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QUASILINEAR SCHRÖDINGER EQUATIONS INVOLVING

CRITICAL EXPONENTS IN R2

Y. WU AND Y. YAO∗

(Communicated by Asadollah Aghajani)

Abstract. We study the existence of soliton solutions for a class of quasi-

linear elliptic equation inR2 with critical exponential growth. This model
has been proposed in the self-channeling of a high-power ultra short laser
in matter.
Keywords: Schrödinger equations, mountain pass theorem, Soliton so-
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1. Introduction

We study the existence of solution for the following quasilinear Schrödinger
equation

(1.1) −△u+ V (x)u− [△(1 + u2)
1
2 ]

u

2(1 + u2)
1
2

= h(u), x ∈ R2.

These equations are related to the existence of standing wave solutions for
quasilinear Schrödinger equations of the form:

(1.2) izt = −△z +W (x)z − h(|z|2)z −△l(|z|2)l′(|z|2)z, x ∈ RN, N ≥ 2,

where W is a given potential, l and h are real functions. Quasilinear equations
of the form (1.2) have been established in several areas of physics corresponding
to various types of l, see [5,6,8,12,19] for physical backgrounds. The superfluid
film equation in plasma physics has this structure for l(s) = s [9]. In this case,
the first existence results are due to [18]. Subsequently a general existence
result was derived in [13]. In [13], the authors make a change of variable and
reduce the quasilinear problem to semilinear one and Orlicz space framework
was used to prove the existence of positive solutions via the Mountain pass
theorem. The same method of changing of variables was also used in [3,16,17],
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Quasilinear Schrödinger equations 1388

but the usual Sobolev space H1(RN) framework was used as the working space.
Precisely, they first make the changing of unknown variables v = f−1(u), where
f is defined by ODE:

f ′(t) =
1√

1 + 2f2(t)
, t ∈ [0,+∞),

and f(t) = −f(−t), t ∈ (−∞, 0]. In the case l(s) = (1 + s)
1
2 , Eq.(1.2) models

the sel-channeling of a high-power ultra short laser in matter [10]. In this
case, few results are known. In [1], the authors proved global existence and
uniqueness of small solutions in transverse space dimensions 2 and 3, and local
existence without any smallness condition in transverse space of dimension 1.
In [24], the authors proved the existence of nontrivial solution with N ≥ 3. In
this paper, we will extend this result to the case N = 2 by using a change of
variables due to [22].

Let Ω be a bounded domain in R2, the Trudinger-Moser inequality [14, 21]
asserts that

exp(α|u|2) ∈ L1(Ω), ∀u ∈ H1
0 (Ω), ∀α > 0.

and

sup
∥u∥

H1
0
≤1

∫
Ω

exp(α|u|2)dx ≤ C, ∀α ≤ 4π,

where Ω ⊂ R2 is a bounded smooth domain. Subsequently, [2] proved a version
of Trudinger-Moser inequality in whole space, namely,

exp(α|u|2)− 1 ∈ L1(R2), ∀u ∈ H1(R2), ∀α > 0.

Moreover, if α < 4π and |u|L2(R2) ≤ C, there exist a constant C2 = C2(C,α)
such that

(1.3) sup
∥∇u∥L2(R2)≤1

∫
R2

(exp(α|u|2)− 1)dx ≤ C2.

The main purpose of this paper is to obtain standing wave solutions for
quasilinear Schrödinger type problems (1.1) and h satisfies the following growth
critical condition:

(c)α
0
there exists α0 > 0 such that

lim
t→∞

|h(t)|
exp(αt2)

=

{
0 ∀α > α0,

+∞ ∀α < α0 .

Before stating the main result, we assume that the potential function V :
R2 → R is continuous and satisfies the following conditions

(V0) V (x) ≥ V0 > 0, for all x ∈ R2.
(V1) lim

|x|→∞
V (x) = V∞ and V (x) ≤ V∞ < ∞, with V (x) ̸= V∞, for all x ∈

R2.
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The nonlinearity h : R2 → R is Hölder continuous and satisfies the following
conditions

(H1) h(t) = o(t) as t→ 0.
(H2) h(t) has at most critical growth at +∞, there exists β0 > 0,

lim
t→+∞

th(t)

exp(α0t2)
≥ β0 > 0,

where α0 is given by condition (c)α0
.

(H3) The Ambrosetti-Rabinowitz type growth condition: There exists µ > 2
such that

0 ≤ µg(t)H(t) = µg(t)

∫ t

0

h(s)ds ≤ G(t)h(t), t > 0.

Obviously h(t)=

{
2α0(

3
2
)
µ
2 (expα0 − 1)−1texp(α0t

2)if 0 < t ≤ 1,

2α0(
3
2
)
µ
2 (expα0 − 1)−1exp(α0t

2) if t > 1,
satisfy H1, H2, H3

conditions.
Our main result is the following:

Theorem 1.1. Assume that V (x) verifies (V0)− (V1) and h(t) satisfies (H1)−
(H3) and (c)α0 . Then Eq.(1.1) has a positive solution.

In this paper, C denotes positive (possibly different) constant, Lp(RN) de-

notes the usual Lebesgue space with norm |u|p = (
∫
RN |u|pdx)

1
p , 1 ≤ p < ∞,

H1(RN) denotes the Sobolev space with norm ∥u∥ = (
∫
RN(|∇u|2+V (x)u2)dx)

1
2 .

2. Preliminaries

We note that the solutions of (1.1) are the critical points of the following
functional

(2.1) I(u) =
1

2

∫
R2

[1 +
u2

2(1 + u2)
]|∇u|2dx+

1

2

∫
R2

V (x)u2dx−
∫
R2

H(u)dx,

where H(u) =
∫ u
0
h(s)ds. Since the functional I(u) may not be well defined

in the usual Sobolev spaces H1(R2). We make a change of variables as v =

G(u) =
∫ u
0
g(t)dt, where g(t) =

√
1 + t2

2(1+t2) , see[23]. Since g(t) is monotonous

with respect to |t|, the inverse function G−1(t) of G(t) exists. Then we get

(2.2) J(v) =
1

2

∫
R2

|∇v|2dx+
1

2

∫
R2

V (x)|G−1(v)|2dx−
∫
R2

H(G−1(v))dx.

Note that since limt→0G
−1(t)/t = 1 and limt→∞ |G−1(t)|/t =

√
2
3 , we see that

J(v) is well defined in H1(R2) and J(v) ∈ C1.
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If u is a solution of (1.1), then it should satisfy

(2.3)

∫
R2

[(1 +
u2

2(1 + u2)
)∇u∇φ+ V (x)uφ− h(u)φ]dx = 0, ∀φ ∈ C∞

0 (R2).

We show that (2.3) is equivalent to

J ′(v)ψ =

∫
R2

[
∇v∇ψ + V (x)

G−1(v)

g(G−1(v))
ψ − h(G−1(v))

g(G−1(v))
ψ
]
dx

=0, ∀ψ ∈ C∞
0 (R2).

(2.4)

Indeed, if we choose φ = 1
g(u)ψ in (2.3), then we immediately get (2.4). On the

other hand, since u = G−1(v), if we let ψ = g(u)φ in (2.4), we get (2.3).
Therefore, in order to find the nontrivial solutions of (1.1), it suffices to

study the existence of the nontrivial solutions of the following equations

−∆v + V (x)
G−1(v)

g(G−1(v))
− h(G−1(v))

g(G−1(v))
= 0.(2.5)

We define −∆v = K(x, v), where

K(x, v) = −V (x)
G−1(v)

g(G−1(v))
+
h(G−1(v))

g(G−1(v))
(2.6)

Before we close this section, we collect some properties of the change of
variables.

Lemma 2.1. (1)
√

2
3 t ≤ |G−1(t)| ≤ t, for all t ≥ 0;

(2) |(G−1(t))′| ≤ 1, for all t ∈ R;

(3) lim
t→0

|G−1(t)|
t = 1;

(4) lim
t→∞

|G−1(t)|
t =

√
2
3 ;

(5)
√

2
3G

−1(t) ≤ t(G−1(t))′ ≤ G−1(t) for all t ≥ 0;

(6) tg′(t)
g(t) ≤ 5− 2

√
6 for all t ∈ R.

Proof. (1) Since [G−1(t)− 1
g(0) t]

′ = 1
g(G−1(t)) −

1
g(0) ≤ 0 and [G−1(t)− 1

g(∞) t]
′ =

1
g(G−1(t)) −

1
g(∞) ≥ 0, so 1

g(∞) t ≤ G−1(t) ≤ 1
g(0) t, for t ≥ 0, that is 1

g(∞) t =√
2
3 t ≤ G−1(t) ≤ 1

g(0) t = t, for t ≥ 0, which proves (1).

Since lim
t→0

G−1(t)
t = ((G−1(t))′|t=0 = 1

g(G−1(0)) = 1 and g(t) is increasing, so

properties (2) and (3) are clear.
For (4), the result is clear since g(t) is an increasing bounded function.
For (5), since g is a increasing function, then G(t) ≤ g(t)t, which implies

that t(G−1(t))′ ≤ G−1(t). On the other hand, by (1) and
√

2
3 ≤ (G−1(t))′ ≤ 1,

we get
√

2
3G

−1(t) ≤ t(G−1(t))′.
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Since

t

g(t)
g′(t) =

t2

2(1 + t2)2g2(t)
=

t2

2 + 5t2 + 3t4

=
1

2
t2 + 5 + 3t2

≤ 5− 2
√
6,

which proves (6). □

3. Mountain pass geometry

In this section we establish the geometric hypotheses of the mountain pass
theorem.

Lemma 3.1. There exist ρ0, a0 > 0 such that J(v) ≥ a0 for all ∥v∥ = ρ0.

Proof. Let

Q(x, t) := −1

2
V (x)|G−1(t)|2 +H(G−1(t)).

Then, by Lemma 2.1 and (H2), (H3), for ϵ > 0 sufficiently small, given
α > α0, there exists a constants Cϵ > 0 and p > 2 such that

(3.1) lim
t→0

Q(x, t)

t2
= −1

2
V (x),

(3.2) lim
t→∞

Q(x, t)

tp+1(exp(αt2)− 1)
= 0.

(3.3) Q(x, t) ≤ (−1

2
V (x) + ϵ)t2 + Cϵ(exp(αt

2)− 1)tp+1.

By Trudinger-Moser inequality

(3.4)

∫
R2

(exp(αt2)− 1)dx ≤ C,

for every q > 1 close to one, it follows from the above inequality and Hölder
inequality that

∫
R2

|v|p+1(exp(αv2)− 1)dx ≤ (

∫
R2

|v|q
′(p+1)dx)

1
q′ (

∫
R2

(exp(αv2)− 1)q)
1
q

≤ C(

∫
R2

|v|q
′(p+1)dx)

1
q′

≤ C∥v∥p+1.

(3.5)
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where 1
q +

1
q′ = 1. Then, we have

J(v) =
1

2

∫
R2

|∇v|2dx+
1

2

∫
R2

V (x)|G−1(v)|2dx−
∫
R2

H(G−1(v))dx

≥ 1

2

∫
R2

|∇v|2dx+
1

2

∫
R2

V (x)v2dx− ε

2

∫
R2

v2dx− C

∫
R2

(|v|p+1exp(α|v|2)− 1)dx

≥ C∥v∥2 − C∥v∥p+1,

which implies the result since 2 < p+ 1. Thus, by choosing ρ0 > 0, a0 small,
such that J(v) ≥ a0, if ∥v∥ = ρ0. □

Lemma 3.2. There exists v ∈ H1(R2) such that J(v) < 0.

Proof. Given φ ∈ C∞
0 (R2, [0, 1]) with suppφ = B̄1. We will prove that J(tφ) →

−∞ as t→ ∞, which will prove the result if we take v = tφ with t large enough.
Since G−1(v) ≤ 1

g(0)v, by (H3), we have

J(tφ) ≤ 1

2
t2
∫
R2

|∇φ|2dx+
1

2
t2C

∫
R2

V∞|φ|2dx−
∫
R2

H(G−1(tφ))dx

≤ 1

2
t2
∫
R2

|∇φ|2dx+
1

2
t2C

∫
R2

V∞|φ|2dx− Ctµ
∫
R2

φµdx.

We get the result since µ > 2. □

4. Existence

In consequence of Lemma 3.1 and 3.2 and of Ambrosetti-Rabinowitz Moun-
tain Pass Theorem [20], see also [4, 7, 11], for the constant

c = inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)) > 0,

where Γ =
{
γ ∈ C([0, 1], H1(RN)) : γ(0) = 0, γ(1) ̸= 0, J(γ(1)) < 0

}
, there ex-

ists a Palais-Smale sequence at level c, that is, J(vn) → c and J ′(vn) → 0 as
n→ ∞.

Lemma 4.1. The Palais-Smale sequence {vn} for J is bounded.

Proof. Since {vn} ⊂ H1(R2) satisfies

J(vn) =
1

2

∫
R2

|∇vn|2dx+
1

2

∫
R2

V (x)|G−1(vn)|2dx

−
∫
R2

H(G−1(vn))dx→ c,

(4.1)

and for any ψ ∈ C∞
0 (R2),

J ′(vn)ψ =

∫
R2

[
∇vn∇ψ + V (x)

G−1(vn)

g(G−1(vn))
ψ − h(G−1(vn))

g(G−1(vn))
ψ
]
dx

= o(1)∥ψ∥.
(4.2)
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Since C∞
0 (R2) is dense in H1(R2), by choosing ψ = vn in (4.2), we deduce

that

J ′(vn)vn =

∫
R2

[
|∇vn|2 + V (x)

G−1(vn)

g(G−1(vn))
vn − h(G−1(vn))

g(G−1(vn))
vn

]
dx

= o(1)∥vn∥.
(4.3)

By (4.1) and (4.3), using (H3), we get

µJ(vn)− J ′(vn)vn =
µ− 2

2

∫
R2

|∇vn|2dx

+

∫
R2

V (x)G−1(vn)
[1
2
µG−1(vn)−

1

g(G−1(vn))
vn

]
dx

−
∫
R2

[
µH(G−1(vn))−

h(G−1(vn))

g(G−1(vn))
vn

]
dx

≥ µ− 2

2

[ ∫
R2

|∇vn|2dx+

∫
R2

V (x)|G−1(vn)|2dx
]
.

Since G(t) ≤ g(t)t, so G−1(vn) ≥ vn
g(G−1(vn))

≥
√

2
3vn. Hence,

µJ(vn)− J ′(vn)vn ≥ µ− 2

2

[ ∫
R2

|∇vn|2dx+
2

3

∫
R2

V (x)vn
2dx

]
,

which implies the result. □

From Lemma 4.1, there exists v ∈ H1(R2) such that vn ⇀ v weakly in
H1(R2) and J ′(v)ψ = 0 for every ψ ∈ C∞

0 (R2), that is v a weak solution.
In fact, recalling the definition of the function K given by (2.6), it suffices to
prove that: ∫

R2

K(x, vn)ψ →
∫
R2

K(x, v)ψ, ∀ψ ∈ C∞
0 (R2).

In order to verify this convergence, given ψ ∈ C∞
0 (R2), we denote by Ω the

support set of ψ. Since {vn} is bounded in H1(R2), we may take a subsequence
denoted again by vn such that:

vn ⇀ v in H1(R2); vn → v in Lq(Ω), ∀ q ≥ 1; vn(x) → v(x) a.e.in Ω.

Moreover, from preceding paragraphs, we know the sequence
{∫

K(x, vn)ψvn
}

is bounded. Then, invoking Lemma 2.1, we have∫
R2

K(x, vn)ψ =

∫
Ω

K(x, vn)ψ →
∫
Ω

K(x, v)ψ =

∫
R2

K(x, v)ψ.

Hence, v is a weak solution of (1).
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In order to show v is nontrivial, we will estimate the minimax level ob-
tained by the Mountain Pass theorem. First, we introduce some notations and
facts. Let V∞ be given by condition (V1). Consider the Sobolev space H1(R2)
endowed with the equivalent norm:

∥v∥ = (

∫
|∇v|2 + V∞v

2)1/2, ∀v ∈ H1(R2).

We define the functional I∞ : H1(R2) → R given by:

I∞(v) =
1

2

∫
(|∇v|2 + V∞v

2)−
∫
H(G−1(v)).

Working with the analogue of J , the function I∞ is well defined and belongs
to C1(H1(R2),R).

Now, we take β0 given by (H2) and let r > 0 be such that

(4.4) β0 >
2
√
6

α1r2
,

where α1 = α0δ, 0 < δ <
√

2
3 .

We consider the Moser sequence [14] defined by:

M̃n(x, r) ≡ M̃n =
1√
2π


(log n)1/2 if|x| ≤ r

n ,

(log(r/|x|))/(log n)1/2 if rn ≤ |x| ≤ r,

0 if|x| > r,

which satisfies: M̃n ∈ H1(R2) and ∥M̃n∥2 = 1 + O((logn)−1), as n → ∞.

Moreover, let Mn(x, r) ≡ Mn = M̃n/∥M̃n∥, it is not difficult to see that
M2
n(x, r) ≡M2

n = (2π)−1 log n+ dn, where dn is a bounded real sequence.
Thus we have the following estimate, whose proof is based on the argument

used in [15] Lemma 5.

Proposition 4.2. Suppose h(t) satisfies (c)α0
and (H1) − (H3). Then, there

exists n ∈ N such that: max{I∞(tMn) : t ≥ 0} < C∗ ≡ 4π
α1
, where α1 =

α0δ and 0 < δ <
√

2
3 .

Proof. By contradiction, suppose that for all n we have

max{I∞(tMn) : t ≥ 0} ≥ C∗.

Thus, there exists tn > 0 such that

I∞(tnMn) = max{I∞(tMn) : t ≥ 0}.

By the definition of I∞ and Mn, we have

I∞(tnMn) =
t2n
2

−
∫
RN

H(G−1(tnMn)) ≥ C∗.
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Since H > 0, we get t2n ≥ 2C∗. On the other hand, by d
dtI∞(tMn)|t=tn = 0.

We have

t2n =

∫
R2

tnMnh(G
−1(tnMn))[G

−1(tnMn)]
′dx

=

∫
|x|≤r

tnMnh(G
−1(tnMn))[G

−1(tnMn)]
′dx.

(4.5)

By (H2), given ϵ > 0 there exists Rϵ > 0 such that for all t ≥ Rϵ and for
all |x| ≤ r, th(t) ≥ (β0 − ϵ)exp(α0t

2). Since Mn → +∞ as n → ∞ and tn is
bounded below by a positive constant, i.e. tn ≥ c, Mn(x) ≥ Rϵ, as n→ ∞.

Since
√

2
3G

−1(t) ≤ t(G−1(t))′, then

tnMnh(G
−1(tnMn))[G

−1(tnMn)]
′ ≥

√
2

3
G−1(tnMn)h(G

−1(tnMn))

≥
√

2

3
(β0 − ϵ)exp(α0(G

−1(tnMn))
2).

On the other hand, since lim
t→∞

|G−1(t)|
t =

√
2
3 , then G−1(t) > δt, for δ <√

2
3 , as t → +∞(t > Rϵ). So tnMnh(G

−1(tnMn))[G
−1(tnMn)]

′ ≥
√

2
3 (β0 −

ϵ)exp(α0δ
2tn

2Mn
2).

Let α1 = α0δ
2, then

t2n ≥
√

2

3

∫
R2

exp(α1(tnMn)
2)

≥
√

2

3
(β0 − ϵ)

∫
|x|≤ r

n

exp(α1(tnMn)
2).

≥
√

2

3
(β0 − ϵ)π(

r

n
)2exp[(α1t

2
n(2π)

−1 log n) + α1t
2
ndn].

(4.6)

Thus

1 ≥
√

2

3
(β0 − ϵ)πr2exp[(α1t

2
n(2π)

−1 log n) + α1t
2
ndn − 2 log n− 2 log tn],

which implies that tn is bounded.
By t2n ≥ 2C∗ and

t2n ≥
√

2

3
(β0 − ϵ)πr2exp[(α1t

2
n(2π)

−1 − 2) log n+ α1t
2
ndn]

it follows that:

t2n → 4π

α1
.
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Now, let

An = {x : tnMn ≥ Rϵ, |x| ≤ r}.

Bn = {x : tnMn < Rϵ, |x| ≤ r}.

Then

t2n =

∫
|x|≤r

tnMnh(G
−1(tnMn))[G

−1(tnMn)]
′

=

∫
An∪Bn

tnMnh(G
−1(tnMn))[G

−1(tnMn)]
′

≥
√

2

3
(β0 − ϵ)

∫
|x|≤r

exp[α1(tnMn)
2]−

√
2

3
(β0 − ϵ)

∫
Bn

exp[α1(tnMn)
2]

+

∫
Bn

tnMnh(G
−1(tnMn))[G

−1(tnMn)]
′
.

Since Mn → 0 a.e. in Bn, then by the Lebesgue Dominated Convergence
Theorem, ∫

Bn

tnMnh(G
−1(tnMn))(G

−1(tnMn))
′
→ o

and ∫
Bn

exp(α1(tnMn)
2) → πr2,

as n→ ∞. On the other hand, since t2n ≥ 4π
α1

, then∫
|x|≤r

exp[α1(tnMn)
2] ≥

∫
|x|≤r

exp[4π(Mn)
2]

=(

∫
|x|≤ r

n

+

∫
r
n≤|x|≤r

)exp[4π(Mn)
2].

Now, ∫
|x|≤ r

n

exp[4π(Mn)
2] =

∫
|x|≤ r

n

exp[2 log n+ 4πdn]

=π(
r

n
)2n2exp(4πdn)

=πr2exp(4πdn),
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and
∫

r
n≤|x|≤r exp[4π(Mn)

2], let t = re−||M̃n||(logn)
1
2 s, thus∫

r
n≤|x|≤r

exp[4π(Mn)
2]

=

∫
r
n≤|x|≤r

exp{ 4π

||M̃n||2
[
1

2π

(log r
|x| )

2

log n
]}

=2π

∫ r

r
n

texp{2
(log r

t )
2

logn||M̃n||2
}

=2π

∫ (logn)
1
2 ||M̃n||−1

0

re−||M̃n||(logn)
1
2 se2s

2

r||M̃n||(log n)
1
2 e−||M̃n||(logn)

1
2 sds

≥2πr2
∫ (logn)

1
2 ||M̃n||−1

0

e−2||M̃n||(logn)
1
2 s||M̃n||(log n)

1
2 ds

=
2πr2

−2
[e−2||M̃n||(logn)

1
2 s|(logn)

1
2 ||M̃n||−1

0 ]

=− πr2[e−2 logn − 1] → πr2.

Thus

t2n ≥
√

2

3
(β0 − ϵ)[πr2exp(4πdn) + πr2]−

√
2

3
(β0 − ϵ)πr2

Since dn → d0 > 0, then we get

t2n ≥
√

2

3
(β0 − ϵ)πr2.

So 4π
α1

≥
√

2
3 (β0 − ϵ)πr2. Hence, we gain (β0 − ϵ) ≤ 2

√
6

α1r2
, which contrary to

(4.4). Thus Proposition 4.2 is proved.
The following lemma shows that the Cerami sequence {vn} has a nonvan-

ishing behaviour.

Lemma 4.3. There exist positive constants a and R, and a sequence (yn) ⊂ R2

such that

lim
n→∞

∫
BR(yn)

[G−1(vn)]
2 ≥ a > 0,(4.7)

where BR(x) denotes a ball of radius R centred at the point x.

Proof. Suppose by contradiction that (4.7) does not occur. Then

lim
n→∞

sup
y∈R2

∫
BR(yn)

[G−1(vn)]
2 = 0.(4.8)
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From (4.8) and applying a Lions compactness lemma [11] we obtain as n→ ∞,

G−1(vn) → 0, inLq(R2), ∀q ∈ (2,∞).(4.9)

Then, we can show the crucial part of this proof, which is the following:∫
R2

h(G−1(vn))G
−1(vn) → 0,(4.10)

as n → ∞. To prove such convergence, we start arguing as in the proof of
Lemma 4.1. Thus, J(vn) → C3. So J(vn) =

2
3 ||vn|| −

∫
R2 H(G−1(vn)) and

J ′(vn)g(G
−1(vn))G

−1(vn) =

∫
R2

[|Dvn|2 +
G−1(vn)g

′(G−1(vn))

g(G−1(vn))
|Dvn|2

+ V (x)(G−1(vn))
2 − h(G−1(vn))G

−1(vn)].

Thus

|Dvn|2 ≤ C3

ζ
,(4.11)

for some ζ.

From lemma 2.1 (4), there exist σ >
√

2
3 and R > 0 such that

G−1(t) < σt, ∀t > R.(4.12)

Now, we take α > α0. From (H1) and (c)α0 , given ϵ > 0, there exists a positive
constant C = C(ϵ, α, q) such that:

h(t) ≤ ϵt+ C(exp(αt2)− 1)t3, ∀t ≥ 0.(4.13)

Thus, using (4.11),(4.12) and (4.13), we get for every n ≥ n0

0 ≤
∫
R2

h(G−1(vn))G
−1(vn)

≤ϵ
∫
R2

[G−1(vn)]
2 + C

∫
R2

(exp(α[G−1(vn)]
2)− 1)G−1(vn)

4

=ϵ

∫
R2

[G−1(vn)]
2+

C{
∫
{x;|vn(x)|≤R}

+

∫
{x;|vn(x)|≥R}

}(exp(α[G−1(vn)]
2)− 1)G−1(vn)

4

≤ϵ
∫
R2

[G−1(vn)]
2 + C̃

∫
R2

[G−1(vn)]
2

+C(

∫
R2

(exp(αr[G−1(vn)]
2)− 1))1/r(

∫
R2

G−1(vn)
4r′)1/r

′
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≤ϵ
∫
R2

[G−1(vn)]
2 + C̃

∫
R2

[G−1(vn)]
2

+C(

∫
R2

[exp(αrσ2C3

ζ
(
vn

|Dvn|
)2 − 1])1/r(

∫
R2

G−1(vn)
4r′)1/r

′
,

where r satisfies (4.4) and 1/r + 1/r′ = 1. By Proposition 4.2, we may take
α > α0 such that αrσ2C3 < 4πζ. From (1.3), we get the last integral is bounded
uniformly. Hence, from (4.9), we conclude that (4.10) holds. Now, we are ready
to conclude the proof of Lemma 4.3. Taking again wn = G−1(vn)/[G

−1(vn)]
′.

We have

o(1) =J ′(vn)wn

=

∫
R2

(1 +
G−1(vn)

g(G−1(vn))
g′(G−1(vn)))|∇vn|2dx

+

∫
R2

(V (x)[G−1(vn)]
2 − h(G−1(vn))G

−1(vn))dx

≥
∫
R2

|∇vn|2dx+

∫
R2

(V (x)[G−1(vn)]
2 − h(G−1(vn))G

−1(vn))dx.

Then from (4.10), we conclude that

(4.14)

∫
|∇vn|2 +

∫
V (x)[G−1(vn)]

2 → 0, as n→ ∞.

On the other hand, by (H3) and (4.10), we also have

(4.15)

∫
R2

H(G−1(vn)) → 0, as n→ ∞.

By combing (4.14) and (4.15), we get a contradiction because

0 < c0 = lim
n→∞

J(vn) = 0.

The proof of Lemma 4.3 is complete. □

Now, we consider the functional at infinity J∞ associated with J . We define
J∞ : H1(R2) → R by:

J∞(v) =
1

2

∫
R2

|∇v|2dx+
1

2

∫
R2

V∞[G−1(v)]2dx−
∫
R2

H(G−1(v))dx.

Lemma 4.4. The Cerami sequence {vn} is a (PS) sequence for J∞ at level
c0.

Proof. From (V1), given ϵ > 0 there exists R > 0 such that

|V (x)− V∞| < ϵ, ∀|x| ≥ R.



Quasilinear Schrödinger equations 1400

Thus,

|J∞(vn)− J(vn)|

=
1

2

∫
BR(0)

|V∞ − V (x)|[G−1(vn)]
2dx+

1

2

∫
R2\BR(0)

|V∞ − V (x)|[G−1(vn)]
2dx

≤ 1

2
|V∞ − V (x)|∞

∫
BR(0)

[G−1(vn)]
2dx+

1

2
ϵ

∫
R2\BR(0)

[G−1(vn)]
2dx

≤ o(1), as n→ ∞,

where in the last inequality we made use that:∫
BR(0)

[G−1(vn)]
2 → 0, as n→ ∞,

since G−1(vn) ∈ H1(R2) and the embedding H1(R2) into Lq(R2), q > 1,is
locally compact and vn ⇀ v ≡ 0 weakly in H1(R2).
Therefore,

J∞(vn) → c0, as n→ ∞.

Similarly,

sup
∥ψ∥<1

|(J ′
∞(vn)− J ′(vn), ψ)|

= sup
∥ψ∥<1

|
∫
R2

(V∞ − V (x))G−1(vn)[G
−1(vn)]

′
ψ| = o(1), as n→ ∞.

Hence J ′
∞(vn) → 0, as n→ ∞. This proves Lemma 4.4.

Finally, by [17] Theorem 1.1 is proved. □
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[17] J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger
equations: the critical exponential case, Nonlinear Anal. 67 (2007), no. 12, 3357–3372.

[18] M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to
quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations 14 (2002),

no. 3, 329–344.
[19] G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain,

Phys. A 110 (1982) 41–80.

[20] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999.
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