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Abstract. We obtain the asymptotic expansion of the sequence with

general term An
Gn

, where An and Gn are the arithmetic and geometric

means of the numbers d(1), d(2), . . . , d(n), with d(n) denoting the num-
ber of positive divisors of n. Also, we obtain some explicit bounds con-

cerning Gn and An
Gn
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1. Introduction and summary of the results

Assume that (an)n∈N is a real sequence with an > 0. We will denote the
arithmetic and geometric means of the numbers a1, a2, . . . , an, by A(a1, . . . , an)
and G(a1, . . . , an), respectively. In this paper, we are motivated by a classical
result asserting that

lim
n→∞

A(1, . . . , n)

G(1, . . . , n)
=

e

2
.

More precisely, by using Stirling’s approximation for n! one obtains

A(1, . . . , n)

G(1, . . . , n)
=

e

2
+O

( logn
n

)
.

We refer the reader to [6] for more details. The ratio e
2 appears surprisingly in

studying the ratio of the arithmetic to the geometric means of several number
theoretic sequences, including the sequence of prime numbers. More precisely,
in [8] we proved that

A(p1, . . . , pn)

G(p1, . . . , pn)
=

e

2
+O

( 1

log n

)
,
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On the means of the number of divisors 1316

where pn denotes the nth prime number. As further examples of this phenom-
enon, in [7] we showed that

A(ϱ1, . . . , ϱϕ(n))

G(ϱ1, . . . , ϱϕ(n))
=

e

2
+O

( log n log log n

n

)
,

where {ϱ1, . . . , ϱϕ(n)} is the least positive reduced set of residues modulo n,
and in [5] we proved validity of the expansion

A(γ1, . . . , γn)

G(γ1, . . . , γn)
=

e

2

(
1− 1

2 log n
− log log n

2 log2 n
− 1

2 log2 n

)
+O

( (log log n)2
log3 n

)
,

where 0 < γ1 < γ2 < γ3 < · · · denote the consecutive ordinates of the imagi-
nary parts of non-real zeros of the Riemann zeta-function, which is defined by
ζ(s) =

∑∞
n=1 n

−s for ℜ(s) > 1, and extended by analytic continuation to the
complex plane with a simple pole at s = 1.

On the other hand, we note that the appearance of the similar limit value
e
2 in the above results is not trivial and a global property. As an example, we
consider the asymptotic behaviour of the ratio under study for the values of the
Euler function. By using the asymptotic expansions for A(ϕ(1), . . . , ϕ(n)) and
G(ϕ(1), . . . , ϕ(n)) (see [14] for the arithmetic mean, and [10] for the geometric
mean), we get

A(ϕ(1), . . . , ϕ(n))

G(ϕ(1), . . . , ϕ(n))
=

3e

π2

∏
p

(
1− 1

p

)− 1
p

+O
( log n

n

)
,

where the product runs over all primes. This gives a limit value different from
e
2 , for the case of Euler function.

In this note we study the asymptotic behaviour of the ratio An

Gn
as n → ∞,

where for the whole text of the paper we let

An := A (d(1),d(2), . . . , d(n)) , and Gn := G (d(1), d(2), . . . , d(n)) ,

and

d(n) =
∑
d|n
d>0

1,

denotes the number of positive divisors of n. While the asymptotic expansion
of An is known in the literature, the function Gn has been less studied. In [3] an
asymptotic expansion for logGn has been suggested as special case of a general
result. In the present paper, to approximate logGn we develop an argument
based on the average order of the omega function

ω(k) =
∑
p|k

1,
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which counts the number of distinct prime divisors of the positive integer k.
This connection allows us to improve on the remainder of logGn, because there
are some very good known results on the average value of ω(k). Let us write

(1.1)
1

n

∑
k⩽n

ω(k) = log log n+M +R(n),

where M is the Meissel–Mertens constant defined by

(1.2) M = γ +
∑
p

(
log
(
1− p−1

)
+ p−1

)
,

and γ refers to Euler’s constant, and the sum runs over all primes. Hardy and
Ramanujan [4] proved that R(n) ≪ 1

logn , and Diaconis [1] improved on this

approximation by showing that

(1.3) R(n) =
m∑
j=1

aj

logj n
+O

( 1

logm+1 n

)
,

for each fixed m ⩾ 1 with the precise value a1 = γ−1, and ensuring that other
coefficients aj are computable constants. By utilizing the expansion (1.3) we
will prove the following results.

Theorem 1.1. Assume that M is the Meissel–Mertens constant, defined by
(1.2), and β is the absolute constant defined by

(1.4) β =
∑
pα

α⩾2

1

pα
log
(
1 +

1

α

)
,

where the sum runs over all prime powers pα with α ⩾ 2. Then, for any fixed
integer m ⩾ 1 one has

(1.5) Gn = B (log n)
log 2

(
1 +

m∑
k=1

bk

logk n
+O

( 1

logm+1 n

))
,

where

(1.6) B = eβ+M log 2,

and the coefficients bk are computable constants, with b1 = (γ − 1) log 2 ≊
−0.293.

Approximation of An is related to the so called Dirichlet’s divisor problem.
By using Dirichlet’s hyperbola method (for example see [13]) one obtains

(1.7) An =
2

n

∑
k⩽√

n

[n
k

]
− [

√
n]

2

n
,
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and this implies that

(1.8) An = log n+ (2γ − 1) +O
( 1√

n

)
.

Now, by dividing the right hand side of (1.8) by (1.5) we obtain the following
asymptotic expansion for the ratio An

Gn
.

Theorem 1.2. For every fixed integer m ⩾ 1 one has

(1.9)
An

Gn
= B−1(log n)1−log 2

(
1 +

m∑
k=1

rk

logk n
+O

( 1

logm+1 n

))
,

where B is the constant defined as in (1.6), and the coefficients rk are com-
putable constants, with r1 = 2γ − 1 + (1− γ) log 2 ≊ 0.448.

Next, we follow the steps in deduction of the above results in numerical
details to obtain an explicit bound for Gn and then for An

Gn
. To do this, we

require some explicit bounds for R(n), which can be found in [9] asserting that
the double side inequality

(1.10) − 3.8854

log n
< R(n) <

1

log2 n
,

is valid for any n ⩾ 2. Moreover, we need the following useful result.

Lemma 1.3. For every real α > 1 and every real z > 1 we have

(1.11)
∑
p>z

1

pα
<

1

(α− 1)zα−1 log z
+

3(3α− 1)

4(α− 1)zα−1 log2 z
,

where the sum runs over primes p larger than z.

By using the above explicit bounds, we obtain the following explicit form of
the expansion (1.5).

Lemma 1.4. For every n ⩾ 2 we have

(1.12) B (log n)
log 2

(
1− 2.958

log n

)
< Gn < B (log n)

log 2
(
1 +

0.695

log2 n

)
.

To get an explicit form of the expansion of (1.9), we also need an explicit
bound concerning An, namely as follows.

Lemma 1.5. For any n ⩾ 1 one has

(1.13) log n+ (2γ − 1)− 6√
n
< An < log n+ (2γ − 1) +

6√
n
.

Now, we are able to obtain the following explicit form of Theorem 1.2,
providing sharp bounds for the ratio An

Gn
.
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Theorem 1.6. For any n ⩾ 2 one has

(1.14) B−1(log n)1−log 2
(
1 +

0.091

logn

)
<

An

Gn
< B−1(log n)1−log 2

(
1 +

4.053

log n

)
.

While the proof of the above asymptotic results follows some standard num-
ber theoretic methods, in order to prove explicit results we need to follow
several computational steps. Hence we give proofs for all of them, separately.
Before introducing the proofs, we give some remarks on the constants β and
B.

Remark 1.7. We observe that

(1.15) β =

∞∑
k=2

P (k) log
(
1 +

1

k

)
,

where

P (s) =
∑
p

1

ps
,

with the sum running over all primes is the prime zeta function defined for
complex values of s with ℜ(s) > 1. The convergence of the Euler product
ζ(s) =

∏
p(1−p−s)−1 guarantees that ζ(s) does not vanish for ℜ(s) > 1. Thus,

by taking logarithm from both sides and utilizing the Maclaurin expansion of
the logarithm function, we get

log ζ(s) =
∞∑

m=1

∑
p

1

mpms
,

and consequently P (s) < log ζ(s) is valid for each real s > 1. On the other
hand, for every real s > 1 we have

(1.16) ζ(s) = 1 +

∞∑
n=2

1

ns
< 1 +

∫ ∞

1

dt

ts
= 1 +

1

s− 1
.

Also, for every real t > 0 the inequality

(1.17) log(1 + t) < t,

is valid. Hence, by using (1.16) and (1.17), we obtain P (s) < 1
s−1 for any real

s > 1, and also we get log(1 + 1
k ) < k−1 for each k > 0. These bounds imply

that β <
∑∞

k=2(k(k − 1))−1 = 1, and this ensures that β defined as in (1.4)
is indeed an absolute constant. Moreover, we observe that the series (1.15)
converges rapidly. Also, it is known [2] that

M = γ +
∞∑
k=2

µ(k) log ζ(k)

k
,
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and the later sum converges rapidly, too. Hence, by computation one may
approximate the values of β and M , and then B, as follows

β ≊ 0.26194755498513799388260073634848006426660733053984,

M ≊ 0.26149721284764278375542683860869585905156664826120,

B ≊ 1.55768946444498105779234755862859827712273243065993.

All computations performed in this paper have been done using Maple and
Mathematica.

2. Proof of the asymptotic results

Connecting logGn to the mean value of ω(n). From here on we let

ℓ(α) = log
(
1 +

1

α

)
.

We consider the identity n logGn =
∑

k⩽n log d(k), and we write∑
k⩽n

log d(k) =
∑
k⩽n

∑
pα∥k

log(α+ 1) =
∑
k⩽n

∑
pα|k
α⩾1

(log(α+ 1)− logα)

=
∑
pα⩽n
α⩾1

(log(α+ 1)− logα)

[
n

pα

]
=
∑
pα⩽n
α⩾1

ℓ(α)

[
n

pα

]

= (log 2)
∑
p⩽n

[
n

p

]
+
∑
pα⩽n
α⩾2

ℓ(α)

[
n

pα

]
.

The key point to connect logGn and the mean value of ω(k) is the following∑
k⩽n

ω(k) =
∑
k⩽n

∑
p|k

1 =
∑
p⩽n

∑
k⩽n
p|k

1 =
∑
p⩽n

[
n

p

]
.

Also, we write ∑
pα⩽n
α⩾2

ℓ(α)

[
n

pα

]
= βn− nR1(n)−R2(n),

where β is the absolute constant defined as in (1.4), and

(2.1) R1(n) =
∑
pα>n
α⩾2

ℓ(α)

pα
, and R2(n) =

∑
pα⩽n
α⩾2

ℓ(α)

{
n

pα

}
.

Thus, we obtain

(2.2) logGn =
log 2

n

∑
k⩽n

ω(k) + β −R0(n),



1321 Hassani

where

R0(n) = R1(n) +
R2(n)

n
.

Proof of Theorem 1.1. By using the inequality (1.17) we get ℓ(α) < α−1 for
each α > 0. Hence

0 ⩽ R1(n) ≪
∑
pα>n
α⩾2

1

αpα
=

∞∑
α=2

∑
pα>n

1

αpα
.

For sufficiently large values of n we write

∞∑
α=2

∑
pα>n

1

αpα
⩽

∑
2⩽α<logn

∑
pα>n

1

αpα
+

∑
α⩾logn

∑
p

1

αpα
:= T1(n) + T2(n),

say. We note that π(n)−π(n−1) = 1 or 0, depending if n is prime or not. For
any arbitrary sequences an and bn, and for any positive integers M and N , the
transformation

N∑
n=M

an(bn+1 − bn) = aN+1bN+1 − aMbM −
N∑

n=M

bn+1(an+1 − an),

is known as summation by parts (see [15], page 2891). We take in this formula
an = 1

nα , bn = π(n − 1), M = [z] + 1 and also we let N → ∞. Hence, by
considering the approximation π(x) ≪ x

log x and assuming that α > 1 we imply∑
p>z

1

pα
=
∑
n>z

π(n)− π(n− 1)

nα
= − π(z)

([z] + 1)α
−
∑
n>z

π(n)
( 1

(n+ 1)α
− 1

nα

)
<
∑
n>z

π(n)
( 1

nα
− 1

(n+ 1)α

)
≪
∑
n>z

π(n)

n(n+ 1)α
≪
∑
n>z

1

(n+ 1)α log n

<
1

log z

∑
n>z

1

(n+ 1)α
≪ 1

log z

∫ ∞

z

dt

(t+ 1)α
≪ 1

zα−1 log z
.

This approximation implies that

T1(n) =
∑

2⩽α<logn

1

α

∑
p>n

1
α

1

pα

≪
∑

2⩽α<logn

1

n1− 1
α logn

<
1

n
1
2 log n

∑
2⩽α<logn

1 ≪ 1

n
1
2

.

To approximate T2(n) we write

T2(n) =
∑
p

∑
α⩾logn

1

αpα
<

1

log n

∑
p

∑
α⩾logn

1

pα
≪ 1

log n

∑
p

1

plogn
.
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Now, we note that∑
p

1

plogn
=

1

2logn
+
∑
p⩾3

1

plogn
≪ 1

2logn
+

∫ ∞

2

dt

tlogn
≪ 1

2logn
.

Thus, we obtain

T2(n) ≪
1

nlog 2 log n
.

We combine the above approximations to get

(2.3) R1(n) ≪ T1(n) + T2(n) ≪
1

n
1
2

+
1

nlog 2 log n
≪ 1

n
1
2

.

To approximate R2(n) we write

0 ⩽ R2(n) ≪
∑
pα⩽n
α⩾2

1 =
∑

p⩽n
1
α

α⩾2

1 =
∑

2⩽α⩽ log n
log 2

π(n
1
α )

≪
∑

2⩽α⩽ log n
log 2

n
1
α

log n
1
α

⩽ n
1
2

log n

∑
2⩽α⩽ log n

log 2

α ≪ n
1
2 log n.

By using (2.3) and the last approximation we get R0(n) ≪ logn√
n
, and then by

using (2.2) we deduce

logGn =
log 2

n

∑
k⩽n

ω(k) + β +O
( log n√

n

)
.

Now we put (1.1) in the last equality, and also we apply the approximation
(1.3) to obtain

(2.4) logGn = (log 2) log log n+(β +M log 2)+
m∑
j=1

aj log 2

logj n
+O

( 1

logm+1 n

)
,

for every fixed m ⩾ 1, where the coefficients aj are the constants as in the
expansion (1.3) with the precise value a1 = γ − 1. Now we take exponent of
both sides of (2.4) to get (1.5). For instance, we note that as n → ∞, one has

exp

 m∑
j=1

aj log 2

logj n
+O

( 1

logm+1 n

)
= 1 +

m∑
i=1

1

i!

( m∑
j=1

aj log 2

logj n

)i
+O

( 1

logm+1 n

)
= 1 +

m∑
k=1

bk

logk n
+O

( 1

logm+1 n

)
,
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where the coefficients bk are computable constants in terms of the coefficients
aj , with b1 = a1 log 2. This completes the proof. Finally, we let Aj = aj log 2,
and we list some more initial values of the coefficients bk as follows

b2 =
1

2!
A2

1 +A2,

b3 =
1

3!
A3

1 +A1A2 +A3,

b4 =
1

4!
A4

1 +
1

2
A2

1A2 +
1

2
A2

2 +A1A3 +A4,

b5 =
1

5!
A5

1 +
1

6
A3

1A2 +
1

2
A1A

2
2 +

1

2
A2

1A3 +A2A3 +A1A4 +A5.

Proof of Theorem 1.2. If we let

Em(n) :=
m∑
j=1

bj

logj n
+O

( 1

logm+1 n

)
,

where the coefficients bj are the coefficients as in (1.5), then by applying the
expansions (1.8) and (1.5) we get

An

Gn
= B−1(log n)1−log 2Fm(n),

where

Fm(n) =

(
1 +

2γ − 1

log n
+O

( 1√
n logn

))
(1 + Em(n))

−1
.

We have

(1 + Em(n))
−1

= 1 +

m∑
i=1

(−1)i
( m∑

j=1

bj

logj n

)i
+O

( 1

logm+1 n

)
= 1 +

m∑
k=1

ck

logk n
+O

( 1

logm+1 n

)
,

where the coefficients ck are computable constants in terms of the coefficients
bj (and consequently in terms of the coefficients aj), with c1 = −b1. This gives

Fm(n) = 1 +
c1 + 2γ − 1

log n
+

m∑
k=2

ck + (2γ − 1)ck−1

logk n
+O

( 1

logm+1 n

)
,

and by taking r1 = c1+2γ−1 = 2γ−1+(1−γ) log 2 and rk = ck+(2γ−1)ck−1

for k ⩾ 2, we obtain (1.9). Finally, we list some more initial values of the
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coefficients ck as follows

c2 = +b21 − b2,

c3 = −b31 + 2b1b2 − b3,

c4 = +b41 − 3b21b2 + b22 + 2b1b3 − b4,

c5 = −b51 + 4b31b2 − 3b1b
2
2 − 3b21b3 + 2b2b3 + 2b1b4 − b5.

3. Proof of the explicit results

Proof of Lemma 1.3. For every real α we write∑
p>z

1

pα
= lim

b→∞

∑
z<p⩽b

1

pα
.

We set ϖ(n) to be 1 when n is prime and 0 otherwise. We have
∑

n⩽x ϖ(n) =

π(x), and by partial summation (see [13], page 3) we obtain∑
z<p⩽b

1

pα
=

∑
z<n⩽b

ϖ(n)

nα
=

π(b)

bα
− π(z)

zα
+ α

∫ b

z

π(t)

tα+1
dt.

Thus, for each real α > 1∑
p>z

1

pα
= α

∫ ∞

z

π(t)

tα+1
dt− π(z)

zα
.

Theorem 1 of [12] asserts that

(3.1) π(x) <
x

log x

(
1 +

3

2 log x

)
,

for each real x > 1. This implies∫ ∞

z

π(t)

tα+1
dt <

∫ ∞

z

1

tα log t

(
1 +

3

2 log t

)
dt

<
1

log z

(
1 +

3

2 log z

)∫ ∞

z

1

tα
dt =

1

(α− 1)zα−1 log z

(
1 +

3

2 log z

)
.

Theorem 1 of [12] also asserts validity of x
log x (1 +

1
2 log x ) < π(x) for each real

x ⩾ 59. By using this

(3.2)
x

log x

(
1− 3

4 log x

)
< π(x),

for each real x > 1. Thus, for z > 1 we get

−π(z)

zα
< − 1

zα−1 log z

(
1− 3

4 log z

)
,
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and consequently∑
p>z

1

pα
<

α

(α− 1)zα−1 log z

(
1 +

3

2 log z

)
− 1

zα−1 log z

(
1− 3

4 log z

)
.

This gives (1.11), and completes the proof.

Explicit approximation of R1(n). We apply the inequality ℓ(α) < α−1,
which is valid for each α > 0, to get

0 ⩽ R1(n) <
∑
pα>n
α⩾2

1

αpα
=

∞∑
α=2

∑
pα>n

1

αpα
.

We let n > e6, and we write
∞∑

α=2

∑
pα>n

1

αpα
⩽

∑
2⩽α<logn

∑
pα>n

1

αpα
+

∑
α⩾logn

∑
p

1

αpα
:= Σ1(n) + Σ2(n),

say. We utilize the bound (1.11) to get

Σ1(n) =
∑

2⩽α<logn

1

α

∑
p>n

1
α

1

pα

<
∑

2⩽α<logn

( 1

(α− 1)n1− 1
α log n

+
3α(3α− 1)

4(α− 1)n1− 1
α log2 n

)
<

1

n
1
2 log n

+
15

2n
1
2 log2 n

+
1

n
2
3 log n

S1(n) +
3

4n
2
3 log2 n

S2(n),

where

S1(n) =
∑

3⩽α<logn

1

α− 1
, and S2(n) =

∑
3⩽α<logn

α(3α− 1)

α− 1
.

Since
∑

1⩽α⩽y
1
α < 1+log y, we get S1(n) < log log n. Also, for every real y ⩾ 6

we have
∑

3⩽α<y
α(3α−1)

α−1 < 3
2y

2 + 4y. Since we have assumed that n > e6, it

follows that S2(n) <
3
2 log

2 n+ 4 log n. Thus, for n > e6 we get

Σ1(n) <
1

n
1
2 log n

+ E1(n),

where

E1(n) =
15

2n
1
2 log2 n

+
log log n

n
2
3 log n

+
3

4n
2
3 log2 n

(3
2
log2 n+ 4 log n

)
.

To approximate Σ2(n) we write

Σ2(n) =
∑
p

∑
α⩾logn

1

αpα
<

1

log n

∑
p

∑
α⩾logn

1

pα
.
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By using geometric sum, we get∑
α⩾logn

1

pα
=

∞∑
α=[logn]+1

1

pα
=

1

(p− 1)p[logn]
⩽ 2

p[logn]+1
<

2

plogn
.

Hence, we obtain

Σ2(n) <
2

log n

∑
p

1

plogn
.

Now, we note that∑
p

1

plogn
=

1

2logn
+
∑
p⩾3

1

plogn
<

1

2logn
+

∫ ∞

2

dt

tlogn
=

1

2logn

(
1 +

2

log n− 1

)
.

Thus, for n ⩾ e we obtain Σ2(n) < E2(n), with

E2(n) =
2

nlog 2 log n

(
1 +

2

log n− 1

)
.

We combine the above bounds to get

(3.3) R1(n) <
∞∑

α=2

∑
pα>n

1

αpα
⩽ Σ1(n) + Σ2(n) <

1

n
1
2 logn

+ E1(n) + E2(n),

for n > e6. Meanwhile, if we let f1(n) = (E1(n) + E2(n))n
1
2 log n then we

have f1(n) = o(1) as n → ∞. Also, f1(n) is strictly decreasing for n > e. By
computation we observe that f1(n) < 4, and consequently R1(n) <

5√
n logn

, is

valid for n ⩾ 37683.

Explicit approximation of R2(n). We have

0 ⩽ R2(n) <
∑
pα⩽n
α⩾2

ℓ(2) = ℓ(2)
∑

p⩽n
1
α

α⩾2

1 = ℓ(2)
∑

2⩽α⩽ log n
log 2

π(n
1
α ).

By using (3.1), for x > 1 we get

(3.4) π(x) ⩽ x

log x

(
1 +

3

2 log 2

)
.

We let

(3.5) c2 =
(
1 +

3

2 log 2

)
ℓ(2).

By using (3.4) we obtain

0 ⩽ R2(n) < c2
∑

2⩽α⩽ log n
log 2

n
1
α

log n
1
α

=
c2

logn

∑
2⩽α⩽ log n

log 2

αn
1
α ⩽ c2n

1
2

log n

∑
2⩽α⩽ log n

log 2

α.
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Now, we apply the inequality
∑

2⩽α⩽y α < y(y+1)
2 to get

(3.6) 0 ⩽ R2(n) <
c2

2 log 2
n

1
2 log(2n) := E3(n),

say, for any n ⩾ 1. Meanwhile, we note that the function f2(n) =
c2

2 log 2
log(2n)
logn is

strictly decreasing for n > 1, and hence limn→∞ f2(n) =
c2

2 log 2 < f2(n) ⩽ f2(v)

for each n ⩾ v. Thus, for any n ⩾ 5439 we obtain 0 ⩽ R2(n) < n
1
2 log n.

Explicit approximation of R0(n). By using (3.3) and (3.6) we obtain 0 ⩽
R0(n) < E0(n) for n > e6, where

E0(n) =
1

n
1
2 log n

+ E1(n) + E2(n) +
E3(n)

n
.

We observe that the function f3(n) =
E0(n)

√
n

logn is strictly decreasing for n > e,

and hence f3(n) < 1 for n ⩾ 394657 := n0, say. Thus E0(n) < logn√
n
, and

consequently

(3.7) 0 ⩽ R0(n) <
log n√

n
,

hold for every n ⩾ n0.

Completing the proof of Lemma 1.4. We recall the value n0 = 394657.
By using (2.2) and (1.1) we write

logGn = (log 2) log log n+ (β +M log 2) + E(n),

where
E(n) = R(n) log 2−R0(n).

By applying the bounds (1.10) and (3.7) we get

−
(3.8854 log 2

log n
+

log n√
n

)
< E(n) <

log 2

log2 n
,

for any n ⩾ n0. We note that the inequality

(3.8)
3.8854 log 2

log n
+

log n√
n

⩽ η

log n
,

is equivalent by η ⩾ 3.8854 log 2 + log2 n√
n

, and since the ratio log2 n√
n

is strictly

decreasing for n ⩾ 55, hence we take η = 3.8854 log 2 + log2 n0√
n0

≊ 2.95746, for

which (3.8) holds for every n ⩾ n0. Thus, for any n ⩾ 394657 we obtain

−2.958

log n
< E(n) <

log 2

log2 n
.

Now we note that the function f4(n) = (e
log 2

log2 n − 1) log2 n is strictly decreasing
for n ⩾ e. Hence f4(n) ⩽ f4(n0) < 0.695, and consequently eE(n) < 1 + 0.695

log2 n
,
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for each n ⩾ n0. Also, the function f5(n) = (1 − e−
2.958
log n ) log n is strictly

increasing for n ⩾ e, and limn→∞ f5(n) = 2.958. This implies the validity of
f5(n) ⩽ 2.958 for each n ⩾ e. Hence 1− 2.958

logn < eE(n) holds for every n ⩾ n0.

This completes the proof of both sides of (1.12) for every n ⩾ n0. Now, we
define

Jl(n) =
( Gn

B (log n)
log 2

− 1
)
log n, and Ju(n) =

( Gn

B (log n)
log 2

− 1
)
log2 n.

By computation, we have

min
2⩽n⩽n0

Jl(n) = Jl(47) ≊ −0.4321 > −2.958,

which confirms validity of the left hand side of (1.12) for each 2 ⩽ n ⩽ n0. Also,
we observe that Ju(n) < 0 for each 3 ⩽ n ⩽ n0, and Ju(2) ≊ 0.0819 < 0.695.
This confirms validity of the left hand side of (1.12) for each 2 ⩽ n ⩽ n0.

Proof of Lemma 1.5. We start from (1.7). We assume that n > 1, and we
let N = [

√
n]. Hence

An =
2

n

N∑
k=1

[n
k

]
− N2

n
.

We let HN =
∑N

k=1
1
k , and we apply the double side inequality y− 1 < [y] ⩽ y

to write

2HN − N2 + 2N

n
< An ⩽ 2HN − N2

n
.

The inequality N >
√
n − 1 gives N2 > n − 2

√
n, and so −N2

n < −1 + 2√
n
.

Also, from N ⩽ √
n we get −N2+2N

n > −1− 2√
n
. Thus

2HN − 1− 2√
n
< An < 2HN − 1 +

2√
n
.

We use the Euler–Maclaurin summation formula (see for example [11], page
27) with m = 1 to get

|HN − (logN + γ)| ⩽ 3N + 1

6N2
,

for each N ⩾ 1. Thus, for each n > 1 we obtain

log n+ (2γ − 1) + f6(n) < An < log n+ (2γ − 1) + f7(n),

where f6(n) = 2 log(1 − 1√
n
) − 3

√
n+1

3(
√
n−1)2

− 2√
n

and f7(n) = 3
√
n+1

3(
√
n−1)2

+ 2√
n
.

The function g6(n) =
√
nf6(n) is strictly increasing for n > 1, and g6(22) ≊

−5.9795 > −6. Thus, f6(n) > − 6√
n

is valid for n ⩾ 22. Also, the function

g7(n) =
√
nf7(n) is strictly decreasing for n > 1, and g7(5) ≊ 5.7604 < 6. This

implies that f7(n) <
6√
n
for any n ⩾ 5. Thus, we obtain validity of (1.13) for

n ⩾ 22. Computations verify its validity for 1 ⩽ n ⩽ 21, as well.
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Proof of Theorem 1.6. We recall the value n0 = 394657. By using the
explicit bounds (1.12) and (1.13), we get

B−1(log n)1−log 2f8(n) <
An

Gn
< B−1(log n)1−log 2f9(n),

for any n ⩾ n0 with

f8(n) =
log n+ (2γ − 1)− 6√

n

log n+ 0.695
logn

, and f9(n) =
log n+ (2γ − 1) + 6√

n

log n− 2.958
.

The function g8(n) = (f8(n) − 1) log n is strictly increasing for n ⩾ 4, and
hence g8(n) ⩾ g8(n0) ≊ 0.0906 > 0.091. This proves the left hand inequality of
(1.14). By following a similar argument, we observe that the function g9(n) =
(f9(n)− 1) log n is strictly decreasing for n ⩾ 20, and hence g9(n) ⩽ g9(n0) ≊
4.05218 < 4.053. This completes the proof of both inequalities in (1.14) for
every n ⩾ n0. We define

K(n) =
( BAn

Gn(log n)1−log 2
− 1
)
logn.

While Theorem 1.2 implies that

lim
n→∞

K(n) = 2γ − 1 + (1− γ) log 2 ≊ 0.448,

by computation we get

min
2⩽n⩽n0

K(n) = K(389759) ≊ 0.4880 > 0.091,

and

max
2⩽n⩽n0

K(n) = K(12) ≊ 0.7590 < 4.053,

confirming the validity of the left hand side and the right hand side of (1.14)
for 2 ⩽ n ⩽ n0, respectively. This completes the proof.
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