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Abstract. This paper is concerned with a 2nth-order p-Laplacian dif-
ference equation. By using the critical point method, we establish various
sets of sufficient conditions for the nonexistence and existence of solutions

for Neumann boundary value problem and give some new results. Results
obtained successfully generalize and complement the existing ones.
Keywords: Nonexistence and existence, Neumann boundary value prob-
lem, 2nth-order p-Laplacian, Mountain Pass lemma, discrete variational

theory.
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1. Introduction

Below N, Z and R denote the sets of all natural numbers, integers and real
numbers, respectively. k is a positive integer. For any a, b ∈ Z, define Z(a) =
{a, a + 1, · · · }, Z(a, b) = {a, a + 1, · · · , b} when a < b. Besides, * denotes the
transpose of a vector.

The present paper considers the 2nth-order p-Laplacian difference equation
(1.1)
∆n (γi−n+1φp (∆

nui−1)) = (−1)nf(i, ui+1, ui, ui−1), n ∈ Z(1), i ∈ Z(1, k),

with boundary value conditions
(1.2)
∆u1−n = ∆u2−n = · · · = ∆u0 = 0, ∆uk+1 = ∆uk+2 = · · · = ∆uk+n−1 = 0,

where ∆ is the forward difference operator ∆ui = ui+1−ui, ∆nui = ∆n−1(∆ui),
γi is nonzero and real valued for each i ∈ Z(2−n, k+1), φp(s) is the p-Laplacian

operator φp(s) = |s|p−2s(1 < p <∞), f ∈ C(R4,R).
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Nonexistence and existence results 1508

We may think of (1.1) as a discrete analogue of the following 2nth-order
p-Laplacian functional differential equation

(1.3)
dn

dtn

[
γ(t)φp

(
dnu(t)

dtn

)]
= (−1)nf(t, u(t+ 1), u(t), u(t− 1)), t ∈ [a, b],

with boundary value conditions

(1.4) u(a) = u′(a) = · · · = u(n−1)(a) = 0, u(b) = u′(b) = · · · = u(n−1)(b) = 0.

Equations similar in structure to (1.3) arise in the study of the existence of
solitary waves [35] of lattice differential equations and periodic solutions [16,18]
of functional differential equations.

Difference equations, the discrete analogs of differential equations, occur
widely in numerous settings and forms, both in mathematics itself and in its
applications to statistics, computing, electrical circuit analysis, dynamical sys-
tems, economics, biology and other fields. Since the last decade, there has
been much progress on the qualitative properties of difference equations, which
included results on stability and attractivity [14, 30] and results on oscillation
and other topics [4, 8–11,24,27,28,41].

In recent years, the study of boundary value problems for differential equa-
tions develops at relatively rapid rate. By using various methods and tech-
niques, such as Schauder fixed point theory, topological degree theory, coinci-
dence degree theory, a series of existence results of nontrivial solutions for dif-
ferential equations have been obtained in literatures, we refer to [5,16,18,22,38].
And critical point theory is also an important tool to deal with problems on
differential equations [12, 17, 29, 31]. Only since 2003, critical point theory has
been employed to establish sufficient conditions on the existence of periodic
solutions of difference equations. By using the critical point theory, Guo and
Yu [19–21] and Shi et al. [34] have successfully proved the existence of periodic
solutions of second-order nonlinear difference equations. Chen and Fang [9]
in 2007 have obtained a sufficient condition for the existence of periodic and
subharmonic solutions of the following p-Laplacian difference equation

(1.5) ∆ (φp (∆ui−1)) + f(i, ui+1, ui, ui−1) = 0, i ∈ Z,

using the critical point theory. We also refer to [39,40] for the discrete boundary
value problems. Compared to first-order or second-order difference equations,
the study of higher-order equations, and in particular, 2nth-order equations,
has received considerably less attention (see, for example, [6,9–11,15,23,26,27,
41] and the references contained therein). Ahlbrandt and Peterson [1] in 1994
studied the 2nth-order difference equation of the form,

(1.6)
n∑

j=0

∆j
(
γj(i− j)∆ju(i− j)

)
= 0
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in the context of the discrete calculus of variations, and Peil and Peterson
[32] studied the asymptotic behavior of solutions of (1.6) with γj(i) ≡ 0 for
1 ≤ j ≤ n−1. In 1998, Anderson [3] considered (1.6) for i ∈ Z(a), and obtained
a formulation of generalized zeros and (n, n)-disconjugacy for (1.6). Migda [31]
in 2004 studied an mth-order linear difference equation. In 2007, Cai and
Yu [7] have obtained some criteria for the existence of periodic solutions of a
2nth-order difference equation

(1.7) ∆n (γi−n∆
nui−n) + f(i, ui) = 0, n ∈ Z(3), i ∈ Z,

for the case where f grows superlinearly at both 0 and ∞.
The boundary value problem (BVP) for determining the existence of so-

lutions of difference equations has been a very active area of research in the
last twenty years, and for surveys of recent results, we refer the reader to the
monographs [2,13,14,25,30]. However, to the best of our knowledge, the results
on solutions to boundary value problems of higher-order nonlinear difference
equations are very scarce in the literature. Furthermore, since (1.1) contains
both advance and retardation, there are very few manuscripts dealing with this
subject. As a result, the goal of this paper is to fill the gap in this area.

Motivated by the above results, we use the critical point method to give
some sufficient conditions for the nonexistence and existence of solutions for
the BVP (1.1) with (1.2). We shall study the superlinear and sublinear cases.
The main idea in this paper is to transfer the existence of the BVP (1.1) with
(1.2) into the existence of the critical points of some functional. The proof is
based on the notable Mountain Pass Lemma in combination with variational
technique. The purpose of this paper is two-folded. On one hand, we shall
further demonstrate the powerfulness of critical point theory in the study of
solutions for boundary value problems of difference equations. On the other
hand, we shall complement existing results. The motivation for the present
work stems from the recent papers [12,17].

Let

γ̄ = max{γi : i ∈ Z(1, k)}, γ = min{γi : i ∈ Z(1, k)}.
Our main results are as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:
(γ) for any i ∈ Z(1, k), γi < 0;

(F1) there exists a functional F (i, ·) ∈ C1(Z×R2,R) with F (0, ·) = 0 such
that

∂F (i− 1, v2, v3)

∂v2
+
∂F (i, v1, v2)

∂v2
= f(i, v1, v2, v3), ∀i ∈ Z(1, k);

(F2) there exists a constant M0 > 0 such that for all (i, v1, v2) ∈ Z(1, k)×R2∣∣∣∣∂F (i, v1, v2)∂v1

∣∣∣∣ ≤M0,

∣∣∣∣∂F (i, v1, v2)∂v2

∣∣∣∣ ≤M0.
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Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.2. Assumption (F2) implies that there exists a constant M1 > 0
such that
(F ′

2) |F (i, v1, v2)| ≤M1 +M0(|v1|+ |v2|), ∀(i, v1, v2) ∈ Z(1, k)×R2.

Theorem 1.3. Suppose that (F1) and the following hypotheses are satisfied:
(γ′) for any i ∈ Z(1, k), γi > 0;

(F3) there exists a functional F (i, ·) ∈ C1(Z×R2,R) such that

lim
r→0

F (i, v1, v2)

rp
= 0, r =

√
v21 + v22 , ∀i ∈ Z(1, k);

(F4) there exists a constant β > p such that for any i ∈ Z(1, k),

0 <
∂F (i, v1, v2)

∂v1
v1 +

∂F (i, v1, v2)

∂v2
v2 < βF (i, v1, v2), ∀(v1, v2) ̸= 0.

Then the BVP (1.1) with (1.2) has at least two nontrivial solutions.

Remark 1.4. Assumption (F4) implies that there exist constants a1 > 0 and
a2 > 0 such that

(F ′
4) F (i, v1, v2) > a1

(√
v21 + v22

)β

− a2, ∀i ∈ Z(1, k).

Theorem 1.5. Suppose that (γ′), (F1) and the following assumption are sat-
isfied:

(F5) there exist constants R > 0 and 1 < α < 2 such that for i ∈ Z(1, k)

and
√
v21 + v22 ≥ R,

0 <
∂F (i, v1, v2)

∂v1
v1 +

∂F (i, v1, v2)

∂v2
v2 ≤ α

2
pF (i, v1, v2).

Then the BVP (1.1) with (1.2) has at least one solution.

Remark 1.6. Assumption (F5) implies that for each i ∈ Z(1, k) there exist
constants a3 > 0 and a4 > 0 such that

(F ′
5) F (i, v1, v2) ≤ a3

(
v21 + v22

)α
2 p

+ a4, ∀(i, v1, v2) ∈ Z(1, k)×R2.

Theorem 1.7. Suppose that (γ), (F1) and the following assumption are sat-
isfied:

(F6) v2f(i, v1, v2, v3) > 0, for v2 ̸= 0, ∀i ∈ Z(1, k).
Then the BVP (1.1) with (1.2) has no nontrivial solutions.

Remark 1.8. If n = 1, Theorems 1.2 and 1.3 reduces to Theorem 4.1 in [36].
If n = 2 and p = 2, Theorems 1.2 and 1.3 reduces to Theorem 3.1 in [37].
Hence, Theorems 1.2 and 1.3 generalize the results in the literature [36, 37].
In the existing literature, results on the nonexistence of solutions of discrete
boundary value problems are very scarce. Hence, Theorem 1.4 complements
existing ones.
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The remainder of this paper is organized as follows. First, in Section 2,
we shall establish the variational framework for the BVP (1.1) with (1.2) and
transfer the problem of the existence of the BVP (1.1) with (1.2) into that of
the existence of critical points of the corresponding functional. Some related
fundamental results will also be recalled. Then, in Section 3, we shall complete
the proof of the results by using the critical point method. Finally, in Section
4, we shall give three examples to illustrate the main results.

For the basic knowledge of variational methods, the reader is referred to
[29,33].

2. Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corresponding
variational framework for the BVP (1.1) with (1.2) and give some lemmas which
will be of fundamental importance in proving our main results. We start by
some basic notations.

Let Rk be the real Euclidean space with dimension k. Define the inner
product on Rk as follows:

(2.1) ⟨u, v⟩ =
k∑

j=1

ujvj , ∀u, v ∈ Rk,

by which the norm ∥ · ∥ can be induced by

(2.2) ∥u∥ =

 k∑
j=1

u2j

 1
2

, ∀u ∈ Rk.

On the other hand, we define the norm ∥ · ∥s on Rk as follows:

(2.3) ∥u∥s =

 k∑
j=1

|uj |s
 1

s

,

for all u ∈ Rk and s > 1.
Since ∥u∥s and ∥u∥2 are equivalent, there exist constants c1, c2 such that

c2 ≥ c1 > 0, and

(2.4) c1∥u∥2 ≤ ∥u∥s ≤ c2∥u∥2, ∀u ∈ Rk.

Clearly, ∥u∥ = ∥u∥2. For any u = (u1, u2, · · · , uk)∗ ∈ Rk, for the BVP

(1.1)-(1.2), with k > 2, consider the functional J defined on Rk as follows:
(2.5)

J(u) =
1

p

k−2∑
i=1

γi+1 |∆nui|p−
k∑

i=1

F (i, ui+1, ui)+
γ1
p

∣∣∆n−1u1
∣∣p+γk

p

∣∣∆n−1uk−1

∣∣p ,
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where
∂F (i− 1, v2, v3)

∂v2
+
∂F (i, v1, v2)

∂v2
= f(i, v1, v2, v3),

∆u1−n = ∆u2−n = · · · = ∆u0 = 0, ∆uk+1 = ∆uk+2 = · · · = ∆uk+n−1 = 0.

It is easy to see that J ∈ C1(Rk,R) and for any u = {ui}ki=1 = (u1, u2, . . . , uk)
∗,

by using ∆u1−n = ∆u2−n = · · · = ∆u0 = 0, ∆uk+1 = ∆uk+2 = · · · =
∆uk+n−1 = 0, we can compute the partial derivative as

∂J

∂ui
= (−1)n∆n (γi−n+1φp (∆

nui−1))− f(i, ui+1, ui, ui−1), ∀i ∈ Z(1, k).

Thus, u is a critical point of J on Rk if and only if

∆n (γi−n+1φp (∆
nui−1)) = (−1)nf(i, ui+1, ui, ui−1), ∀i ∈ Z(1, k).

We reduce the existence of the BVP (1.1) with (1.2) to the existence of critical

points of J on Rk. That is, the functional J is just the variational framework
of the BVP (1.1) with (1.2).

Remark 2.1. In the case k = 1 and k = 2 are trivial, and we omit their proofs.
Let D be the k × k matrix defined by

D =


1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

 .

Clearly, D is positive definite. Let λ1, λ2, · · · , λk be the eigenvalues of D.
Applying matrix theory, we know λj > 0, j = 1, 2, · · · , k. Without loss of
generality, we may assume that

(2.6) 0 < λ1 ≤ λ2 ≤ · · · ≤ λk.

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously
Fréchet-differentiable functional defined on E. J is said to satisfy the Palais-
Smale condition (P.S. condition for short) if any sequence

{
u(l)

}
⊂ E for

which
{
J
(
u(l)

)}
is bounded and J ′ (u(l)) → 0(l → ∞) possesses a convergent

subsequence in E.
Suppose Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote

its boundary.

Lemma 2.2 (Mountain Pass Lemma [33]). Let E be a real Banach space and
J ∈ C1(E,R) satisfy the P.S. condition. If J(0) = 0 and
(J1) there exist constants ρ, a > 0 such that J |∂Bρ ≥ a, and
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(J2) there exists e ∈ E \Bρ such that J(e) ≤ 0.
Then J possesses a critical value c ≥ a given by

(2.7) c = inf
g∈Γ

max
s∈[0,1]

J(g(s)),

where

(2.8) Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}.

Lemma 2.3. Suppose that (γ′), (F1), (F3) and (F4) are satisfied. Then the
functional J satisfies the P.S. condition.

Proof. Let u(l) ∈ Rk, l ∈ Z(1) be such that
{
J
(
u(l)

)}
is bounded. Then there

exists a positive constant M2 such that

−M2 ≤ J
(
u(l)

)
≤M2, ∀l ∈ N.

By (F ′
4), we have

−M2 ≤ J
(
u(l)

)
=

1

p

k−2∑
i=1

γi+1

∣∣∣∆nu
(l)
i

∣∣∣p −
k∑

i=1

F
(
i, u

(l)
i+1, u

(l)
i

)
+
γ1
p

∣∣∣∆n−1u
(l)
1

∣∣∣p
+
γk
p

∣∣∣∆n−1u
(l)
k−1

∣∣∣p
≤ γ̄

p
cp2

[
k−2∑
i=1

(
∆n−1u

(l)
i+1 −∆n−1u

(l)
i

)2
] p

2

− a1

k∑
i=1

[√(
u
(l)
i+1

)2

+
(
u
(l)
i

)2
]β

+ a2k

+
2pγ̄

p

∥∥∥x(l)∥∥∥p

p

≤ γ̄

p
cp2

[(
x(l)

)∗
Dx(l)

] p
2 − a1c

β
1

∥∥∥u(l)
∥∥∥β

+ a2k +
2pγ̄

p

∥∥∥x(l)∥∥∥p

≤ γ̄

p
cp2λ

p
2
k

∥∥∥x(l)∥∥∥p

− a1c
β
1

∥∥∥u(l)
∥∥∥β

+ a2k +
2pγ̄

p

∥∥∥x(l)∥∥∥p

,

where x(l) =
(
∆n−1u

(l)
1 ,∆n−1u

(l)
2 , · · · ,∆n−1u

(l)
k

)∗
. Since

∥∥∥x(l)∥∥∥p

=

[
k∑

i=1

(
∆n−2u

(l)
i+1 −∆n−2u

(l)
i

)2
] p

2

≤

[
λk

k∑
i=1

(
∆n−2u

(l)
i

)2
] p

2

≤ λ
(n−1)p

2
k

∥∥∥u(l)
∥∥∥p

,

we have

J
(
u(l)

)
≤ γ̄

p
λ

(n−1)p
2

k (λkc
p
2 + 2p)

∥∥∥u(l)∥∥∥p − a1c
β
1

∥∥∥u(l)∥∥∥β + a2k.

That is,

a1c
β
1

∥∥∥u(l)∥∥∥β − γ̄

p
λ

(n−1)p
2

k (λkc
p
2 + 2p)

∥∥∥u(l)∥∥∥p ≤M2 + a2k.

Since β > p, there exists a constant M3 > 0 such that∥∥∥u(l)∥∥∥ ≤M3, ∀l ∈ N.
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Therefore,
{
u(l)

}
is bounded on Rk. As a consequence,

{
u(l)

}
has a conver-

gence subsequence in Rk. Thus the P.S. condition is verified. □

3. Proof of the main results

In this Section, we shall prove our main results by using the critical point
method.

Proof of Theorem 1.1. By (F ′
2), for any u = (u1, u2, · · · , uk)∗ ∈ Rk, we have

J(u) =
1

p

k−2∑
i=1

γi+1 |∆nui|p−
k∑

i=1

F (i, ui+1, ui)+
γ1
p

∣∣∆n−1u1
∣∣p+ γk

p

∣∣∆n−1uk−1

∣∣p

≤ γ̄

p
cp1

[
k−2∑
i=1

(
∆n−1ui+1 −∆n−1ui

)2] p
2

+M0

k∑
i=1

(|ui+1|+ |ui|) +M1k

≤ γ̄

p
cp1 (x

∗Dx)
p
2 + 2M0

k∑
i=1

|ui|+M1k

≤ γ̄

p
cp1λ

p
2
1 ∥x∥p + 2M0∥u∥+M1k,

where x =
(
∆n−1u1,∆

n−1u2, · · · ,∆n−1uk
)∗
. Since

∥x∥p =

[
k∑

i=1

(
∆n−2ui+1 −∆n−2ui

)2] p
2

≥

[
λ1

k∑
i=1

(
∆n−2ui

)2] p
2

≥ λ
(n−1)p

2
1 ∥u∥p ,

we have

J(u) ≤ γ̄
p c

p
1λ

np
2

1 ∥u∥p +2M0

√
k∥u∥+M1k → −∞ as ∥u∥ → +∞.

The above inequality means that −J(u) is coercive. By the continuity of J(u),
J attains its maximum at some point, and we denote it by ǔ, that is,

J(ǔ) = max
{
J(u)|u ∈ Rk

}
.

Clearly, ǔ is a critical point of the functional J . This completes the proof of
Theorem 1.1. □

Proof of Theorem 1.4. By (F3), for any ϵ =
γ

2pc
p
1λ

np
2

1 (λ1 can be referred to

(2.6)), there exists ρ > 0, such that

|F (i, v1, v2)| ≤
γ

2p
cp1λ

np
2

1

(
v21 + v22

) p
2 , ∀i ∈ Z(1, k),

for
√
v21 + v22 ≤

√
2ρ.

For any u = (u1, u2, · · · , uk)∗ ∈ Rk and ∥u∥ ≤ ρ, we have |ui| ≤ ρ, i ∈
Z(1, k).
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From the proof of the Theorem 1.1, for any u ∈ Rk,

J(u) =
1

p

k−2∑
i=1

γi+1 |∆nui|p−
k∑

i=1

F (i, ui+1, ui)+
γ1
p

∣∣∆n−1u1
∣∣p+ γk

p

∣∣∆n−1uk−1

∣∣p
≥
γ

p
cp1λ

np
2

1 ∥u∥p −
γ

2p
cp1λ

np
2

1

k∑
i=1

(
u2i+1 + u2i

) p
2

≥
γ

p
cp1λ

np
2

1 ∥u∥p −
γ

2p
cp1λ

np
2

1 ∥u∥p

=
γ

2p
cp1λ

np
2

1 ∥u∥p.

Take a =
γ

2pc
p
1λ

np
2

1 ρp > 0. Therefore,

J(u) ≥ a > 0, ∀u ∈ ∂Bρ.

At the same time, we have also proved that there exist constants a > 0 and
ρ > 0 such that J |∂Bρ ≥ a. That is to say, J satisfies the condition (J1) of the
Mountain Pass Lemma.

For our setting, clearly J(0) = 0. In order to exploit the Mountain Pass
Lemma in critical point theory, we need to verify all other conditions of the
Mountain Pass Lemma. By Lemma 2.3, J satisfies the P.S. condition. So it
suffices to verify the condition (J2).

From the proof of the P.S. condition in Lemma 2.2, we know

J(u) ≤ γ̄

p
λ

(n−1)p
2

k (λkc
p
2 + 2p) ∥u∥p − a1c

β
1 ∥u∥

β
+ a2k.

Since β > p, we can choose ū large enough to ensure that J(ū) < 0.
By the Mountain Pass Lemma, J has a critical value c ≥ a > 0, where

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)),

and

Γ = {h ∈ C([0, 1],Rk) | h(0) = 0, h(1) = ū}.
Let ũ ∈ Rk be a critical point associated to the critical value c of J , i.e.,

J(ũ) = c. Similar to the proof of the P.S. condition, we know that there exists

û ∈ Rk such that

J(û) = cmax = max
s∈[0,1]

J(h(s)).

Clearly, û ̸= 0. If ũ ̸= û, then the conclusion of Theorem 1.4 holds. Other-
wise, ũ = û. Then c = J(ũ) = cmax = max

s∈[0,1]
J(h(s)). That is,

sup
u∈Rk

J(u) = inf
h∈Γ

sup
s∈[0,1]

J(h(s)).
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Therefore,

cmax = max
s∈[0,1]

J(h(s)), ∀h ∈ Γ.

By the continuity of J(h(s)) with respect to s, J(0) = 0 and J(ū) < 0 imply
that there exists s0 ∈ (0, 1) such that

J (h (s0)) = cmax.

Choose h1, h2 ∈ Γ such that {h1(s) | s ∈ (0, 1)} ∩ {h2(s) | s ∈ (0, 1)} is
empty, then there exists s1, s2 ∈ (0, 1) such that

J (h1 (s1)) = J (h2 (s2)) = cmax.

Thus, we get two different critical points of J on Rk denoted by

u1 = h1 (s1) , u
2 = h2 (s2) .

The above argument implies that the BVP (1.1) with (1.2) possesses at least
two nontrivial solutions. The proof of Theorem 1.4 is finished. □

Proof of Theorem 1.3. We only need to find at least one critical point of the
functional J defined as in (2.5).

By (F ′
5), for any u = (u1, u2, · · · , uk)∗ ∈ Rk, we have

J(u) =
1

p

k−2∑
i=1

γi+1 |∆nui|p−
k∑

i=1

F (i, ui+1, ui)+
γ1
p

∣∣∆n−1u1
∣∣p+ γk

p

∣∣∆n−1uk−1

∣∣p

≥
γ

p
cp1λ

np
2

1 ∥u∥p − a3

k∑
i=1

(√
u2i+1 + u2i

)α
2 p

− a4k

≥
γ

p
cp1λ

np
2

1 ∥u∥p − a3


[

k∑
i=1

(√
u2i+1 + u2i

)α
2 p
] 2

αp


α
2 p

− a4k

≥
γ

p
cp1λ

np
2

1 ∥u∥p − a3c
α
2 p
2


[

k∑
i=1

(
u2i+1 + u2i

)] 1
2


α
2 p

− a4k

≥
γ

p
cp1λ

np
2

1 ∥u∥p − 2
α
2 pa3c

α
2 p
2 ∥u∥α

2 p − a4k

→ +∞ as ∥u∥ → +∞.
By the continuity of J , we know from the above inequality that there exist
lower bounds of values of the functional. And this means that J attains its
minimal value at some point which is just the critical point of J with the finite
norm. □
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Proof of Theorem 1.7. Assume, for the sake of contradiction, that the BVP
(1.1) with (1.2) has a nontrivial solution. Then J has a nonzero critical point
u⋆. Since

∂J

∂ui
= (−1)n∆n (γi−n+1φp (∆

nui−1))− f(i, ui+1, ui, ui−1),

we get

k∑
i=1

f(i, u⋆i+1, u
⋆
i , u

⋆
i−1)u

⋆
i =

k∑
i=1

[
(−1)n∆n

(
γi−n+1φp

(
∆nu⋆i−1

))]
u⋆i

(3.1) =
k−2∑
i=1

γi+1 |∆nu⋆i |
p
+γ1

∣∣∆n−1u⋆1
∣∣p+γk ∣∣∆n−1u⋆k−1

∣∣p ≤ 0.

On the other hand, it follows from (F6) that

(3.2)
k∑

i=1

f(i, u⋆i+1, u
⋆
i , u

⋆
i−1)u

⋆
i > 0.

This contradicts (3.1) and hence the proof is complete. □

4. Examples

As an application of Theorems 1.4, 1.6 and 1.7, we give three examples to
illustrate our main results.

Example 4.1. For i ∈ Z(1, k), assume that
(4.1)

∆7 (γi−6φp

(
∆7ui−1

))
= −βui

[
ϕ(i)

(
u2
i+1 + u2

i

) β
2
−1

+ ϕ(i− 1)
(
u2
i + u2

i−1

) β
2
−1

]
,

with boundary value conditions

(4.2) ∆u−6 = ∆u−5 = · · · = ∆u0 = 0, ∆uk+1 = ∆uk+2 = · · · = ∆uk+7 = 0,

where γi is real valued for each i ∈ Z(−5, k + 1) and γi > 0, φp(s) is the
p-Laplacian operator φp(s) = |s|p−2s(1 < p < ∞), β > p, ϕ is continuously
differentiable and ϕ(i) > 0, i ∈ Z(1, k) with ϕ(0) = 0.

We have

f(i, v1, v2, v3) = βv2

[
ϕ(i)

(
v21 + v22

) β
2 −1

+ ϕ(i− 1)
(
v22 + v23

) β
2 −1

]
and

F (i, v1, v2) = ϕ(i)
(
v21 + v22

) β
2 .

It is easy to verify all the assumptions of Theorem 1.2 are satisfied and then
the BVP (4.1) with (4.2) possesses at least two nontrivial solutions.
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Example 4.2. For i ∈ Z(1, k), assume that
(4.3)

∆9
(
3i−8φp

(
∆9ui−1

))
= −αpui

[
ψ(i)

(
u2
i+1 + u2

i

)α
2
p−1

+ ψ(i− 1)
(
u2
i + u2

n−1

)α
2
p−1

]
,

with boundary value conditions

(4.4) ∆u−8 = ∆u−7 = · · · = ∆u0 = 0, ∆uk+1 = ∆uk+2 = · · · = ∆uk+9 = 0,

where 1 < α < 2, φp(s) is the p-Laplacian operator φp(s) = |s|p−2s(1 < p <
∞), ψ is continuously differentiable and ψ(i) > 0, i ∈ Z(1, k) with ψ(0) = 0.

We have

γi = 3i, f(i, v1, v2, v3) = αpv2

[
ψ(i)

(
v21 + v22

)α
2 p−1

+ ψ(i− 1)
(
v22 + v23

)α
2 p−1

]
and

F (i, v1, v2) = ψ(i)
(
v21 + v22

)α
2 p
.

It is easy to verify all the assumptions of Theorem 1.6 are satisfied and then
the BVP (4.3) with (4.4) has at least one solution.

Example 4.3. For i ∈ Z(1, k), assume that

(4.5) −∆16
(
φp

(
∆16ui−1

))
=

8

5
ui

[(
u2i+1 + u2i

)− 1
5 +

(
u2i + u2i−1

)− 1
5

]
,

with boundary value conditions
(4.6)

∆u−15 = ∆u−14 = · · · = ∆u0 = 0, ∆uk+1 = ∆uk+2 = · · · = ∆uk+16 = 0.

We have

γi ≡ −1, f(i, v1, v2, v3) =
8

5
v2

[(
v21 + v22

)− 1
5 +

(
v22 + v23

)− 1
5

]
and

F (i, v1, v2) =
(
v21 + v22

) 4
5 .

It is easy to verify all the assumptions of Theorem 1.7 are satisfied and then
the BVP (4.5) with (4.6) has no nontrivial solutions.
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