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Abstract. In this paper, by using four functionals fixed point theorem,
we obtain sufficient conditions for the existence of at least one positive

solution of an nth-order m-point boundary value problem. As an appli-
cation, we give an example to demonstrate our main result.
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1. Introduction

Boundary value problems (BVPs) for differential equations arise in a variety
of different areas of applied mathematics and physics such as the deflection
of a curved beam having a constant or varying cross section, electromagnetic
waves or gravity driven flow and so on. The study of multi-point BVPs for
second-order ordinary differential equations was initiated by Il’in and Moiseev
[6, 7] and since then, such second order problems have been studied by several
authors [1,5,8,10,13,14,16,17]. Recently, there is an increasing interest in the
literature on multi-point BVPs for higher-order differential equations, see for
example [3,4,9,11,12,15]. In particular, we would like to mention some results
of Graef and Yang [3], Guo et al. [4], and Su and Wang [15].

In [4], Guo et al. studied the existence of at least three positive solutions
for the nonlinear nth-order m-point BVP

u(n)(t) + f(t, u) = 0, t ∈ (0, 1),

u(0) = 0, u′(0) = · · · = u(n−2)(0) = 0, u(1) =
m−2∑
i=1

kiu(ξi).
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Using the Leggett-Williams fixed point theorem and the Green’s function, they
get the existence of at least three positive solutions.

On the other hand, Graef and Yang [3] considered a higher-order multi-point
BVP 

u(n)(t) + λg(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(0)

=

m∑
i=1

aiu
(n−2)(ξi)− u(n−2)(1) = 0

By using the Krasnosel’skii’s fixed point theorem, the authors obtained criteria
for the existence and nonexistence results for positive solutions for the problem.

In [15], Su and Wang studied the existence of positive solutions by means
of fixed-point index theorem to the following singular semipositone m-point
nth-order BVP

(−1)(n−k)x(n)(t) = λf(t, x(t)), 0 < t < 1,

x(1) =

m−2∑
i=1

aix(ηi), x(i)(0) = 0, 0 ≤ i ≤ k − 1,

x(j)(1) = 0, 1 ≤ j ≤ n− k − 1,

where m ≥ 3, λ > 0, ai ∈ [0,∞), (i = 1, 2, . . . ,m− 2).
Motivated by the results above, in this study, we consider the following

nth-order m-point BVP

(1.1)



u(n)(t) + q(t)f(t, u(t)) = 0, t ∈ [0, 1],

au(n−2)(0)− bu(n−1)(0) =

m−2∑
i=1

αiu
(n−2)(ξi),

cu(n−2)(1) + du(n−1)(1) =

m−2∑
i=1

βiu
(n−2)(ξi),

u(j)(0) = 0, 0 ≤ j ≤ n− 3.

where n ≥ 3. By using the four functionals fixed point theorem [2], we get the
existence of at least one positive solution for the BVP (1.1).

This paper is organized as follows. In Section 2, we provide some definitions
and preliminary lemmas which are key tools for our main result. We give and
prove our main result in Section 3. Finally, in Section 4, we give an example
to demonstrate our main result.

2. Preliminaries

Throughout the paper, we assume that the following conditions hold:

(C1) a, b, c, d ∈ [0,+∞) with ac + ad + bc > 0; αi, βi ∈ [0,+∞), ξi ∈ (0, 1)
for i ∈ {1, 2, ...,m− 2} ,

(C2) f ∈ C([0, 1]× R+,R+), where R+ = [0,+∞), q ∈ C([0, 1],R+).
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We shall reduce problem (1.1) to an integral equation in C([0, 1]). To this
goal, firstly using the transformation

u(n−2)(t) = y(t),(2.1)

we convert BVP (1.1) into{
u(n−2)(t) = y(t), t ∈ [0, 1],
u(j)(0) = 0, j = 1, 2, ..., n− 3,

(2.2)

and 

−y′′(t) + q(t)f(t, u(t)) = 0, t ∈ [0, 1]

ay(0)− by′(0) =

m−2∑
i=1

αiy(ξi),

cy(1) + dy′(1) =

m−2∑
i=1

βiy(ξi).

(2.3)

Lemma 2.1. If y ∈ C([0, 1]), then BVP (2.2) has a unique solution u and u
can be expressed in the form

u(t) =

∫ t

0

(t− s)
n−3

(n− 3)!
y(s)ds.(2.4)

Proof. The proof follows by routine calculations. □

Set

△ :=

−
m−2∑
i=1

αi (b+ aξi) ρ−
m−2∑
i=1

αi (d+ c(1− ξi))

ρ−
m−2∑
i=1

βi (b+ aξi) −
m−2∑
i=1

βi (d+ c(1− ξi))

,(2.5)

and

ρ := ad+ ac+ bc.(2.6)

Lemma 2.2. Let (C1) and (C2) hold. Assume that △ ̸= 0. If y ∈ C[0, 1] is a
solution of the equation

(2.7) y(t) =

∫ 1

0

G (t, s) q(s)f (s, u(s)) ds+A(f)(b+ at) +B(f)(d+ c(1− t)),

where

(2.8) G (t, s) =
1

ρ

{
(b+ as) (d+ c(1− t)) , s ≤ t,
(b+ at) (d+ c(1− s)) , t ≤ s,
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(2.9) A(f) =
1

△

m−2∑
i=1

αi

(∫ 1

0
G (ξi, s) q(s)f (s, u(s)) ds

)
ρ−

m−2∑
i=1

αi (d+ c(1− ξi))

m−2∑
i=1

βi

(∫ 1

0
G (ξi, s) q(s)f (s, u(s)) ds

)
−

m−2∑
i=1

βi (d+ c(1− ξi))

,

and

(2.10) B(f) =
1

△

−
m−2∑
i=1

αi(b+ aξi)

m−2∑
i=1

αi

(∫ 1

0
G (ξi, s) q(s)f (s, u(s)) ds

)
ρ−

m−2∑
i=1

βi(b+ aξi)

m−2∑
i=1

βi

(∫ 1

0
G (ξi, s) q(s)f (s, u(s)) ds

) ,

then y is a solution of the BVP (2.3).

Proof. If y satisfies the integral equation (2.7), then we have

y(t) =

∫ t

0

1

ρ
(b+ as)(d+ c(1− t))q(s)f (s, u(s)) ds

+

∫ 1

t

1

ρ
(b+ at)(d+ c(1− s))q(s)f (s, u(s)) ds+A(f)(b+ at)

+B(f)(d+ c(1− t)),

y′(t) = −
∫ t

0

c

ρ
(b+ as)q(s)f (s, u(s)) ds

+

∫ 1

t

a

ρ
(d+ c(1− s))q(s)f (s, u(s)) ds+A(f)a−B(f)c.

Thus

y′′(t) =
1

ρ
(−(ad+ ac+ bc)) q(t)f (t, u(t)) = −q(t)f (t, u(t)) ,

y′′(t) + q(t)f(t, u(t)) = 0.

Since

y(0) =

∫ 1

0

b

ρ
(d+ c(1− s))q(s)f (s, u(s)) ds+A(f)b+B(f)(d+ c),

y′(0) =

∫ 1

0

a

ρ
(d+ c(1− s))q(s)f (s, u(s)) ds+A(f)a−B(f)c,

we get

ay(0)− by′(0) = B(f) (ad+ ac+ bc)

=
m−2∑
i=1

αi

[ ∫ 1

0

G (ξi, s) q(s)f (s, u(s)) ds

+A(f)(b+ aξi) +B(f)(d+ c(1− ξi))

]
.(2.11)
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Since

y(1) =

∫ 1

0

d

ρ
(b+ a(s)q(s)f (s, u(s)) ds+A(f)(b+ a) +B(f)d,

y′(1) = −
∫ 1

0

c

ρ
(b+ a(s))q(s)f (s, u(s)) +A(f)a−B(f)c,

we have

cy(1) + dy′(1) = A(f) (ad+ ac+ bc)

=

m−2∑
i=1

βi

[ ∫ 1

0

G (ξi, s) q(s)f (s, u(s)) ds

+A(f)(b+ aξi) +B(f)(d+ c(1− ξi))

]
.(2.12)

Using the equations (2.6), (2.11) and (2.12), we get that

[
−

m−2∑
i=1

αi(b+ aξi)

]
A(f) +

[
ρ−

m−2∑
i=1

αi(d+ c(1− ξi)

]
B(f)

=

m−2∑
i=1

αi

(∫ 1

0

G (ξi, s) q(s)f (s, u(s)) ds

)
[
ρ−

m−2∑
i=1

βi(b+ aξi)

]
A(f) +

[
−

m−2∑
i=1

βi(d+ c(1− ξi)

]
B(f)

=

m−2∑
i=1

βi

(∫ 1

0

G (ξi, s) q(s)f (s, u(s)) ds

)
.

So, this implies that A(f) and B(f) satisfy (2.9) and (2.10), respectively. □

Lemma 2.3. Assume (C1) and (C2) hold. Assume

(C3) △ < 0, ρ−
m−2∑
i=1

βi(b+ aξi) > 0, a−
m−2∑
i=1

αi > 0.

Then for y ∈ C[0, 1] with f, q ≥ 0, the solution y of the problem (2.3) satisfies

y(t) ≥ 0 for t ∈ [0, 1].

Proof. It is an immediate subsequence of the facts that G ≥ 0 on [0, 1]× [0, 1]
and A(f) ≥ 0, B(f) ≥ 0. □

Lemma 2.4. Suppose (C1)− (C3) hold. Assume that

(C4) c−
m−2∑
i=1

βi < 0.

Then the solution y ∈ C[0, 1] of the problem (2.3) satisfies y′(t) ≥ 0 for t ∈
[0, 1].
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Proof. Assume that the inequality y′(t) < 0 holds. Since y′(t) is nonincreasing
on [0, 1], one can verify that

y′(1) ≤ y′(t), t ∈ [0, 1].

From the boundary conditions of the problem (2.3), we have

− c

d
y(1) +

1

d

m−2∑
i=1

βiy(ξi) ≤ y′(t) < 0.

Therefore, we conclude that

m−2∑
i=1

βiy(1) <

m−2∑
i=1

βiy(ξi) < cy(1),

i.e., (
c−

m−2∑
i=1

βi

)
y(1) > 0.

Using Lemma 2.3, we have y(1) ≥ 0. So, c−
m−2∑
i=1

βi > 0. However, this contra-

dicts to condition (C4). Consequently, y′(t) ≥ 0 for t ∈ [0, 1]. □

Let the Banach space B = C([0, 1]) be equipped with the norm ∥y∥ =
max
t∈[0,1]

|y(t)|, and we define a cone P in B by

(2.13) P = {y ∈ B : y(t) is nonnegative, nondecreasing and concave on [0, 1]} .

Lemma 2.5. Let y ∈ P. Then,

min
t∈[ξ1,ξm−2]

y(t) ≥ ξ1 ∥y∥ .

Proof. Since y ∈ P we know that y(t) is nondecreasing on [0, 1]. So,
min

t∈[ξ1,ξm−2]
y(t) = y(ξ1) and ∥y∥ = max

t∈[0,1]
y(t) = y(1). Since the graph of y is

concave down on [0, 1], we have

y(ξ1) ≥ ξ1y(1) + (1− ξ1)y(0).

So, y(ξ1) ≥ ξ1y(1). The proof is complete. □

We define the operator T : B → B by

(2.14) (Ty)(t) =

∫ 1

0

G (t, s)F (s, y(s))q(s)ds+A(f)(b+ at) +B(f)(d+ c(1− t)),
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where F (t, y(t)) = f

(
t,

∫ t

0

(t− r)
n−3

(n− 3)!
y(r)dr

)
, G, A(f) and B(f) are defined

as in (2.8), (2.9) and (2.10), respectively.
Solving BVP (1.1) is equivalent to finding fixed points of the operator T

defined by (2.14).

3. Main result

Let α and Ψ be nonnegative continuous concave functionals on P, and let
β and Φ be nonnegative continuous convex functionals on P, then for positive
numbers r, j, l and R, we define the sets:

Q(α, β, r,R) = {y ∈ P : r ≤ α(y), β(y) ≤ R},
U(Ψ, τ) = {y ∈ Q(α, β, r,R) : τ ≤ Ψ(y)},(3.1)

V (Φ, ν) = {y ∈ Q(α, β, r,R) : Φ(y) ≤ ν}.

Lemma 3.1. [2] If P is a cone in a real Banach space B, α and Ψ are
nonnegative continuous concave functionals on P, β and Φ are nonnegative
continuous convex functionals on P and there exist positive numbers r, τ, ν
and R, such that

T : Q(α, β, r,R) → P

is a completely continuous operator, and Q(α, β, r,R) is a bounded set. If

(i) {y ∈ U(Ψ, τ) : β(y) < R} ∩ {y ∈ V (Φ, ν) : r < α(y)} ̸= ∅;
(ii) α(Ty) ≥ r, for all y ∈ Q(α, β, r,R), with α(y) = r and ν < Φ(Tu);
(iii) α(Ty) ≥ r, for all y ∈ V (Φ, ν), with α(y) = r;
(iv) β(Ty) ≤ R, for all u ∈ Q(α, β, r,R), with β(y) = R and Ψ(Ty) < τ ;
(v) β(Ty) ≤ R, for all y ∈ U(Ψ, τ), with β(y) = R.

Then T has a fixed point y in Q(α, β, r,R).

For the convenience, we take the notations

A =
1

△

m−2∑
i=1

αi

∫ 1

0

G (ξi, s) q(s)ds ρ−
m−2∑
i=1

αi (d+ c(1− ξi))

m−2∑
i=1

βi

∫ 1

0

G (ξi, s) q(s)ds −
m−2∑
i=1

βi (d+ c(1− ξi))

,

B =
1

△

−
m−2∑
i=1

αi (b+ aξi)

m−2∑
i=1

αi

∫ 1

0

G (ξi, s) q(s)ds

ρ−
m−2∑
i=1

βi (b+ aξi)

m−2∑
i=1

βi

∫ 1

0

G (ξi, s) q(s)ds

,
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M =

∫ ξm−2

ξ1

G (ξ1, s) q(s)ds,

N =

∫ 1

0

G (1, s) q(s)ds+A(b+ a) +Bd.

Let Q(α, β, r,R), U(Ψ, τ) and V (Φ, ν) be defined by (3.1).

Theorem 3.2. Assume (C1) − (C4) hold. Suppose that there exist constants

r, τ, ν, R with 0 < r < τ ≤ ν < R, max
{ r

ν
,

τ

R

}
≤ ξ1. If the function f

satisfies the following conditions:

(C5) f(t, u) ≥ r

M
for (t, u) ∈ [ξ1, ξm−2]×

[
0,

r

ξ1

]
;

(C6) f(t, u) ≤ R

N
for (t, u) ∈ [0, 1]× [0, R] .

Then the BVP (1.1) has at least one positive solution.

Proof. Define the maps

α(y) = Ψ(y) = min
t∈[ξ1,ξm−2]

y(t),

β(y) = max
t∈[0,1]

y(t),

Φ(y) = max
t∈[ξ1,ξm−2]

y(t).

Then α and Ψ are nonnegative continuous concave functionals on P, and β and
Φ are nonnegative continuous convex functionals on P. Since

∥y∥ = max
t∈[0,1]

|y(t)| = β(y) ≤ R

for all y ∈ Q(α, β, r,R), Q(α, β, r,R) is a bounded set. Note that the operator
T : Q(α, β, r,R) → P is completely continuous by a standard application of
the Arzela-Ascoli theorem.

Now, we verify that the remaining conditions of Lemma 3.1. Let

y0 = ν.

Clearly, y0 ∈ P. By direct calculation,

α(y0) = min
t∈[ξ1,ξm−2]

y0(t) = ν > r,

β(y0) = max
t∈[0,1]

y
(n−2)
0 (t) = ν < R,

Ψ(y0) = min
t∈[ξ1,ξm−2]

y0(t) = ν ≥ τ,

Φ(y0) = max
t∈[ξ1,ξm−2]

y0(t) = ν.

So, y0 ∈ {y ∈ U(Ψ, τ) : β(u) < R} ∩ {y ∈ V (Φ, ν) : r < α(y)}, which means
that (i) in Lemma 3.1 is satisfied.



1437 Yaslan Karaca and Tokmak Fen

Now, we shall show that conditions (ii) and (iv) of Lemma 3.1 hold. By
Lemma 2.5, we have

α(Ty) = Ty(ξ1) ≥ ξ1 ∥Ty∥ ≥ ξ1Φ(Ty) > ξ1ν ≥ r,

and for all y ∈ U(Ψ, τ), with β(y) = R,

β(Ty) = max
t∈[0,1]

(Ty)(t) = (Ty)(1) ≤ 1

ξ1
(Ty)(ξ1) =

1

ξ1
Ψ(Ty) <

1

ξ1
τ ≤ R.

So, α(Ty) > r and β(Ty) < R. Hence (ii) and (iv) in Lemma 3.1 is fulfilled.
Now, using (C5), we shall verify that condition (iii) of Lemma 3.1 is satisfied.

For any y ∈ V (Φ, ν), with α(y) = r, we have that min
t∈[ξ1,ξm−2]

y(t) = r and

0 ≤ ∥y∥ ≤ 1

ξ1
min

t∈[ξ1,ξm−2]
y(t) =

r

ξ1
. Since the following inequality holds∫ t

0

(t− r)
n−3

(n− 3)!
y(r)dr ≤ y(t) ≤ ∥y∥ , t ∈ [0, 1],(3.2)

we have (
t,

∫ t

0

(t− r)
n−3

(n− 3)!
y(r)dr

)
∈ [ξ1, ξm−2]×

[
0,

r

ξ1

]
.

Then one has

α(Ty) = min
t∈[ξ1,ξm−2]

(Ty)(t) = (Ty)(ξ1)

≥
∫ 1

0

G (ξ1, s) q(s)F (s, y(s))ds

≥ r

M

∫ ξm−2

ξ1

G (ξ1, s) q(s)ds = r.

Finally, using (C6), we shall show that condition (v) of Lemma 3.1 is satis-
fied. For all y ∈ U(Ψ, τ), with β(y) = R, we have that 0 ≤ y(t) ≤ ∥y∥ = R for
t ∈ [0, 1]. From (3.2), we have(

t,

∫ t

0

(t− r)
n−3

(n− 3)!
y(r)dr

)
∈ [0, 1]× [0, R] .

Thus,

β(Ty) = max
t∈[0,1]

(Ty)(t) = (Ty)(1)

=

∫ 1

0

G (1, s)F (s, y(s))q(s)ds+A(f)(b+ a) +B(f)d

≤ R

N

(∫ 1

0

G (1, s) q(s)ds+A(b+ a) +Bd

)
= R.
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Hence, by Lemma 3.1, the BVP (2.3) has at least one positive solution y such
that r ≤ α(y), β(y) ≤ R for t ∈ [0, 1]. Then the nth-order BVP (1.1) has at
least one positive solution

u(t) =

∫ t

0

(t− r)
n−3

(n− 3)!
y(r)dr.

This completes the proof. □
4. Numerical example

Example 4.1. Consider the following problem

(4.1)



u′′′(t) +
7100

32281
u+ 100 = 0, t ∈ [0, 1],

4u′(0)− 8u′′(0) =
1

4
u′
(
1

6

)
+

1

2
u′
(
1

3

)
,

1

12
u′(1) + 3u′′(1) =

1

3
u′
(
1

6

)
+

1

12
u′
(
1

3

)
,

u(0) = 0.

Then n = 3, m = 4, a = 4, b = 8, c = β2 =
1

12
, d = 3, α1 =

1

4
, α2 =

1

2
,

β1 =
1

3
, ξ1 =

1

6
, ξ2 =

1

3
, q(t) = 1 and f(t, u) =

7100

32281
u+ 100.

By simple calculation, we get ρ = 13, △ = −6565

72
, A =

8966633

73738080
, B =

344201

1536210
, M =

49

96
, N =

32281

7272
and

G(t, s) =
1

156

 (8 + 4s) (37− t) , s ≤ t,

(8 + 4t)(37− s), t ≤ s.

Taking r = 49, τ = 404, ν = 1000, R = 32281, we can obtain that 0 < r < τ ≤
ν < R, max

{ r

ν
,

τ

R

}
≤ ξ1. It is clear that (C1)− (C4) are satisfied. Next, we

show that (C5) and (C6) are also satisfied.

For (t, u) ∈
[
1

6
,
1

3

]
× [0, 294], since f(t, u) ≥ 100 ≥ r

M
= 96. So (C5) is

satisfied.

For (t, u) ∈ [0, 1]× [0, 32281], since f(t, u) ≤ 7200 ≤ R

N
= 7272. Hence (C6)

holds. Then all the conditions in Theorem 3.2 are satisfied. Thus, BVP (4.1)
has at least one positive solution.
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