}(x)d^{(r)}(a) \]
\[= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{r=0}^{n} \left(\frac{1}{(n-r)!} \delta^{(n-r)}(x) \frac{1}{r!} d^{(r)}(a) \right) \]
\[= \left(\sum_{n=0}^{\infty} \frac{1}{n!} \delta^{(n)}(x) \right) \left(\sum_{n=0}^{\infty} \frac{1}{n!} d^{(n)}(a) \right) \]
\[= \exp(\delta)(x) \exp(d)(a). \]

The operators \(\exp(\delta) \) and \(\exp(d) \) are invertible in the Banach algebras of bounded operators on \(M \) and \(A \), respectively. Hence \(T \) is an \(\exp(d) \)-isomorphism.

Proposition 2.5. Let \(\delta \) be a bounded generalized derivation on \(M \). Then \(\delta \) is a generalized inner derivation if and only if there exists an inner derivation \(d_a \) on \(A \) such that \(\delta \) is a \(d_a \)-derivation.

Proof. Let \(\delta \) be a generalized inner derivation. Then there exist \(a \in A \) and \(T \in B(M) \) such that \(\delta(x) = T(x) - xa \ (x \in M) \). We have
\[\delta(x)b + xd_a(b) = (T(x) - xa)b + xab - xba = T(x)b - xba = T(xb) - (xb)a = \delta(xb) \quad (b \in A, x \in M). \]
Hence \(\delta \) is a \(d_a \)-derivation.

Conversely, suppose that \(\delta \) is a \(d_a \)-derivation for some \(a \in A \). Define \(T : M \to M \) by \(T(x) = \delta(x) + xa \). Then \(T \) is linear, bounded and
\[T(xb) = \delta(xb) + xb = (\delta(x)b + xd_a(b)) + xba = \delta(x)b + xab - xba = (\delta(x) + xa)b = T(x)b. \]
It follows that \(T \in B(M) \) and \(\delta(x) = (\delta(x) + xa) - xa = T(x) - xa \). Therefore \(\delta \) is a generalized inner derivation. \(\square \)

The linear spaces of all bounded generalized derivations and generalized inner derivations on \(M \) are denoted by \(GZ^1(M, M) \) and \(GN^1(M, M) \), respectively. We call the quotient space \(GH^1(M, M) = GZ^1(M, M)/GN^1(M, M) \) the generalized first cohomology group of \(M \).
Corollary 2.6. \(GH^1(M, M) = 0 \) whenever \(H^1(A, A) = 0 \).

Proof. Let \(\delta : M \to M \) be a generalized derivation. Then there exists a derivation \(d : A \to A \) such that \(\delta \) is a \(d \)-derivation. Due to \(H^1(A, A) = 0 \), we deduce that \(d \) is inner and, by Proposition 2.5, so is \(\delta \). Hence \(GH^1(M, M) = 0 \).

Using some ideas of [8, 18], we give the following notion.

Definition 2.7. \(\mathcal{T} = \{ \begin{pmatrix} T & x \\ 0 & a \end{pmatrix} : T \in \mathcal{B}(M), x \in M, a \in A \} \) equipped with the usual \(2 \times 2 \) matrix addition and formal multiplication and with the norm \(\| \begin{pmatrix} T & x \\ 0 & a \end{pmatrix} \| = \| T \| + \| x \| + \| a \| \) is a Banach algebra. We call this algebra the triangular Banach algebra associated to \(M \).

The following two theorems give some interesting relations between generalized derivations on \(M \) and derivations on \(\mathcal{T} \).

Let \(\delta \) be a bounded \(d \)-derivation on \(M \). We define \(\Delta_\delta : \mathcal{B}(M) \to \mathcal{B}(M) \) by \(\Delta_\delta(T) = \delta T - T \delta \). Then \(\Delta_\delta \) is clearly a derivation on \(\mathcal{B}(M) \).

Theorem 2.8. Let \(\delta \) be a bounded \(d \)-derivation on \(M \) and let \(d \) be bounded. Then the map \(D^\delta : \mathcal{T} \to \mathcal{T} \) defined by \(D^\delta \left(\begin{pmatrix} T & x \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} \Delta_\delta(T) & \delta(x) \\ 0 & d(a) \end{pmatrix} \) is a bounded derivation on \(\mathcal{T} \). Also \(\delta \) is a generalized inner derivation if and only if \(D^\delta \) is an inner derivation.

Proof. It is clear that \(D^\delta \) is linear. For any \(T_1, T_2 \in \mathcal{B}(M), x_1, x_2 \in M, a_1, a_2 \in A \) we have

\[
\begin{align*}
D^\delta \left(\begin{pmatrix} T_1 & x_1 \\ 0 & a_1 \end{pmatrix} \right) \left(\begin{pmatrix} T_2 & x_2 \\ 0 & a_2 \end{pmatrix} \right) &= D^\delta \left(\begin{pmatrix} T_1 T_2 & T_1 x_2 + x_1 a_2 \\ 0 & a_1 a_2 \end{pmatrix} \right) \\
&= \left(\Delta_\delta(T_1 T_2) - \delta(T_1, x_2 + x_1 a_2) \right) \\
&\quad - \left(\Delta_\delta(T_1 T_2) - \delta(T_1, x_2 + x_1 a_2) \right) \\
&\quad - \left(\Delta_\delta(T_1, x_2) + \delta(x_1 a_2) + x_1 d(a_2) \right) \\
&\quad - \left(\Delta_\delta(T_1, x_2) + \delta(x_1 a_2) + x_1 d(a_2) \right) \\
&\quad - \left(\Delta_\delta(T_1 T_2) - \delta(T_1, x_2 + x_1 a_2) \right) \\
&\quad - \left(\Delta_\delta(T_1, x_2) + \delta(x_1 a_2) + x_1 d(a_2) \right) \\
&\quad - \left(\Delta_\delta(T_1, x_2) + \delta(x_1 a_2) + x_1 d(a_2) \right) \\
&\quad - \left(\Delta_\delta(T_1, x_2) + \delta(x_1 a_2) + x_1 d(a_2) \right).
\end{align*}
\]
Thus D^δ is a derivation on T. Due to $\| (\begin{array}{cc}
\Delta_\delta(T) & \delta(x) \\
0 & d(a) \end{array}) \| = \| \Delta_\delta(T) \| + \| \delta(x) \| + \| d(a) \| \leq \max \{ \| \Delta_\delta \|, \| \delta \|, \| d \| \} \| (\begin{array}{cc}
T & x \\
0 & a \end{array}) \|$, we infer that D^δ is bounded. Now suppose that δ is a generalized inner derivation. Then there exist $a \in A$ and $T \in \mathcal{B}(M)$ such that $\delta(x) = T(x) - xa$ \quad ($x \in M$). For all $S \in \mathcal{B}(M), b \in A$ and $y \in M$ we have

$$
D \begin{pmatrix} T & 0 \\
0 & a \end{pmatrix} \begin{pmatrix} S & y \\
0 & b \end{pmatrix} = \begin{pmatrix} T & 0 \\
0 & a \end{pmatrix} \begin{pmatrix} S & y \\
0 & b \end{pmatrix} - \begin{pmatrix} S & y \\
0 & b \end{pmatrix} \begin{pmatrix} T & 0 \\
0 & a \end{pmatrix}
$$

$$
= \begin{pmatrix} T \, S \, S \, T & T \, y \, y \, a + y \, a \, T \, y \\
0 & a \, y \, - b \, a \, + a \, b \, - b \, a \, b \\
\Delta_\delta(S) & \delta(y) \\
0 & d_a(b) \end{pmatrix}
$$

$$
= D^\delta \begin{pmatrix} S & y \\
0 & b \end{pmatrix}.
$$

Hence $D^\delta = D \begin{pmatrix} T & 0 \\
0 & a \end{pmatrix}$ and so D^δ is an inner derivation.

Conversely, let δ be a bounded d-derivation such that the associated derivation D^δ is an inner derivation, say $D^\delta = D \begin{pmatrix} T_0 & x_0 \\
0 & a_0 \end{pmatrix}$. Then for each $T \in \mathcal{B}(M), x \in M, a \in A$ we have

$$
\begin{pmatrix} \Delta_\delta(T) & \delta(x) \\
0 & d(a) \end{pmatrix} = D^\delta \begin{pmatrix} T & x \\
0 & a \end{pmatrix}
$$

$$
= D \begin{pmatrix} T_0 & x_0 \\
0 & a_0 \end{pmatrix} \begin{pmatrix} T & x \\
0 & a \end{pmatrix}
$$

$$
= \begin{pmatrix} T_0 \, T - TT_0 & T_0(x) + x_0 a - T(x) - xa_0 \\
0 & a_0 a - a a_0 \end{pmatrix}
$$

(2.1)

Hence $d = d_{a_0}$ is inner. Putting $a = 0$ and $T = 0$ in (2.1), we conclude that $\delta(x) = T_0(x) - xa_0$ \quad ($x \in M$). Hence δ is a generalized inner derivation. \hfill \Box

The converse of the above theorem is true in the unital case.
Theorem 2.9. Let A be unital and \mathcal{T} be the triangular Banach algebra associated to a unital Banach right A-module M. Assume that $D : \mathcal{T} \to \mathcal{T}$ is a bounded derivation. Then there exist $m_0 \in M$, a bounded derivation $d : A \to A$ and a bounded d-derivation $\delta : M \to M$ such that

$$D\left(\begin{array}{cc} T & x \\ 0 & a \end{array}\right) = \left(\begin{array}{cc} \Delta_\delta(T) & \delta(x) + m_0 a - T.m_0 \\ 0 & d(a) \end{array}\right).$$

Moreover, D is inner if and only if δ is a generalized inner derivation.

Proof. We use some ideas of Proposition 2.1 of [8]. By simple computation one can verify that

(i) $D\left(\begin{array}{cc} 0 & 0 \\ 0 & 1_A \end{array}\right) = \left(\begin{array}{cc} 0 & m_0 \\ 0 & 0 \end{array}\right)$ for some $m_0 \in M$;

(ii) $D\left(\begin{array}{cc} 0 & 0 \\ 0 & a \end{array}\right) = \left(\begin{array}{cc} 0 & m_0 a \\ 0 & d(a) \end{array}\right)$ for some bounded derivation d on A;

(iii) $D\left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & \delta(x) \\ 0 & 0 \end{array}\right)$ for some linear mapping δ on M;

(iv) $D\left(\begin{array}{cc} T & 0 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} \Delta_\delta(T) & -T.m_0 \\ 0 & 0 \end{array}\right)$;

and finally $D\left(\begin{array}{cc} T & x \\ 0 & a \end{array}\right) = \left(\begin{array}{cc} \Delta_\delta(T) & \delta(x) + m_0 a - T.m_0 \\ 0 & d(a) \end{array}\right)$.

We have

$$\begin{array}{l}
\left(\begin{array}{cc} 0 & \delta(xa) \\ 0 & 0 \end{array}\right) = D\left(\begin{array}{cc} 0 & xa \\ 0 & 0 \end{array}\right) = D\left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & a \end{array}\right) \\
= \left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right) D\left(\begin{array}{cc} 0 & 0 \\ 0 & a \end{array}\right) + D\left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & a \end{array}\right) \\
= \left(\begin{array}{cc} 0 & x \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & m_0 a \\ 0 & d(a) \end{array}\right) + \left(\begin{array}{cc} 0 & \delta(x) \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & a \end{array}\right) \\
= \left(\begin{array}{cc} 0 & \delta(xa) + xd(a) \\ 0 & 0 \end{array}\right).
\end{array}$$

Thus $\delta(xa) = \delta(x) a + xd(a)$ and so δ is a d-derivation. It is clear that D is inner if and only if d is inner and, using Proposition 2.5, the latter holds if and only if δ is a generalized inner derivation. \hfill \Box
Generalized derivations on modules

Theorem 2.10. Let A be a unital Banach algebra, M be a unital Banach right A-module and $T = \begin{pmatrix} \mathcal{B}(M) & M \\ 0 & A \end{pmatrix}$. Then $H^1(T, T) \cong GH^1(M, M)$

Proof. Let $\Psi : GZ^1(M, M) \to H^1(T, T)$ be defined by

$$\Psi(\delta) = [D^\delta],$$

where $[D^\delta]$ represents the equivalence class of D^δ in $H^1(T, T)$. Clearly Ψ is linear. We shall show that Ψ is surjective. To end this, we assume that D is a bounded derivation on T. Let δ, d, Δ_δ and $m_0 \in M$ be as in the Theorem 2.9. Then

$$(D - D^\delta) \begin{pmatrix} T & x \\ 0 & a \end{pmatrix} = \begin{pmatrix} \Delta_\delta(T) & \delta(x) + m_0a - T.m_0 \\ 0 & d(a) \end{pmatrix} - \begin{pmatrix} \Delta_\delta(T) & \delta(x) \\ 0 & d(a) \end{pmatrix} = \begin{pmatrix} 0 & m_0a - T.m_0 \\ 0 & 0 \end{pmatrix} = D \begin{pmatrix} 0 & -m_0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} T & x \\ 0 & a \end{pmatrix}.$$

So $[D] = [D^\delta] = \Psi(\delta)$ and thus Ψ is surjective. Therefore $H^1(T, T) \cong GZ^1(M, M)/\text{Ker}(\Psi)$. Note that $\delta \in \text{Ker}(\Psi)$ if and only if D^δ is inner derivation on T. Hence $\text{Ker}(\Psi) = GN^1(M, M)$, by Theorem 2.8. Thus $H^1(T, T) \cong GH^1(M, M)$. \hfill \Box

Example 2.11. Suppose that A is unital and $M = A$. Then $B(A) = A$ and so $GH^1(A, A) \cong H^1\left(\begin{pmatrix} A & A \\ 0 & A \end{pmatrix}, \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}\right) = H^1(A, A)$, by Proposition 4.4 of [9]. In particular, every generalized derivation on a unital commutative semisimple Banach algebra [21], a unital simple C^*-algebra [20], or a von Neumann algebra [14] is generalized inner.

We have investigated the interrelation between generalized derivations on a Banach algebra and its ordinary derivations. We also studied generalized derivations on a Banach module in virtue of derivations on its associated triangular Banach algebra. Thus, we established a link
between two interesting research areas: Banach algebras and triangular algebras.

Acknowledgment

The authors sincerely thank the referee for valuable suggestions and comments.

References

Gholamreza Abbaspour Tabadkan
Dept. of Pure Math.
School of Mathematical Science
Damghan Univ. of Basic Sciences
36715-364, Damghan, Iran
and
Department of Mathematics
Ferdowsi University
P.O. Box 1159
Mashhad 91775, Iran
e-mail: abbaspour@dmu.ac.ir

Mohammad Sal Moslehian and Assadollah Niknam
Department of Mathematics
Ferdowsi University
P.O. Box 1159
Mashhad 91775, Iran
and
Centre of Excellence in Analysis on Algebraic Structures (CEAAS)
Ferdowsi University, Iran
e-mail: moslehian@ferdowsi.um.ac.ir
e-mail: niknam@math.um.ac.ir