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Abstract. Let R be a noncommutative prime ring of characteristic dif-
ferent from 2, U the Utumi quotient ring of R, C (= Z(U)) the extended

centroid of R. Let 0 ̸= a ∈ R and f(x1, . . . , xn) a multilinear polyno-
mial over C which is noncentral valued on R. Suppose that G and H
are two nonzero generalized derivations of R such that a(H(f(x))f(x)−
f(x)G(f(x))) ∈ C for all x = (x1, . . . , xn) ∈ Rn. In this paper, we prove

that one of the following holds:
(1) f(x1, . . . , xn)2 is central valued on R and there exist b, p, q ∈ U such

that H(x) = px + xb for all x ∈ R, G(x) = bx + xq for all x ∈ R
with a(p− q) ∈ C;

(2) there exist p, q ∈ U such that H(x) = px + xq for all x ∈ R,
G(x) = qx for all x ∈ R with ap = 0;

(3) f(x1, . . . , xn)2 is central valued on R and there exist q ∈ U , λ ∈ C

and an outer derivation g of U such that H(x) = xq+λx− g(x) for
all x ∈ R, G(x) = qx+ g(x) for all x ∈ R, with a ∈ C;

(4) R satisfies s4 and there exist b, p ∈ U such that H(x) = px+ xb for
all x ∈ R, G(x) = bx+ xp for all x ∈ R.

Keywords: Prime ring, generalized derivation, extended centroid.
MSC(2010): Primary: 16W25; Secondary: 16N60, 16R50.

1. Introduction

Throughout this paper, R always denotes a prime ring with center Z(R),
C be the extended centroid of R and U be the Utumi quotient ring of R.
For x, y ∈ R, the Lie commutator of x, y is denoted by [x, y] and defined by
[x, y] = xy−yx. By a derivation d of R we mean an additive mapping d : R → R
satisfying d(xy) = d(x)y+ xd(y) for all x, y ∈ R. A derivation d is called inner
if d(x) = [q, x] for all x ∈ R for some q ∈ U . A derivation which is not inner
is called an outer derivation. An additive subgroup L of R is said to be Lie
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ideal of R, if [L,R] ⊆ L. The standard polynomial identity s4 in four variables
is defined as s4(x1, x2, x3, x4) =

∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4) where (−1)σ is

+1 or −1 according to σ being an even or odd permutation in symmetric group
S4.

A well known result proved by Posner [25], states that if for a derivation d
the commutators [d(x), x] ∈ Z(R) for all x ∈ R holds, then either d = 0 or
R is commutative. Then many related generalizations of Posner’s result have
been obtained by a number of authors in literature. Brešar proved in [4] that
if d(x)x−xg(x) ∈ Z(R) for all x ∈ R, where d and g are derivations of R, then
either d = g = 0 or R is commutative.

In [24], Niu and Wu studied the left annihilator of the set {d(u)u−uδ(u)|u ∈
L}, where d and δ are two derivations of R and L is a noncentral Lie ideal of R.
They proved that if the annihilator is not zero, then R satisfies s4 and d = −δ
are inner derivations of R.

In [5], Carini et al. studied the result of Niu and Wu [24] by replacing
derivations with generalized derivations. An additive function F : R → R is
called a generalized derivation of R, if there exists a derivation d of R such
that F (xy) = F (x)y + xd(y) for all x, y ∈ R. In [5], the authors proved that if
H and G are two nonzero generalized derivations of a prime ring R with char
(R) ̸= 2 and L a noncentral Lie ideal of R such that a(H(u)u − uG(u)) = 0
for all u ∈ L and for some 0 ̸= a ∈ R, then one of the following holds: (1)
there exist b′, c′ ∈ U such that G(x) = c′x and H(x) = b′x+ xc′ with ab′ = 0;
(2) R satisfies s4 and there exist b′, c′, q′ ∈ U such that G(x) = c′x + xq′ and
H(x) = b′x+ xc′ with a(b′ − q′) = 0.

Lee and Shiue [19] extended the Bršar’s result [4] taking x from the set
A = {f(x1, . . . , xn) : x1, . . . , xn ∈ I}, where f(x1, . . . , xn) is a noncentral
polynomial over C and I a nonzero ideal of prime ring R. Lee and Shiue [19]
proved that if for two derivations d and δ of R, d(x)x− xδ(x) ∈ C holds for all
x ∈ A then either d = δ = 0 or d = −δ and f(x1, . . . , xn)

2 is central valued on
RC unless char(R) = 2 and dimCRC = 4.

Recently, Argaç and De Filippis [1] studied the previous result [19] replacing
derivations by generalized derivations and without considering central values.
They proved the following:

Let K be a commutative ring with unity, R be a noncommutative prime K-
algebra with center Z(R), U be the Utumi quotient ring of R, C = Z(U) the
extended centroid of R, I a nonzero ideal of R. Suppose that f(x1, . . . , xn) is
a noncentral multilinear polynomial over K, G and H are two nonzero gen-
eralized derivations of R such that G(f(x))f(x) − f(x)H(f(x)) = 0 for all
x = (x1, . . . , xn) ∈ In. Then one of the following holds:

(1) f(x1, . . . , xn)
2 is central valued on R and there exist b, a ∈ U such that

G(x) = ax+ xb for all x ∈ R, H(x) = bx+ xa for all x ∈ R;
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(2) there exists a ∈ U such that G(x) = xa for all x ∈ R, H(x) = ax for
all x ∈ R;

(3) char(R) = 2 and R satisfies s4.

In [11] De Filippis et al. studied the situation with left annihilator condition.
They proved the following:

Let K be a commutative ring with unity, R be a noncommutative prime
K-algebra of characteristic different from 2, U be the Utumi quotient ring of
R, C = Z(U) the extended centroid of R. Suppose that f(x1, . . . , xn) is a
noncentral multilinear polynomial over K, G and H are two nonzero general-
ized derivations of R and there exists 0 ̸= a ∈ R such that a(G(f(x))f(x) −
f(x)H(f(x))) = 0 for all x = (x1, . . . , xn) ∈ Rn. Then one of the following
holds:

(1) f(x1, . . . , xn)
2 is central valued on R and there exist b′, c′, q′ ∈ U such

that G(x) = b′x + xc′ for all x ∈ R, H(x) = c′x + xq′ for all x ∈ R
with a(b′ − q′) = 0;

(2) there exist b′, c′ ∈ U such that G(x) = b′x+ xc′ for all x ∈ R, H(x) =
c′x for all x ∈ R with ab′ = 0.

Recently, in [10] De Filippis and Dhara investigated the situationG(f(x))f(x)
− f(x)H(f(x)) ∈ C for all x = (x1, . . . , xn) ∈ In in prime ring and then deter-
mined the structure of the maps, where G,H two generalized derivations of R
and I a nonzero right ideal of R.

So it is natural to consider the situation a(G(f(x))f(x)−f(x)H(f(x))) ∈ C
for all x = (x1, . . . , xn) ∈ Rn, where G,H are two generalized derivations of R,
f(x1, . . . , xn) a multilinear polynomial over C and 0 ̸= a ∈ R. In the present
paper, our main object is to investigate this situation.

2. Main results

First we fix the following remarks:

Remark 2.1. Let R be a prime ring and L a noncentral Lie ideal of R. If
char (R) ̸= 2, by [3, Lemma 1] there exists a nonzero ideal I of R such that
0 ̸= [I,R] ⊆ L. Moreover, if R is a simple ring, then [R,R] ⊆ L.

Remark 2.2. It is well known that each generalized derivation of a prime ring
R can be uniquely extended to a generalized derivation of U , with the form
ax + δ(x) for all x ∈ U , where a ∈ U and δ is a derivation of U . We refer
to [12,18,19].

In order to prove the main theorem, we need the following lemmas.

Lemma 2.3. [10, Lemma 6] Let R be a noncommutative prime ring with
Utumi quotient ring U and extended centroid C, and f(x1, . . . , xn) be a mul-
tilinear polynomial over C, which is not central valued on R. Suppose that
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there exist a,w, b ∈ U such that af(r)2 + f(r)wf(r) + f(r)2b ∈ C for all
r = (r1, . . . , rn) ∈ Rn. Then one of the following holds:

(1) a, b, w ∈ C with a+ w + b = 0;
(2) w, a+ b ∈ C and f(x1, . . . , xn)

2 is central valued on R;
(3) char (R) = 2 and R satisfies s4;
(4) R satisfies s4, a− b ∈ C and w ∈ C.

Lemma 2.4. Let R = Mk(C), where k ≥ 2 be ring of all k×k matrices over the
field C of characteristic different from 2. Let a be an invertible matrix in R and
f(x1, . . . , xn) a multilinear polynomial over C which is not central valued on R.
Suppose that b, c, p, q ∈ R such that a(bf(x)2+f(x)(c−p)f(x)−f(x)2q) ∈ C ·Ik
for all x = (x1, . . . , xn) ∈ Rn. Then c − p ∈ C · Ik and one of the following
holds:

(1) f(x1, . . . , xn)
2 is central valued on R and a(b+ c− p− q) ∈ C · Ik;

(2) b, q ∈ C · Ik and b+ c− p− q = 0;
(3) k = 2.

Proof. Since f(x1, . . . , xn) is not central valued on R, by [20] (see also [23]),
there exist u1, . . . , un ∈ Mk(C) and γ ∈ C−{0} such that f(u1, . . . , un) = γekl,
with k ̸= l. Moreover, since the set {f(r1, . . . , rn) : r1, . . . , rn ∈ Mm(C)} is
invariant under the action of all C-automorphisms of Mk(C), then for any i ̸= j
there exist r1, . . . , rn ∈ Mk(C) such that f(r1, . . . , rn) = γeij .

Thus, by our hypothesis we have, aγeij(c − p)γeij ∈ C · Ik, that is, a(c −
p)jieij ∈ C · Ik. Since the rank of a(c− p)jieij is at most one, a(c− p)jieij = 0.
Again since a is invertible, we have (c− p)ji = 0 for any i ̸= j. Thus, (c− p) is
a diagonal matrix. By using a standard argument, it follows that c−p ∈ C ·Ik.

In the sequel one may assume k ≥ 3, if not the proof is finished. Then our
hypothesis reduces to

(2.1) a((b+ c− p)f(x)2 − f(x)2q) ∈ C · Ik
for all x = (x1, . . . , xn) ∈ Rn. If f(x1, . . . , xn)

2 is central valued on R, then
by (2.1) and since f(x1, . . . , xn) cannot be an identity for R, the conclusion
a(b+ c− p− q) ∈ C · Ik follows easily.

Now we assume that f(x1, . . . , xn)
2 is not central valued on R. Since the

relation (2.1) holds for any element of the additive subgroup generated by the
polynomial f(x1, . . . , xn)

2, then by [9], it follows that a((b+c−p)x−xq) ∈ C ·Ik
for any x ∈ L, a noncentral Lie ideal of R. Since a is a nonzero invertible
element and R = Mk(C), then (b+ c− p)x− xq is a zero or invertible matrix,
for any x ∈ L. As a consequence of Theorem 3 and Theorem 1.2 in [22], and
since k ≥ 3, one has q = b+c−p ∈ C ·Ik, that is b ∈ C ·Ik and b+c−p−q = 0,
as required. □
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Lemma 2.5. Let R be a noncommutative prime ring of characteristic different
from 2, U the Utumi quotient ring of R, C the extended centroid of R. Let
0 ̸= a ∈ R and f(x1, . . . , xn) be a multilinear polynomial over C which is not
central valued on R. Suppose that b, c, p, q ∈ R such that a(bf(x)2 + f(x)(c −
p)f(x) − f(x)2q) ∈ C for all x = (x1, . . . , xn) ∈ Rn. Then c − p ∈ C and one
of the following holds:

(1) f(x1, . . . , xn)
2 is central valued on R and a(b+ c− p− q) ∈ C;

(2) q ∈ C and a(b+ c− p− q) = 0;
(3) R satisfies s4.

Proof. Let us assume that a(bf(x)2 + f(x)(c − p)f(x) − f(x)2q) = 0 for all
x = (x1, . . . , xn) ∈ Rn. Then by [11, Proposition 2.4], c− p ∈ C and one of the
following hold:

(1) f(x1, . . . , xn)
2 is central valued on R and a(b+ c− p− q) = 0, which is

our conclusion (1);
(2) q ∈ C and a(b+ c− p− q) = 0, which is our conclusion (2).
Next we assume that there exists r = (r1, . . . , rn) ∈ Rn such that a(bf(r)2+

f(r)(c−p)f(r)−f(r)2q) ̸= 0. Since a(bf(x)2+f(x)(c−p)f(x)−f(x)2q) ∈ C is a
nonzero central generalized identity for R, by [6, Theorem 1] R is a PI- ring and
hence RC = U is a nontrivial GPI-ring simple with 1. By Lemma 2 in [14] and
Theorem 2.3.29 in [26], there exists a field E such that U ⊆ Mk(E) and U and
Mk(E) satisfy the same generalized identities. Thus a(bf(x)2+f(x)(c−p)f(x)−
f(x)2q) ∈ Z(Mk(E)) for all x = (x1, . . . , xn) ∈ (Mk(E))n. Since for some
r = (r1, . . . , rn) ∈ Un ⊆ (Mk(E))n, a(bf(r)2 + f(r)(c − p)f(r) − f(r)2q) ̸= 0,
a must be invertible. Then by Lemma 2.4, c − p ∈ Z(Mk(E)) and one of the
following holds:

(1) f(x1, . . . , xn)
2 is central valued on R and a(b+ c− p− q) ∈ C · Ik;

(2) b, q ∈ C · Ik and b+ c− p− q = 0;
(3) R ⊆ U ⊆ M2(E), that is, R satisfies s4.

Thus conclusions (1) to (3) are obtained.
□

Theorem 2.6. Let R be a noncommutative prime ring of characteristic differ-
ent from 2, U the Utumi quotient ring of R, C (= Z(U)) the extended centroid
of R. Let 0 ̸= a ∈ R and f(x1, . . . , xn) a multilinear polynomial over C which
is noncentral valued on R. Suppose that G and H are two nonzero gener-
alized derivations of R such that a(H(f(x))f(x) − f(x)G(f(x))) ∈ C for all
x = (x1, . . . , xn) ∈ Rn. Then one of the following holds:

(1) f(x1, . . . , xn)
2 is central valued on R and there exist b, p, q ∈ U such

that H(x) = px+ xb for all x ∈ R, G(x) = bx+ xq for all x ∈ R with
a(p− q) ∈ C;

(2) there exist p, q ∈ U such that H(x) = px+xq for all x ∈ R, G(x) = qx
for all x ∈ R with ap = 0;
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(3) f(x1, . . . , xn)
2 is central valued on R and there exist q ∈ U , λ ∈ C and

an outer derivation g of U such that H(x) = xq + λx − g(x) for all
x ∈ R, G(x) = qx+ g(x) for all x ∈ R, with a ∈ C;

(4) R satisfies s4 and there exist b, p ∈ U such that H(x) = px+ xb for all
x ∈ R, G(x) = bx+ xp for all x ∈ R.

Proof. Since every generalized derivation on R can uniquely be defined on the
whole U with the form ax + d(x) for some a ∈ U and a derivation d on U
( [18, Theorem 3]), there exist p, q ∈ U and derivations h, g on U such that
H(x) = px+ h(x) and G(x) = qx+ g(x) for all x ∈ U . By [8] and [21], both R
and U satisfy the same generalized polynomial identities and same differential
identities. So we have

(2.2) a

(
(pf(x) + h(f(x)))f(x)− f(x)(qf(x) + g(f(x)))

)
∈ C

for all x = (x1, . . . , xn) ∈ Un.
Now we divide the proof into three cases:

Case I: Assume that both h and g are inner derivations, say h(x) = [b, x]
and g(x) = [c, x] for all x ∈ U and for some b, c ∈ U . Then (2.2) becomes

a

(
(p+ b)f(x)2 − f(x)(b+ q + c)f(x) + f(x)2c

)
∈ C

for all x = (x1, . . . , xn) ∈ Un. Then by Lemma 2.5, b + q + c ∈ C and one of
the following holds:

1) f(x1, . . . , xn)
2 is central valued on R and a(p+b−b−q−c+c) = a(p−q) ∈

C. This implies H(x) = px + [b, x] = (b + p)x − xb and G(x) = qx + [c, x] =
(b+ q + c)x− bx− xc = −bx+ x(b+ q + c− c) = −bx+ x(b+ q) for all x ∈ U
and so for all x ∈ R. This is our conclusion (1).

2) c ∈ C and a(p + b − b − q − c + c) = a(p − q) = 0. Since b + q + c ∈ C,
b + q ∈ C and so [b, x] = −[q, x] for all x ∈ U . Thus H(x) = px + [b, x] =
px− [q, x] = (p− q)x+ xq and G(x) = qx+ [c, x] = qx for all x ∈ U and so for
all x ∈ R, with a(p− q) = 0, which is our conclusion (2).

3) R satisfies s4. Since b + q + c ∈ C, in this case H(x) = px + [b, x] =
(b+p)x−xb andG(x) = qx+[c, x] = (b+q+c)x−bx−xc = −bx+x(b+q+c−c) =
−bx+ x(b+ q) for all x ∈ U and so for all x ∈ R. This gives conclusion (4).

Case II: Assume now that both h and g are not inner derivations of U .
Let g and h be C-dependent modulo inner derivations of U . Then there exist
β, γ ∈ C, not all zero and c′ ∈ U such that βh+ γg = adc′ .

First assume that β = 0. Then γ ̸= 0 and g(x) = [t, x] for all x ∈ U , where
t = γ−1c′. Thus (2.2) becomes

a

(
(pf(x) + h(f(x)))f(x)− f(x)(qf(x) + [t, f(x)])

)
∈ C
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that is
(2.3)

a

(
(pf(x1, . . . , xn) + fh(x1, . . . , xn)+

n∑
i=1

f(x1, . . . , h(xi), . . . , xn))f(x1, . . . , xn)

− f(x1, . . . , xn)(qf(x1, . . . , xn) + [t, f(x1, . . . , xn)])

)
∈ C

for all x = (x1, . . . , xn) ∈ Un. By Kharchenko’s theorem [13], (2.3) implies
that U satisfies

a

(
(pf(x1, . . . , xn) + fh(x1, . . . , xn) +

n∑
i=1

f(x1, . . . , yi, . . . , xn))f(x1, . . . , xn)

− f(x1, . . . , xn)(qf(x1, . . . , xn) + [t, f(x1, . . . , xn)])

)
∈ C.

In particular, U satisfies

(2.4) a(
n∑

i=1

f(x1, . . . , yi, . . . , xn))f(x1, . . . , xn) ∈ C.

Putting yi = [b, xi] for all i = 1, . . . , n, where b ∈ U −C, we get that U satisfies
a[b, f(x1, . . . , xn)]f(x1, . . . , xn) ∈ C. This implies

a(bf(x1, . . . , xn)
2 − f(x1, . . . , xn)bf(x1, . . . , xn)) ∈ C

for all x1, . . . , xn ∈ U . Then by Lemma 2.5, we get b ∈ C, which is a contra-
diction.

Next assume that β ̸= 0. Then h = αg + adc, where α = −β−1γ and
c = β−1c′. In this case g cannot be inner, otherwise g and h both will be inner.
Now (2.2) becomes

(2.5) a

{(
pf(x) + αg(f(x)) + [c, f(x)]

)
f(x)− f(x)

(
qf(x) + g(f(x))

)}
∈ C

for all x = (x1, . . . , xn) ∈ Un. Thus, U satisfies

a

{(
pf(x1, . . . , xn) + αfg(x1, . . . , xn)

+α
∑n

i=1 f(x1, . . . , g(xi), . . . , xn) + [c, f(x1, . . . , xn)]

)
f(x1, . . . , xn)

−f(x1, . . . , xn)

(
qf(x1, . . . , xn) + fg(x1, . . . , xn)

+
∑n

i=1 f(x1, . . . , g(xi), . . . , xn))

)}
∈ C.
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Then by Kharchenko’s theorem [13], we have that U satisfies

a

{(
pf(x1, . . . , xn) + αfg(x1, . . . , xn)

+α
∑n

i=1 f(x1, . . . , yi, . . . , xn) + [c, f(x1, . . . , xn)]

)
f(x1, . . . , xn)

−f(x1, . . . , xn)

(
qf(x1, . . . , xn) + fg(x1, . . . , xn)

+
∑n

i=1 f(x1, . . . , yi, . . . , xn))

)}
∈ C.

In particular, U satisfies the blended component,

a

(
α

n∑
i=1

f(x1, . . . , yi, . . . , xn)f(x1, . . . , xn)

−f(x1, . . . , xn)

n∑
i=1

f(x1, . . . , yi, . . . , xn)

)
∈ C.(2.6)

Putting yi = [b, xi] for all i = 1, . . . , n, where b ∈ U − C, we get

a

(
α[b, f(x1, . . . , xn)]f(x1, . . . , xn)− f(x1, . . . , xn)[b, f(x1, . . . , xn)

)
∈ C,

that is

a(αbf(x)2 + f(x)(−αb− b)f(x) + f(x)2b) ∈ C

for all x = (x1, . . . , xn) ∈ Un. Then by Lemma 2.5, we have (α + 1)b ∈ C.
Now α ̸= −1 implies b ∈ C, which is a contradiction. Therefore α = −1 and so
h = −g + adc. Hence (2.6) becomes

a

(
−

n∑
i=1

f(x1, . . . , yi, . . . , xn)f(x1, . . . , xn)

−f(x1, . . . , xn)
n∑

i=1

f(x1, . . . , yi, . . . , xn)

)
∈ C.(2.7)

Putting y1 = x1 and y2 = . . . = yn = 0, we get a(−f(x1, . . . , xn)
2 − f(x1, . . . ,

xn)
2) = −2af(x1, . . . , xn)

2 ∈ C for all x1, . . . , xn ∈ U . Since char (R) ̸= 2, U
satisfies af(x1, . . . , xn)

2 ∈ C. By Lemma 2.3 we have a ∈ C. Moreover, since
a ̸= 0, af(x1, . . . , xn)

2 ∈ C yields f(x1, . . . , xn)
2 ∈ C for all x1, . . . , xn ∈ U .

Therefore, (2.5) becomes

(2.8)

(
pf(x)− g(f(x)) + [c, f(x)]

)
f(x)− f(x)

(
qf(x) + g(f(x))

)
∈ C
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for all x = (x1, . . . , xn) ∈ Un. Since f(x1, . . . , xn)
2 ∈C implies g(f(x1, . . . , xn)

2)
∈ C, from (2.8) we have

(pf(x) + [c, f(x)])f(x)− f(x)qf(x) ∈ C

that is,

(2.9) (p+ c)f(x1, . . . , xn)
2 − f(x1, . . . , xn)(c+ q)f(x1, . . . , xn) ∈ C

for all x = (x1, . . . , xn) ∈ Un. Again by Lemma 2.3, c+ q ∈ C. Thus (2.9) be-
comes (p− q)f(x1, . . . , xn)

2 ∈ C for all x1, . . . , xn ∈ U . Since f(x1, . . . , xn)
2 ∈

C, it yields either f(x1, . . . , xn)
2 = 0 for all x1, . . . , xn ∈ U or p − q ∈ C.

But f(x1, . . . , xn)
2 = 0 implies f(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U

(see [7]), a contradiction. Hence p − q = λ ∈ C. Therefore, for all x ∈ U ,
H(x) = px+h(x) = px−g(x)+[c, x] = (q+λ+c)x−xc−g(x) = x(q+c+λ)−
xc− g(x) = x(q + λ)− g(x) and G(x) = qx+ g(x) for all x ∈ U and so x ∈ R
with f(x1, . . . , xn)

2 is central valued on R and a ∈ C. This is our conclusion
(3).

Case III: Here we assume that h and g are C-independent modulo inner
derivations of U . Note that in this case both h and g are outer derivations of
U . Then our hypothesis (2.2) becomes

(2.10)

a

{(
pf(x1, . . . , xn) + fh(x1, . . . , xn)

+

n∑
i=1

f(x1, . . . , h(xi), . . . , xn)

)
f(x1, . . . , xn)

− f(x1, . . . , xn)

(
qf(x1, . . . , xn) + fg(x1, . . . , xn)

+
n∑

i=1

f(x1, . . . , g(xi), . . . , xn))

)}
∈ C

for all x1, . . . , xn ∈ U . Since both h and g are outer derivations, byKharchenko’s
theorem [13] we get from (2.10) that U satisfies

a

{(
pf(x1, . . . , xn) + fh(x1, . . . , xn)

+

n∑
i=1

f(x1, . . . , yi, . . . , xn)

)
f(x1, . . . , xn)

− f(x1, . . . , xn)

(
qf(x1, . . . , xn) + fg(x1, . . . , xn)

+
n∑

i=1

f(x1, . . . , zi, . . . , xn))

)}
∈ C.
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In particular, U satisfies

a

n∑
i=1

f(x1, . . . , yi, . . . , xn)f(x1, . . . , xn) ∈ C,

which is the same as (2.4). Then by same argument as before, it leads a
contradiction. □

In the Theorem 2.6, assuming H = G, we have the following corollary.

Corollary 2.7. Let R be a noncommutative prime ring of characteristic differ-
ent from 2, U the Utumi quotient ring of R, C (= Z(U)) the extended centroid
of R. Let 0 ̸= a ∈ R and f(x1, . . . , xn) a multilinear polynomial over C which
is noncentral valued on R. Suppose that H is a nonzero generalized derivation
of R such that a[H(f(x)), f(x)] ∈ C for all x = (x1, . . . , xn) ∈ Rn. Then one
of the following holds:

(1) f(x1, . . . , xn)
2 is central valued on R and there exist p ∈ U and λ ∈ C

such that H(x) = px+ xp+ λx for all x ∈ R;
(2) there exists λ ∈ C such that H(x) = λx for all x ∈ R;
(3) R satisfies s4 and there exist p ∈ U and λ ∈ C such that H(x) =

px+ xp+ λx for all x ∈ R.

Proof. In Theorem 2.6, assuming H = G we have the following conclusions:

(1) f(x1, . . . , xn)
2 is central valued on R and there exist b, p, q ∈ U such

that H(x) = px+ xb = bx+ xq for all x ∈ R with a(p− q) ∈ C. This
gives (p− b)x+ x(b− q) = 0, implying b− q ∈ C and p− b+ b− q = 0,
that is p = q. Let b − q = λ ∈ C. Then b = q + λ = p + λ. Thus
H(x) = px+ x(p+ λ) for all x ∈ R, this is our conclusion (1).

(2) There exist p, q ∈ U such that H(x) = px+xq = qx for all x ∈ R, with
ap = 0. This gives (p− q)x+xq = 0, implying q ∈ C and p− q+ q = 0,
that is p = 0. Thus conclusion (2) is obtained.

(3) f(x1, . . . , xn)
2 is central valued on R and there exist q ∈ U , λ ∈ C and

an outer derivation g of U such that H(x) = xq+λx−g(x) = qx+g(x)
for all x ∈ R, with a ∈ C. In this case, we have 2g(x) = −[q, x] + λx,
a contradiction, since g is an outer derivation.

(4) R satisfies s4 and there exist b, p ∈ U such that H(x) = px + xb =
bx+ xp for all x ∈ R. In this case (p− b)x+ x(b− p) = 0 for all x ∈ R,
implying b− p ∈ C. Let b− p = λ ∈ C. Thus H(x) = px+x(p+λ) for
all x ∈ R. This is our conclusion (3).

□

In Theorem 2.6, assuming H = d and G = δ two derivations of R, we have
the following:
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Corollary 2.8. Let R be a noncommutative prime ring of characteristic differ-
ent from 2, U the Utumi quotient ring of R, C (= Z(U)) the extended centroid
of R. Let 0 ̸= a ∈ R and f(x1, . . . , xn) a multilinear polynomial over C which
is noncentral valued on R. Suppose that d and δ are two nonzero derivations of
R such that a(d(f(x))f(x) − f(x)δ(f(x))) ∈ C for all x = (x1, . . . , xn) ∈ Rn.
Then one of the following holds:

(1) f(x1, . . . , xn)
2 is central valued on R and there exist p ∈ U such that

d(x) = [p, x] for all x ∈ R, δ(x) = −[p, x] for all x ∈ R;
(2) f(x1, . . . , xn)

2 is central valued on R and d, δ two outer derivations of
R such that d(x) = −δ(x) for all x ∈ R, with a ∈ C;

(3) R satisfies s4 and there exist p ∈ U such that d(x) = [p, x] for all x ∈ R,
δ(x) = −[p, x] for all x ∈ R.
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