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Abstract. We prove that a remainder Y of a non-locally compact rec-

tifiable space X is locally a p-space if and only if either X is a Lindelöf
p-space or X is σ-compact, which improves two results by Arhangel’skii.
We also show that if a non-locally compact rectifiable space X that is
locally paracompact has a remainder Y which has locally a Gδ-diagonal,

then both X and Y are separable and metrizable, which improves an-
other Arhangel’skii’s result. It is proved that if a non-locally compact
paratopological group G has a locally developable remainder Y, then ei-
ther G and Y are separable and metrizable, or G is a σ-compact space

with a countable network, which improves a result by Wang-He.
Keywords: Remainder, rectifiable space, p-space, paratopological group.
MSC(2010): Primary: 54D40; Secondary: 54E35, 22A05.

1. Introduction

Throughout this paper a space always means a Tychonoff topological space.
A remainder of a spaceX is the subspace bX\X of a Hausdorff compactification
bX of X. Remainders of topological groups and rectifiable spaces have been
studied extensively in the literature (see [2–4,6–8,13–15]).

Recall that a topological group is a group G with a topology such that
multiplication on G considered as a map of G × G to G is jointly continuous
and the inversion in G is continuous. A paratopological group is a group G
with a topology such that multiplication on G is jointly continuous. Clearly
every topological group is a paratopological group and every paratopological
group is a homogeneous space.

A space X is of countable type if every compact subspace P of X is con-
tained in a compact subspace F ⊆ X which has a countable base of open
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neighborhoods in X. All metrizable spaces, and all locally compact Hausdorff
spaces, as well as all Čech-complete spaces, are of countable type.

A space X is Ohio complete [2], if in every compactification bX of X there
exists a Gδ-subset Z ⊆ bX such that X ⊂ Z and every y ∈ Z \X is separated
from X by a Gδ-subset of bX. According to [2], every Tychonoff space with a
Gδ-diagonal and every p-space are Ohio complete.

Say that X is locally Ohio complete, if for each x ∈ X, there exists a closed
neighbourhood U of x such that U is Ohio complete.

A space X is called a p-space, if in any (in some) compactification bX of X
there exists a countable family {γn | n ∈ ω} of families γn of open subsets of
bX such that x ∈

∩
{Stγn(x) | n ∈ ω} ⊂ X for each x ∈ X. It is well known

that every p-space is of countable type, and every metrizable space is a p-space.
The following two results on remainders of topological spaces are well known.

Theorem 1.1. [13] A Tychonoff space X is of countable type if and only if
the remainder in any (or some) Hausdorff compactification of X is Lindelöf.

Theorem 1.2. [2] If X is a Lindelöf p-space, then any remainder of X is a
Lindelöf p-space.

In this paper, we mainly investigate some local properties of remainders
of homogeneous spaces (rectifiable spaces, topological groups, paratopological
groups). These local properties include locally Ohio complete spaces, local
p-spaces and spaces with locally Gδ-diagonal.

In [2, Theorem 4.5] ( [7, Theorem 3.8]), Arhangel’skii proved that a remain-
der Y of a non-locally compact topological group (rectifiable space) G is a
p-space if and only if either G is a Lindelöf p-space or G is σ-compact.

We will show that a stronger result holds for rectifiable spaces, i.e., we prove
that:

• A remainder Y of a non-locally compact rectifiable space X is locally a
p-space if and only if either G is a Lindelöf p-space or G is σ-compact.

In [7, Theorem 3.9], Arhangel’skii proved that if a non-locally compact para-
compact rectifiable space X has a remainder Y with a Gδ-diagonal, then both
X and Y are separable and metrizable. In this paper, we will prove the follow-
ing strengthened result:

• If a non-locally compact locally paracompact rectifiable space X has
a remainder Y with locally a Gδ-diagonal, then both X and Y are
separable and metrizable.

Some other results obtained in this paper on remainders are as follows .

• Let X be a homogeneous space with a compactification bX such that
the remainder Y = bX \X is locally Ohio complete. Then at least one
of the following conditions holds:

(1) X is of point-countable type;
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(2) X is locally σ-compact.
• Let G be a topological group of countable cellularity and let bG be a
compactification of G. Then the following conditions are equivalent:

(1) Y = bG \G is locally Ohio complete;
(2) G is a Lindelöf p-space, or σ-compact.

• Suppose that X and Y are rectifiable spaces. If X is a p-space r-
equivalent to Y , then Y is a p-space.

• If bX is a compactification of a p-space X with no isolated points, then
the cellularity of Y = bX \X is greater than ω.

• Suppose that bX is a compactification of a topological p-group X. If X
is non-discrete, then bX \X is pseudocompact and bX \X is compact
if X is discrete.

We will denote c(X) the cellularity or Souslin number of a space X. A
X

and intXA stand for the closure and the interior of A in X respectively. For
other terms and symbols we refer to [10].

2. Main results

Firstly we consider the conditions of a homogeneous space with a remainder
that is locally Ohio complete.

Theorem 2.1. Let X be a homogeneous space with a compactification bX such
that the remainder Y = bX \X is locally Ohio complete. Then at least one of
the following conditions holds:

(1) X is of point-countable type;
(2) X is locally σ-compact.

Proof. If X is locally compact, then X is of countable type.
If X is non-locally compact, then X is nowhere locally compact since X is

a homogeneous space, which implies that Y = bX \X is dense in bX. Hence,
bX is also a compactification of bX \X. Since Y is locally Ohio complete, we

can fix an open subset O of Y such that F = O
Y

is an Ohio complete space.

Put K = O
bX

. Then there exists a Gδ-set Z of K such that: (a) F ⊂ Z; (b)
for each x ∈ Z \ F , there is a Gδ-set P of K such that x ∈ P and P ∩ F = ∅.
We consider the following two cases:

(1) Z = F . Then K \ F is a σ-compact subset of K. Since K \ F ⊂ X,
K \ F is a σ-compact subset of X. Observe that intX(K \ F ) ̸= ∅. Therefore
it follows from X being homogeneous that X is locally σ-compact.

(2) Z \F ̸= ∅. Notice that U =intX(K \F ) is a dense subset of K. Now we
consider the next two subcases:

(2a) Z ∩ U = ∅, i.e., U ⊂ (K \ Z). Since K \ Z is a σ-compact subset of X,
it follows from the regularity of X that U is locally σ-compact. Therefore X
is locally σ-compact.
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(2b) Z ∩U ̸= ∅. Fix a point x ∈ Z ∩U . Then there is a Gδ-set P of K such
that x ∈ P ⊂ Z \ F . Take a sequence {Pn : n ∈ ω} of open subsets of K such
that P = ∩{Pn : n ∈ ω}. Fix a sequence {Wn : n ∈ ω} of open neighbourhoods

of x in bX such that W0 ⊂ K and Wn+1
bX ⊂ Wn ∩ Pn for each n ∈ ω. It is

easy to see that ∩{Wn : n ∈ ω}, contained in X, is a compact subset of bX
and {Wn : n ∈ ω} is a base of ∩{Wn : n ∈ ω} in bX. Hence, ∩{Wn : n ∈ ω}
has a countable outer base in X. Since X is a homogeneous space, X is of
point-countable type. □

Corollary 2.2.Assume that X is homogeneous space with locally a Gδ-diagonal.
If X has a compactification bX such that Y = bX \X is locally Ohio complete,
then at least one of the following conditions holds:

(1) X is first-countable;
(2) X has a locally countable network.

Proof. By Theorem 2.1, we need to consider the following two cases.
Case 1: X is of point-countable type. Since X has locally a Gδ-diagonal, the

pseudocharacter of X is countable. Then it follows that X is first-countable.
Case 2: X is locally σ-compact. By [10], every compact space with a Gδ-

diagonal has a countable base. It follows that a compact space with locally a
Gδ-diagonal has a countable base. Since X is locally σ-compact and has locally
a Gδ-diagonal, X has a locally countable network. □

Since every topological group of point-countable type is a paracompact p-
space [5, Theorem 4.3.35] and each paratopological group of point-countable
type is of countable type [7], by Theorem 2.1, the following result is obvious.

Corollary 2.3. Suppose that X is a paratopological group (or a topological
group). If bX is a compactification of X such that Y = bX \X is locally Ohio
complete, then at least one of the following conditions holds:

(1) X is of countable type (or a paracompact p-space);
(2) X is locally σ-compact.

The next result is about a topological group with a remainder that is locally
Ohio complete.

Theorem 2.4. Let G be a topological group of countable cellularity and let bG
be a compactification of G. Then the following conditions are equivalent:

(1) Y = bG \G is locally Ohio complete;
(2) G is either a Lindelöf p-space, or σ-compact.

Proof. We consider two cases.
Case 1: G is locally compact. Since G is dense in bG, it follows that G is

an open subset of bG. Hence Y is compact, which implies that Y is locally
Ohio complete. Since G is a locally compact topological group, it follows that
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G is a paracompact p-space. Noticing that G has countable cellularity one can
conclude that G is a Lindelöf p-space.

Case 2: G is non-locally compact. Then G is nowhere locally compact since
G is a homogeneous space.

(2)⇒ (1): If G is a Lindelöf p-space, then Y is a Lindelöf p-space by Theorem
1.2. Since every closed subspace of a p-space is also a p-space and every p-
space is Ohio complete [2], it follows that Y is locally Ohio complete. If G
is σ-compact, then Y is Čech-complete, which implies that Y is locally Čech-
complete. Therefore Y is locally Ohio complete.

(1)⇒ (2): Since Y is locally Ohio complete, by Corollary 2.3, G is a para-
compact p-space or locally σ-compact. If G is a paracompact p-space, then G is
a Lindelöf p-space by c(G) = ω. If G is locally σ-compact, we can take an open

subset of O of G such that F = O
G
is σ-compact. Let H denote the subgroup

of G generated by F . Then H is σ-compact. By [5, Corollary 1.3.3], H is an
open subgroup G. Thus, all left cosets of H in G form a cover of G consisting of
disjoint open subsets of G. By c(G) = ω, the family {xH : x ∈ G} is countable.
Since each xH is homeomorphic to H, it follows that G is σ-compact. □

Corollary 2.5. Suppose that G is a hereditarily separable topological group,
and bG is a compactification of G such that Y = bG\G is locally Ohio complete.
Then G is either σ-compact, or has a countable base.

Proof. From the condition that G is separable we know that G has countable
cellularity. By Theorem 2.4, G is either a Lindelöf p-space, or σ-compact.
Assume that G is a Lindelöf p-space. Then G is of countable type. Fix a
compact subspace K of G that has a countable outer base in G. Since K
is hereditarily separable, K has countable tightness. By [17], every compact
space of countable tightness has countable π-character, which implies that K
has countable π-character. Noticing that K has a countable outer base in G,
one can conclude that G has a countable π-base at each point of K. Since
G is a homogeneous space, it follows that G has countable π-character. This
implies that G has countable character by [5, Proposition 5.2.6]. Since G is
a topological group, it follows from [5, Theorem 3.3.12] that G is metrizable.
Now the separability of G guarantees that G has a countable base. □

Let X be a Tychonoff space. It is well known that the function space Cp(X)
with the topology of pointwise convergence is a topological group. Now we
investigate conditions such that the remainder of the topological group Cp(X)
is Ohio complete.

Theorem 2.6. For an arbitrary infinite Tychonoff space X, let bG be a com-
pactification of the topological group G = Cp(X) and Y = bG \ G, where
G = Cp(X) has the topology of pointwise convergence. Then the following
conditions are equivalent:



A remark on remainders of homogeneous spaces in some compactifications 1528

(1) Y is Ohio complete;
(2) Y is a p-space;
(3) Y is locally a p-space;
(4) Y is a Lindelöf p-space;
(5) |X| = ω.

Proof. Since G = Cp(X) is dense in RX , it follows from X being infinite that
G is not locally compact. Since G is a homogeneous space, G is nowhere
locally compact, which implies that Y is dense in bG. Clearly, the cellularity
of G = Cp(X) is countable since G = Cp(X) is dense in RX whose cellularity
is countable.

(2)⇒(3) is obvious since the p-property is hereditary to every closed sub-
space.

(3)⇒(4). Since G is a topological group, it follows from Theorem 2.4 that G
is either a Lindelöf p-space or a σ-compact space. If G = Cp(X) is σ-compact,
X is finite by [1, I.2.4], which is a contradiction.

(4)⇒(5). Since Y is Lindelöf, G = Cp(X) is of countable type by Theorem
1.1. By [1, I.3.2], X is countable.

(5)⇒(1). From the condition that X is countable we know that G is sepa-
rable and metrizable. Hence, Y is a Lindelöf p-space by Theorem 1.2, which
implies that Y is Ohio complete.

(1)⇒(2). Similarly as in (3)⇒(4), the group G is a Lindelöf p-space. There-
fore, Y is a Lindelöf p-space by Theorem 1.2. □

In [18], a paratopological group with developable remainders was studied.
The following result improves [18, Theorem 3.2].

Theorem 2.7. Assume that G is a non-locally compact paratopological group
with a compactification bG such that Y = bG \ G is locally developable. Then
at least one of the following conditions holds:

(1) both G and Y are separable and metrizable;
(2) G is a σ-compact space with a countable network.

Proof. Since every developable space is a p-space, Y is locally Ohio complete.
By Corollary 2.3, G is either of countable type or locally σ-compact.

Case 1: G is of countable type. By Theorem 1.1, Y is a Lindelöf space.
Then, from the condition that Y is locally developable, one can conclude that
Y has a countable base. Thus G is a Lindelöf p-space by Theorem 1.2. Let
B1 = {Bn : n ∈ ω} be a countable base of Y , and fix a sequence B = {On : On∩
Y = Bn, n ∈ ω} consisting of open subsets of bG. Put B2 = {On∩G : On ∈ B}.
Since both G and Y are dense in bG, it follows that B2 is a countable π-base
of G. Particularly, G has countable π-character. Then G has a Gδ-diagonal
by [5, Corollary 5.7.5]. Since G is a Lindelöf p-space with a Gδ-diagonal, G is
separable and metrizable.
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Case 2: G is locally σ-compact. Since Y is locally developable, it is locally
of countable type. By [18, Lemma 2.2], every space that is locally of countable
type is of countable type. Therefore Y is of countable type, hence G is a
Lindelöf space by Theorem 1.1. Then G is σ-compact by the condition that G
is locally σ-compact. Hence Y is Čech-complete. By [16], each Čech-complete
space contains a dense subspace which is paracompact and Čech-complete. Let
Z be such a dense subspace of Y . According to [5, Corollary 5.7.12], every
σ-compact paratopological group has countable cellularity, so c(G) = ω. Since
both G and Z are dense in bG, it follows that c(Z) = ω. Therefore Z is a
Lindelöf p-space. Since every developable space has a Gδ-diagonal, the space
Y must have a Gδ-diagonal. Hence Z has a Gδ-diagonal. Then it follows that
Z has a countable base. Since both G and Z are dense in bG, G has a countable
π-base. By Corollary 5.7.5 in [5], G has a Gδ-diagonal. Then from the condition
that G is σ-compact we can conclude that G has a countable network. □

Corollary 2.8. Let G be a non-locally compact paratopological group with a
compactification bG such that Y = bG \ G is locally metrizable. Then bG is
separable and metrizable.

Proof. By Theorem 2.7, we consider two cases.
(1) Both G and Y are separable and metrizable. In this case, bG is a compact

space with a countable network. Therefore, bG is separable and metrizable.
(2) G is a σ-compact space with a countable network. It follows that the

cellularities of G and Y are countable. Then Y is locally separable by the
condition that Y is locally metrizable. It follows from Theorem 1.2 and the
homogeneity of G that G is locally a Lindelöf p-space. Since G has a countable
network, it has a Gδ-diagonal. Therefore G has locally a countable base. Then
the Lindelöfness of G shows that G has a countable base. It follows that Y is
a Lindelöf p-space. Since Y is also locally developable, it has a countable base.
Therefore bG is separable and metrizable. □

Theorem 2.10 below generalizes the result of Arhangel’skii and Choban
proved in [7, Theorem 3.9]. At first we recall a proposition in [18].

Lemma 2.9. [18] Suppose that X is a nowhere locally compact space with
locally a Gδ-diagonal, and Y is a remainder of X in some compactification bX
such that Y is a paracompact p-space. Then w(X) = ω.

Theorem 2.10. Suppose that X is a non-locally compact locally paracompact
rectifiable space and bX is a compactification of X. If Y = bX \X has locally
a Gδ-diagonal, then X and Y are separable and metrizable.

Proof. By [2], every space with a Gδ-diagonal is Ohio complete, hence Y is
locally Ohio complete. Since each rectifiable space is homogeneous, X is of
point-countable type or locally σ-compact by Theorem 2.1.
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(1) X is of point-countable type. By [7], every rectifiable space of point-
countable type is a p-space. Hence X is locally a paracompact p-space. Since

X is homogeneous, we can take an open subset U of bX such that U
bX ∩ Y

has a Gδ-diagonal and U
bX ∩ X is a paracompact p-space. By Lemma 2.9,

U
bX ∩ Y is separable and metrizable. Since both U

bX ∩ X and U
bX ∩ Y are

dense in U
bX

, U
bX ∩X has a countable π-base. Thus U ∩X has a countable

π-base since U ∩ X is dense in U
bX ∩ X. Particularly, U ∩ X has countable

π-character. It implies that X has countable π-character. According to [12],
X is metrizable. Therefore X and Y are separable and metrizable by [8].

(2) X is locally σ-compact. Noticing that X is homogeneous, one can fix

an open subset O of bX such that O ∩X
X

is σ-compact and O ∩ Y
Y

has a

Gδ-diagonal. Since O ∩X
X

and O ∩ Y
Y

are dense in O
bX

, it follows from the

fact that O ∩X
X

is a Lindelöf space that O ∩ Y
Y

is of countable type. Then

the condition that O ∩ Y
Y

has a Gδ-diagonal makes O ∩ Y
Y

first-countable.
By [9], every countably compact space with a Gδ-diagonal is compact. Then

O ∩ Y
Y

is not countably compact since O ∩ Y
Y

is not compact. Therefore

O ∩ Y
Y

contains a countable infinite subset A which is closed and discrete in
Y . Since bX is compact, there exists a point x ∈ bX such that x ∈ A

bX
.

Since O ∩ Y
Y

is first-countable and is dense in O
bX

, it follows that O
bX

has

countable character at each point of O ∩ Y
Y
. For each a ∈ A fix a countable

base ηa of O
bX

at a, and put η = {U ∩X : U ∈
∪

a∈A ηa}. Since O∩X is dense

in O
bX

, η is a countable π-base of O∩X at x. Obviously, η is also a countable
π-base of X at x. Since X is homogeneous, it follows that X has countable
π-character. Therefore X and Y are separable and metrizable. □
Corollary 2.11. Assume that X is a non-locally compact rectifiable space and
bX is a compactification of X such that Y = bX \X has locally a Gδ-diagonal.
If X has countable tightness or countable pseudocharacter, then X and Y are
separable and metrizable.

Proof. By Theorem 2.1, X is of point-countable type or locally σ-compact.
IfX is locally σ-compact, X and Y are separable and metrizable by Theorem

2.10.
Let X be of point-countable type. If X has countable tightness, then X

has countable π-character. If X has countable pseudocharacter, then X has
countable character. Therefore, X and Y are separable and metrizable. □

By Corollary 2.11, the following result is obvious.

Corollary 2.12. Assume that X is a non-locally compact rectifiable space and
bX is a compactification of X such that Y = bX \X has locally a Gδ-diagonal.
If one of the following conditions is satisfied:
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(1) X is hereditarily separable;
(2) X has locally a Gδ-diagonal;
(3) X is a sequential space,
then X and bX are separable and metrizable.

The theorem that follows generalizes the results proved in [2, Theorem 4.5]
and [7, Theorem 3.8].

Theorem 2.13. Let X be a non-locally compact rectifiable space and let bX
be a compactification of X. Then Y = bX \X is locally a p-space if and only
if at least one of the following conditions holds:

(1) X is a Lindelöf p-space;
(2) X is σ-compact;

Proof. Sufficiency. If X is a Lindelöf p-space, then Y is a Lindelöf p-space. If
X is σ-compact, then Y is Čech-complete. Therefore Y is locally a p-space.

Necessity. Since Y is locally a p-space, it is locally of countable type, which
implies that Y is of countable type by [18]. Then X is a Lindelöf space. Since
Y is locally Ohio complete, by Theorem 2.1, X is of point-countable type or
locally σ-compact.

If X is of point-countable type, then X is a p-space by [7]. Therefore X is
a Lindelöf p-space.

If X is locally σ-compact, then X is σ-compact since it is Lindelöf. □

Corollary 2.14. Let X be a non-locally compact rectifiable space with a com-
pactification bX such that Y = bX \X is locally developable. Then X and Y
are separable and metrizable.

Proof. By Theorem 2.13, X is a Lindelöf p-space or a σ-compact space. Since
every developable space has a Gδ-diagonal, it follows from Theorem 2.10 that
X and Y are separable and metrizable. □

Corollary 2.15. Let X be a non-locally compact rectifiable space with a com-
pactification bX such that Y = bX \X is locally a p-space. If X has locally a
Gδ-diagonal, then X has a countable network.

Proof. By Theorem 2.13, X is either a Lindelöf p-space or σ-compact. If X
is a Lindelöf p-space, then X is locally separable and locally metrizable since
X has locally a Gδ-diagonal. Then the Lindelöfness of X makes X have a
countable base. Now we consider the case that X is σ-compact. Observe that
every compact space with locally a Gδ-diagonal is separable and metrizable,
and hence has a countable network. Therefore, X has a countable network. □

Corollary 2.16. Suppose that X is a non-locally compact rectifiable space, and
bX is a compactification of X such that Y = bX \X is locally a paracompact
p-space. If X has locally a Gδ-diagonal, then X is separable and metrizable.
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Proof. By Corollary 2.15, X has a countable network. Then the cellularity
of X is countable, which implies that the cellularity of Y is also countable.
Since Y is locally a paracompact p-space, Y is locally a Lindelöf p-space. By
Theorem 1.2 it follows from the homogeneity of X that X is locally a Lindelöf
p-space. Then the fact that X has a countable network guarantees that X is
separable and metrizable. □

Two topological spaces X and Y are called r-equivalent [6], if there exists
compactifications aX and bY of X and Y respectively such that aX \X and
bY \ Y are homeomorphic.

Theorem 2.17. Suppose that X and Y are rectifiable spaces. If X is a p-space
r-equivalent to Y , then Y is a p-space.

Proof. Assume that aX and bY are compactifications of X and Y respectively
such that aX \ X and bY \ Y are homeomorphic. Since every p-space is of
countable type, aX \ X is a Lindelöf space. Therefore bY \ Y is a Lindelöf
space. It follows that Y is of countable type. Hence Y is a p-space by [7]. □

Say that X is a p-space, if for each x ∈ X, the intersection of any countable
neighbourhoods of x is also a neighbourhood of x. A topological group whose
underlying space is a p-space is called a topological p-group. Next we give
several results about remainders of p-spaces.

Theorem 2.18. If bX is a compactification of a p-space X with no isolated
points, then the cellularity of Y = bX \X is greater than ω.

Proof. Since X is a p-space with no isolated points, it follows that X is nowhere
locally compact. Fix a point x ∈ X. For each y ∈ Y , take a local base By of y

in Y such that x /∈ B
bX

for B ∈ By. By Zorn’s Lemma, we can take a maximal
disjoint family O of open subsets of Y from

∪
y∈Y By. Since

∪
y∈Y By is a base

of Y ,
∪
O is dense in Y .

∪
O is dense in bX since Y is dense in bX.

Claim: |O| > ω, which implies that c(Y ) > ω.
Suppose that |O| = ω, and let O = {On : n ∈ ω}. For n ∈ ω, fix an open

subset Vn of bX such that On = Vn ∩ Y . Since x /∈ On
bX

for each n ∈ ω,

bX \On
bX

is a neighbourhood of x. Observe that F = (
∩

n∈ω bX \On
bX

)∩X
is a neighbourhood of x in X by the condition that X is a p-space. For each

n ∈ ω, F ⊂ bX \ On
bX

= bX \ Vn
bX

, so that F ∩ Vn = ∅. Hence F
bX ∩ On ⊂

F
bX ∩ Vn = ∅. Fix an open subset U of bX such that U ∩ X = F . Then

U ∩On ⊂ U
bX ∩On = F

bX ∩ Vn = ∅ for n ∈ ω. This contradicts the fact that∪
O is dense in bX. □

Corollary 2.19. Suppose that bX is a compactification of a homogeneous p-
space X. If Y = bX \X is separable, then X is discrete.



1533 Wang and He

Theorem 2.20. If bX is a compactification of a topological p-group X, then
at least one of the following holds:

(1) X is discrete;
(2) Y = bX \X is pseudocompact.

Proof. Suppose that X is non-discrete. Then it follows from X being a P -space
that X is non-locally compact. By [4], a remainder of a topological group in
any compactification is either pseudocompact or Lindelöf, which implies that
Y is either pseudocompact or Lindelöf.

Claim: Y is pseudocompact.
Suppose to the contrary that Y is Lindelöf. Then X is of countable type by

Theorem 1.1. Fix a compact subset F of X such that F has a countable outer
base in X. Since X is a p-space, F is an open subset of X. Hence, X is locally
compact. This is a contradiction. □
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