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Abstract. In this paper, we formulate the sixth-order boundary value

problem as Fredholm integral equation by finding Green’s function and
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1. Introduction

Boundary value problems arise in many applications of engineering and sci-
ences, see [1,2,7] and references there in for more details. Recently some papers
studied the existence, nonexistence and multiplicity of positive solution for or-
dinary and fractional boundary value problems [6, 8, 10, 11]. In this paper, we
investigate existence, nonexistence and multiplicity results of positive solutions
for nonlinear sixth-order boundary value problem (SBVP) of the form

−u(6)(t) = λf(t, u(t)), 0 < t < 1,(1.1)

u(0) = u′(0) = u′′(0) = 0, u(1) = u′(1) = u′′(1) = 0.(1.2)

If λ is a number for which the equation (1.1) with boundary condition (1.2)
has a nontrivial solution, then λ is called an eigenvalue and nontrivial solu-
tion for that λ is called an eigenfunction. Spectral problems for differential
equations arise in many different physical applications. SBVP arise in astro-
physics, i.e., the narrow convecting layers bounded by stable layers which are
believed to surround A-type stars may be modeled by sixth-order boundary
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Existence and nonexistence of positive solution 1452

value problems, also this problem arise in hydrodynamic and magnetohydro-
dynamic stability theory [3,4,7]. Wuest [9] derived a model for beams and pipes
that the resulting differential equation after separation of variables leads to a
sixth-order differential equation. Also, sixth order boundary value problems
appear in vibrations of circular arches [1].

2. Preliminaries

We find the integral representation of the SBVP. Indeed we show that the
SBVP equivalent to a nonlinear homogeneous fredholm integral equation.

Lemma 2.1. Suppose that f(t, x) ∈ C([0, 1] × [0,∞)), then SBVP equivalent
to integral equation

u(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds,(2.1)

where

G(t, s) =

{
G1(t, s), 0 ≤ s ≤ t ≤ 1
G2(t, s), 0 ≤ t ≤ s ≤ 1

,(2.2)

with

G1(t, s) =
1

120
s3(1− t)3{(6s2 − 15s+ 10)t2 + (3s2 − 5s)t+ s2},

G2(t, s) =
1

120
t3(1− s)3{(6t2 − 15t+ 10)s2 + (3t2 − 5t)s+ t2}.

The function G(t, s) is Green’s function of problem (1.1) and (1.2).

Proof. By multiple integration of equation (1.1), we obtain

u(t) = − 1

120
λ

∫ t

0

(t− s)5f(s, u(s))ds+

5∑
k=0

ckt
k,(2.3)

the boundary conditions u(0) = u′(0) = u′′(0) = 0 implies that c0 = c1 = c2 =
0. By applying the boundary conditions u(1) = u′(1) = u′′(1) = 0, we obtain

c3 + c4 + c5 = λ
120

∫ 1

0
(1− s)5f(s, u(s))ds

3c3 + 4c4 + 5c5 = λ
24

∫ 1

0
(1− s)4f(s, u(s))ds

6c3 + 12c4 + 20c5 = λ
6

∫ 1

0
(1− s)3f(s, u(s))ds

.(2.4)

By solving the above system we obtain

c3 = λ
120

∫ 1

0
{−10(1− s)5 + 20(1− s)4 − 10(1− s)3}f(s, u(s))ds

c4 = λ
120

∫ 1

0
{15(1− s)5 − 35(1− s)4 + 20(1− s)3}f(s, u(s))ds

c5 = λ
120

∫ 1

0
{−6(1− s)5 + 15(1− s)4 − 10(1− s)3}f(s, u(s))ds

.(2.5)
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Thus

u(t) = −λ

∫ t

0

(t− s)5

120
f(s, u(s))ds

+ λ

∫ t

0

(1− s)5

120
[−6t2 + 15t4 − 10t3]f(s, u(s))ds,

+ λ

∫ t

0

(1− s)4

120
[15t5 − 35t4 + 20t3]f(s, u(s))ds

+ λ

∫ t

0

(1− s)3

120
[−10t5 + 20t4 − 10t3]f(s, u(s))ds

= λ

∫ 1

0

G(t, s)f(s, u(s))ds

where G(t, s) is defined by (2.2). Thus the SBVP is equivalent to integral
equation (2.1). □
Lemma 2.2. The Green’s function G(t, s) in (2.2) satisfies the following con-
ditions

(1) G(t, s) > 0, t, s ∈ (0, 1)

(2) max0≤t≤1 G(t, s) = G(J(s), s), where

J(s) =

{
2−s+(1−s)

√
4−6s

6s2−15s+10 , s ∈ (0, 1
2 )

2s+6s2−s
√
6s−2

6s2+3s+1 , s ∈ ( 12 , 1)
,

(3) There exist a function γ(s) such that

min
1
4≤t≤ 3

4

G(t, s) ≥ γ(s)G(J(s), s) ≥ 398

1565
G(J(s), s).

Proof. From (2.2), it is obvious that G(t, s) > 0 for t, s ∈ (0, 1).

∂G1

∂t
= −5s3(1− t)2{(6s2 − 15s+ 10)t2 + (2s− 4)t+ s}, t ∈ [s, 1]

For s ∈ ( 12 , 1),
∂G1

∂t < 0 thus G1(t, s) ≤ G1(s, s).
For s ∈ (0, 1/2), t ∈ (s, 1) we have J(s) ≥ s and, G1(t, s) ≤ G(J(s), s). Thus

G1(t, s) ≤
{

G1(J(s), s), 0 ≤ s ≤ 1
2

G1(s, s),
1
2 ≤ s ≤ 1

(2.6)

∂G2

∂t
= 5t2(1− s)3{(6s2 + 3s+ 1)t2 + (−12s2 − 4s)t+ 6s2}, t ∈ [0, s]

For s ∈ (0, 1
2 ),

∂G2

∂t > 0 thus G2(t, s) ≤ G2(s, s).

For s ∈ ( 12 , 1) , t ∈ [0, s] we have J(s) ≤ s and G2(t, s) ≤ G2(J(s), s). Thus

G2(t, s) ≤
{

G2(s, s), 0 ≤ s ≤ 1
2

G2(J(s), s),
1
2 ≤ s ≤ 1

(2.7)
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It is not difficult to verify that

∀s ∈ [0,
1

2
], G2(s, s) ≤ G1(J(s), s),

and

∀s ∈ [
1

2
, 1], G1(s, s) ≤ G2(J(s), s).

Also for s ∈ [0, 1
2 ], J(s) ≥ s and for s ∈ [ 12 , 1], J(s) ≤ s, Therefore

max
0≤t≤1

G(t, s) = G(J(s), s).(2.8)

Now we prove case (3):

min
1
4≤t≤ 3

4

G(t, s) =

 minG1(t, s), s ∈ (0, 1
4 )

min{G1(t, s), G2(t, s)}, s ∈ ( 14 ,
3
4 )

minG2(t, s), s ∈ ( 34 , 1)
,

=

 minG1(
3
4 , s), s ∈ (0, 1

4 )
min{G1(

3
4 , s), G2(

1
4 , s)}, s ∈ ( 14 ,

3
4 )

minG2(
1
4 , s), s ∈ ( 34 , 1)

,

by continuity of G we obtain that

min
1
4≤t≤ 3

4

G(t, s) =

{
G1(

3
4 , s), s ∈ (0, 1

2 )
G2(

1
4 , s), s ∈ ( 12 , 1)

.

If we define

γ(s) =

{
G1(

3
4 ,s)

G(J(s),s) , s ∈ (0, 1
2 )

G2(
1
4 ,s)

G(J(s),s) , s ∈ ( 12 , 1)
,(2.9)

then min 1
4≤t≤ 3

4
G(t, s) ≥ γ(s)G(J(s), s). It is easy to verify that γ(s) ≥ 398

1565 ,

therefore

min
1
4≤t≤ 3

4

G(t, s) ≥ γ(s)G(J(s), s) ≥ 398

1565
G(J(s), s).(2.10)

□

For u ∈ C[0, 1], define ∥ u ∥= max0≤t≤1 | u(t) |, and let

P = {u ∈ C[0, 1], u(t) ≥ 0, min
1
4≤t≤ 3

4

u(t) ≥ τ∥u∥}, τ =
398

1565
.

Lemma 2.3. Suppose that f : [0, 1] × [0,∞) −→ [0,∞) is continuous. For
u ∈ C[0, 1], define the operator T by

Tu(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds,(2.11)

then TP ⊂ P , and T : P −→ P is completely continuous.
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Proof. Let u ∈ P , since G(t, s) ≥ 0, f(t, x) ≥ 0, thus

Tu(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds ≥ 0.

min
1
4≤t≤ 3

4

Tu(t) = λ min
1
4≤t≤ 3

4

∫ 1

0

G(t, s)f(s, u(s))ds

= λ

∫ 1

0

min
1
4≤t≤ 3

4

G(t, s)f(s, u(s))ds

≥ λτ

∫ 1

0

max
0≤t≤1

G(t, s)f(s, u(s))ds

= τ max
0≤t≤1

λ

∫ 1

0

G(t, s)f(s, u(s))ds = τ∥Tu∥.

Thus Tu ∈ P . By continuity of G(t, s) and f(t, x), the operator T is continuous.
We prove that T is bounded. Let Ω ⊂ P is bounded, i.e, there exist a positive
number M > 0, such that for all u ∈ Ω, ∥ u ∥≤ M . The function f(t, x) is
continuous, thus f(t, x) bounded in [0, 1]× [0,M ]. We suppose that | f(t, x) |≤
L and we have

∥Tu∥ = λ max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds

≤ λL max
0≤t≤1

∫ 1

0

G(t, s)ds = λL

∫ 1

0

G(J(s), s)ds < ∞.

Thus T (Ω) is bounded. Also TΩ is equicontinuous, thus by Arzela-Ascoli The-
orem, T : P −→ P is completely continuous. □

Theorem 2.4. [5] Let X be a real Banach space and P ⊂ X be a cone in X.
Assume Ω1,Ω2 are two open bounded subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2 and
T : P ∩ (Ω2 \ Ω1) −→ P be a completely continuous operator such that

(1) ∀u ∈ P ∩ ∂Ω1, ∥Tu∥ ≤ ∥u∥ and ∀u ∈ P ∩ ∂Ω2, ∥Tu∥ ≥ ∥u∥, or

(2) ∀u ∈ P ∩ ∂Ω2, ∥Tu∥ ≤ ∥u∥ and ∀u ∈ P ∩ ∂Ω1, ∥Tu∥ ≥ ∥u∥,

Then T has a fixed point in P ∩ (Ω0 Ω0).
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3. Main results

We introduce the following notations:

f0 = lim inf
u−→0+

min
0≤t≤1

f(t, u)

u
, f∞ = lim inf

u−→∞
min
0≤t≤1

f(t, u)

u

f0 = lim sup
u−→0+

max
0≤t≤1

f(t, u)

u
, f∞ = lim sup

u−→∞
max
0≤t≤1

f(t, u)

u

A = (

∫ 1

0

G(J(s), s)ds)−1, B = (τ

∫ 3
4

1
4

G(J(s), s)ds)−1

Theorem 3.1. Suppose that f : [0, 1]× [0,∞) −→ [0,∞) is continuous, Then
SBVP has at least one positive solution on P in two cases:

(1) For every λ ∈ ( B
f0
, A
f∞ ), if f0, f

∞ ∈ (0,∞) and Af0 > Bf∞, or

(2) For every λ ∈ ( B
f∞

, A
f0 ), if f

0, f∞ ∈ (0,∞) and Af∞ > Bf0.

Proof. Let Af0 > Bf∞ and λ ∈ ( B
f0
, A
f∞ ), thus there exist ϵ > 0, such that

B

f0 − ϵ
< λ <

A

f∞ + ϵ
.

Since f0 ∈ (0,∞), there exist R1 > 0, such that for every t ∈ [0, 1] and
u ∈ [0, R1]

f(t, u)

u
≥ f0 − ϵ =⇒ f(t, u) ≥ u(f0 − ϵ).

Define Ω1 = {u : ∥u∥ ≤ R1}. Thus for every u ∈ ∂Ω1 ∩ P , we have

Tu(t) = λ

∫ 1

0

G(t, s)F (s, u(s))ds ≥ λ(f0 − ϵ)

∫ 1

0

G(t, s)u(s)ds,

∥Tu∥ ≥ λ(f0 − ϵ) max
0≤t≤1

∫ 1

0

G(t, s)u(s)ds

= λ(f0 − ϵ)

∫ 1

0

G(J(s), s)u(s)ds

≥ λ(f0 − ϵ)

∫ 3
4

1
4

G(J(s), s)u(s)ds

≥ ∥u∥λτ(f0 − ϵ)

∫ 3
4

1
4

G(J(s), s)ds ≥ ∥u∥.

Thus for u ∈ P ∩ ∂Ω1, ∥Tu∥ ≥ ∥u∥. On the other hand, f∞ ∈ (0,∞) thus

∃R > 0, ∀t ∈ [0, 1], ∀u ∈ [R,∞), f(t, u) ≤ (f∞ + ϵ)u.
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Let R2 = max{R1 + 1, Rτ−1}, then for all u ∈ P ∩ ∂Ω2

∥Tu∥ = λ max
0≤t≤1

∫ 1

0

G(t, s)f(s, u(s))ds

≤ λ(f∞ + ϵ)∥u∥ max
0≤t≤1

∫ 1

0

G(t, s)ds

= λ(f∞ + ϵ)∥u∥
∫ 1

0

G(J(s), s)ds ≤ ∥u∥.

Thus using the Theorem 2.4, the SBVP has at least one positive solution in
P ∩ (Ω2 \ Ω1). The proof of case (2) is similar. □

In the following theorem we present the multiplicity and nonexistence of
positive solution for SBVP.

Theorem 3.2. Suppose that f : [0, 1] × [0,∞) −→ [0,∞) is continuous, and
f(t, x) is nondecreasing with respect to the variable x. Also, there exist positive
constants R2 > R1, such that

BR1

min 1
4≤t≤ 3

4
f(t, τR1)

< λ <
AR2

max0≤t≤1 f(t, R2)
,(3.1)

Then the SBVP has at least two positive solutions u∗, w∗ such that

R1 ≤ ∥u∗∥ ≤ R2, lim
n−→∞

Tnu0 = u∗, u0 = R2, ∀t ∈ [0, 1],

and

R1 ≥ ∥w∗∥ ≤ R2, lim
n−→∞

Tnw0 = w∗, w0 = R1, ∀t ∈ [0, 1].

Theorem 3.3. (i) If f0, f∞ < ∞, then for all λ ∈ (0, A
C ),where C =

sup0<u<∞,t∈[0,1]
f(t,u)

u , the SBVP has no positive solution,

(ii) If f0, f∞ < ∞, then for all λ > B
M ,where M = min0<u<∞,t∈[0,1]

f(t,u)
u

, the SBVP has no positive solution,

Proof. Since f0, f∞, f0 and f∞ are finite, thus C and M exist finitely. The
nonexistence results can be derive by contradiction. □
Example 3.4. Consider the following boundary value problem

−u(6)(t) = λ(1 + t2)
au2 + bu

cu+ d
,(3.2)

with boundary conditions (1.2). The parameters a, b, c and d are real numbers
such that the conditions (continuity, nonnegativity) of the function f(t, u) in

[0, 1]× [0,∞) hold. For continuity of the function f(t, u) = (1+ t2)au
2+bu

cu+d with

respect to variable u in [0,∞) both of the parameters c and d must be positive
or negative (we suppose that c and d are positive). For nonnegativity of func-
tion f(t, u) both of the parameters a and b must be positive. Of course some of
these parameters can be zero, but for satisfying the conditions of theorem 3.1,
we consider them nonzero. Thus, these parameters are real positive numbers.
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We have

f0 =
b

d
, f∞ =

a

c
, f0 = 2

b

d
, f∞ = 2

a

c
, A =

62693

166
, B =

22902

13
.

Also we suppose that 2adB < bcA, then By Theorem 3.1 for λ ∈ (Bd
b , Ac

2a ) the
boundary value problem (3.2) has at least one positive solution.
The constants C and M in Theorem 3.3 are 2 b

d and 2a
c , respectively. Thus for

all λ ∈ (0, Ad
2b )∪ (Bc

2a ,∞) the boundary value problem has no positive solution.
If we choose a = 0.5,b = 10, c = 10 and d = 0.5, then condition 2adB <
bcA holds. Thus by Theorem 3.1 the boundary value problem (3.2) for λ ∈
( 11451130 , 60427

16 ) has at least one positive solution and by Theorem 3.3 for λ ∈
(0, 1539

163 )∪( 45804013 ,∞) has no positive solution. By taking the limit of inequality

(3.1) as R1 → 0+ and R2 → ∞, we conclude that for λ ∈ ( 39139113 , 60427
16 ) the

boundary value problem (3.2) has at least two positive solutions.
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