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ABSTRACT. The object of the present paper is to study spacetimes ad-
mitting quasi-conformal curvature tensor. At first we prove that a quasi-
conformally flat spacetime is Einstein and hence it is of constant curvature
and the energy momentum tensor of such a spacetime satisfying Einstein’s
field equation with cosmological constant is covariant constant. Next, we
prove that if the perfect fluid spacetime with vanishing quasi-conformal
curvature tensor obeys Einstein’s field equation without cosmological con-
stant, then the spacetime has constant energy density and isotropic pres-
sure and the perfect fluid always behave as a cosmological constant and
also such a spacetime is infinitesimally spatially isotropic relative to the
unit timelike vector field U. Moreover, it is shown that in a purely elec-
tromagnetic distribution the spacetime with vanishing quasi-conformal
curvature tensor is filled with radiation and extremely hot gases. We also
study dust-like fluid spacetime with vanishing quasi-conformal curvature
tensor.
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1. Introduction

The present paper is concerned with certain investigations in general rela-
tivity by the coordinate free method of differential geometry. In this method
of study spacetime of general relativity is regarded as a connected four dimen-
sional semi-Riemannian manifold (M*, g) with Lorentzian metric g of signature
(—,+,4+,+). The geometry of the Lorentzian manifold begins with the study
of the causal character of vectors of the manifold. It is due to this causal-
ity that the Lorentzian manifold becomes a convenient choice for the study
of general relativity. The Einstein’s equations [19] (p. 337), imply that the
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energy-momentum tensor is of vanishing divergence. This requirement is satis-
fied if the energy-momentum tensor is covariant-constant [4]. In the paper [4]
M. C. Chaki and Sarbari Ray showed that a general relativistic spacetime
with covariant-constant energy-momentum tensor is Ricci symmetric, that is,
VS = 0, where S is the Ricci tensor of the spacetime. Several authors stud-
ied spacetimes in several ways such as spacetimes with semisymmetric energy
momentum tensor by De and Velimirovié [9], m-Projectively flat spacetimes
by Zengin [20], pseudo Z symmetric spacetimes by Mantica and Suh [17] and
many others.
The notion of quasi-conformal curvature tensor was given by Yano and
Sawaki [25] and is defined as follows:
C*(X,Y)Z =aR(X,)Y)Z+V[S(Y,2)X - S(X,2)Y
+9(Y, 2)QX — g(X, Z2)QY]
(L1) —C [+ gV 2)X — g(X, 2)Y ),
where a and b are constants, R is the Riemann curvature tensor of type (1,3),
S is the Ricci tensor of type (0,2), @ is the Ricci operator and r is the scalar
curvature of the manifold.
If a =1 and b = ——5, then (1.1) reduces to the conformal curvature ten-
sor. A semi-Riemannian manifold is called quasi-conformally flat if C* = 0
for n > 3. The quasi-conformal curvature tensor have been studied by several

authors in various ways such as Amur and Maralabhavi [3], De and Sarkar [6],
De and Matsuyama [7], De, Jun and Gazi [], Guha [12], Hosseinzadeh and
Taleshian [13], Ozglir and Sular [22], Mantica and Suh [16] and many others.

The present paper is organized as follows:

After introduction, in Section 2, we characterize a spacetime with vanish-
ing quasi-conformal curvature tensor and some geometric properties of such a
spacetime have been obtained. In the next Section, we study perfect fluid space-
time with vanishing quasi-conformal curvature tensor and investigate some geo-
metric and physical properties of this spacetime under certain condition. Fi-
nally, we consider dust-like fluid spacetime admitting vanishing quasi-conformal
curvature tensor.

2. Spacetime with vanishing quasi-conformal curvature tensor

Let V4 be the spacetime of general relativity, then from equation (1.1) we
have
C*(X,Y,Z,W) = aR(X,Y, Z,W) + b[S(Y, Z)g(X, Z) — S(X, Z)g(Y, W)
+9(Y, 2)S(X, W) — g(X, Z)S(Y,W)]
(Y,

15 + 2)[9(Y. 2)g(X, W) — g(X, Z)g(Y, W),

,
2.1 —-
(2.1) 0
where C*(X,Y, Z,W) = g(C*(X,Y)Z,W) and R(X,Y, Z, W) = g(R(X,Y)Z,W).
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If C*(X,Y,Z,W) =0, then equation (2.1) leads to
+9(Y, Z)S(X, W) — g(X, Z)S(Y,W)]

r.a
(2:2) —7l3 +20lg(Y, Z)g(X, W) — g(X, Z)g(Y, W)] = 0.
Taking a frame field over X and W, we have from (2.2) that
(2.3) (a+26)S(Y, 2) = (a+2b)79(Y. 2),

where S and r denote the Ricci tensor and the scalar curvature of the manifold
respectively.
Thus we can state the following theorem.

Theorem 2.1. A quasi-conformally flat spacetime is an Einstein spacetime,
provided a 4+ 2b # 0.

Again, equations (2.2) and (2.3) give
~ r
(24)  RXY.ZW) = oY, 2)g(X. W)  g(X, 2)g(V, W)
Thus we have the following.

Theorem 2.2. A quasi-conformally flat spacetime is a spacetime of constant
curvature, provided a + 2b # 0.

Remark 2.3. The spaces of constant curvature play a significant role in cos-
mology. The simplest cosmological model is obtained by making the assump-
tion that the universe is isotropic and homogeneous. This is known as cosmolog-
ical principle. This principle, when translated into the language of Riemannian
geometry, asserts that the three dimensional position space is a space of max-
imal symmetry [23], that is, a space of constant curvature whose curvature
depends upon time. The cosmological solution of Einstein equations which
contain a three dimensional spacelike surface of a constant curvature are the
Robertson-Walker metrics, while four dimensional space of constant curvature
is the de Sitter model of the universe ([18,23]).

Let us consider a spacetime satisfying the Einstein’s field equation with
cosmological constant

(2.5) S(X,Y) — %g(X, V) + Ag(X,Y) = kT(X,Y),

where S, r and x denote the Ricci tensor, scalar curvature and the gravitational
constant respectively. A is the cosmological constant and T'(X,Y") is the energy
momentum tensor.

Using (2.3) and (2.5), we obtain

(2.6 T(X,Y) = 1A= Tg(X. ).
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Taking covariant derivative of (2.6) we get
1
(2.7) (V2T)(X,Y) = ~ - dr(Z)g(X,Y).

Since quasi-conformally flat spacetime is Einstein, therefore the scalar curva-
ture r is constant. Hence

(2.8) dr(X) =0,

for all X.
Equations (2.7) and (2.8) together yield

(VzT)(X,Y)=0.
Thus we can state the following.

Theorem 2.4. In a quasi-conformally flat spacetime satisfying Finstein’s field
equation with cosmological constant, the energy momentum tensor is covariant
constant.

Katzin et al. [15] were the pioneers in carring out a detailed study of curva-
ture collineation(CC), in the context of the related particle and field conserva-
tion laws that may be admitted in the standard form of general relativity.

The geometrical symmetries of a spacetime are expressed through the equa-
tion

(2.9) £eA—20A =0,

where A represents a geometrical /physical quantity, £¢ denotes the Lie deriv-
ative with respect to the vector field £ and  is a scalar [15].

One of the most simple and widely used example is the metric inheritance sym-
metry for A = g in (2.9) and for this case, £ is the Killing vector field if Q = 0.
Therefore,

(2.10) (£e9)(X,Y) = 204(X, V).

A spacetime M is said to admit a symmetry called a curvature collineation(CC)
([10], [L1]) provided there exists a vector field £ such that

(2.11) (£LeR)(X,Y)Z =0,

where R is the Riemann curvature tensor.

Now we shall investigate the role of such symmetry inheritance for the space-
time admitting quasi-conformal curvature tensor.

Let us consider a spacetime admitting quasi-conformal curvature tensor with
a Killing vector field £ is a CC. Then we have

(2.12) (£e9)(X,Y) =0,
Again, since M admits a CC we have from (2.11)
(2.13) (£eS)(X,Y) =0,
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where S is the Ricci tensor of the manifold.
Taking Lie derivative of (1.1) and then using (2.11), (2.12) and (2.13) we obtain

(£:CH(X,Y)Z = 0.
Thus we can state the following:

Theorem 2.5. If a spacetime M admitting the quasi-conformal curvature ten-
sor with £ as a Killing vector field is CC, then the Lie derivative of the quasi-
conformal curvature tensor vanishes along the vector field &.

The well known symmetry of the energy momentum tensor 7' is the matter
collineation defined by
(£T)(X,Y) =0,
where £ is the vector field generating the symmetry and £¢ is the Lie derivative
operator along the vector field &.
Let & be a Killing vector field on the spacetime with vanishing quasi-conformal
curvature tensor. Then

(2.14) (£e9)(X,Y) =0,
where £¢ denotes Lie derivative with respect to &.
Taking Lie derivatives of both sides of (2.6) with respect to £ we obtain
(215) L= ) (£g)(X,Y) = (£T)(X,Y).
In virtue of (2.14), it follows from (2.15) that
(£eT)(X,Y) =0,

which implies that the spacetime admits matter collineation.
Conversely, if (£:T7)(X,Y) =0, it follows from (2.15) that

(£eg)(X,Y) =0.
Hence we can state the following Theorem:

Theorem 2.6. If a spacetime obeying Einstein’s field equation has vanishing
quasi-conformal curvature tensor, then the spacetime admits matter collineation
with respect to a vector field & if and only if £ is a Killing vector field.

Next, let us suppose that £ is a conformal Killing vector field. Then we have
(2.16) (£e9)(X,Y) =209(X.,Y),

where ¢ is a scalar.
Then from (2.15) we get

(2.17) (A= )209(X.Y) = k(£T)(X,Y).
Using (2.6) in (2.17) we obtain
(2.18) (£cT)(X,Y) = 26T(X,Y).
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From (2.18) we can say that the energy-momentum tensor has Lie inheritance
property along &.

Conversely, if (2.18) holds, then it follows that (2.16) holds, that is, £ is a
conformal Killing vector field. Thus we state the following:

Theorem 2.7. If a spacetime obeying Finstein’s field equation has vanishing
quasi-conformal curvature tensor, then a vector field & on the spacetime is a
conformal Killing vector field if and only if the energy-momemtum tensor has
the Lie inheritance property along .

3. Perfect fluid spacetime with vanishing quasi-conformal curvature
tensor

In this section we consider a perfect fluid spacetime with vanishing quasi-
conformal curvature tensor obeying Einstein’s field equation without cosmo-
logical constant.

The energy momentum tensor T of a perfect fluid is given by [19]
3.1) T(X,Y) = (o +p)A(X)A(Y) + pg(X,Y),

where o is the energy density, p the isotropic pressure and A is a non-zero
1-form such that g(X,U) = A(X), for all X, U being the velocity vector field
of the flow, that is, g(U,U) = —1.

Einstein’s field equation without cosmological constant is given by

(3.2) S(X,Y) - gg(X, Y) = kT(X,Y),

where r is the scalar curvature of the manifold and x # 0.
In this case Einstein equation can be written as

(3.3) — (5 +kp)g(X.Y) = k(o +p)A(X)AY),

Taking a frame field after contraction over X and Y we obtain

(3.4) r = k(o — 3p).

In virtue of (2.3) and (3.4), the Ricci tensor of a quasi-conformally flat space-

time can be written as

k(o — 3p)

(3.5) S(X,Y) ==~

9(X.Y).
Let @ be the Ricci operator given by
9(RX,Y) = S(X,Y),
and
S(QX,Y) = S*(X,Y).
Then we have
AQX) = 9(QX,U) = S(X,U).
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Hence we obtain from (3.5) that

k2(o — 3p)?
(3.6) S(QX.Y) = %Q(X» Y).
Taking a frame field after contraction over X and Y we obtain from (3.6) that
#?(0 —3p)*
(37) lQ|? = =k

Hence we obtain the following theorem:

Theorem 3.1. If a quasi-conformally flat perfect fluid spacetime obeys Fin-
stein’s field equation without cosmological constant, then the square of the length

2 2
of the Ricci operator of the spacetime is %-

Now putting X =Y = U in (3.3) we obtain
(3.8) r = 4kKo.

Equations (3.4) and (3.8) together give o + p = 0. Therefore equation (3.1) in
this case takes the form

(3.9) T(X,Y)=pg(X,Y).

Since the scalar curvature r of a quasi-conformally flat spacetime is constant,
therefore from (3.8) it follows that o = constant and hence from o + p = 0 we
get p = constant. Now o 4+ p = 0 means the fluid behaves as a cosmological
constant [24]. This is also termed as Phantom Barrier [5]. Now in a cosmology
we know such a choice 0 = —p leads to rapid expansion of the spacetime which
is now termed as inflation [2].

Thus we can state the following:

Theorem 3.2. If a perfect fluid spacetime with vanishing quasi-conformal cur-
vature tensor obeying Finstein’s equation without cosmological constant, then
the spacetime has constant energy density and isotropic pressure and the space-
time represents inflation and also the fluid behaves as a cosmological constant.

We know [20] that if the Ricci tensor S of type (0,2) of the spacetime satisfies
the condition

(3.10) S(X,X) >0,

for every timelike vector field X, then (3.10) is called the timelike convergence
condition.
Equations (3.1) and (3.2) together yield

(3.11) S(XY) = S9(X.Y) = k(0 + PJACOAY) +pg(X, Y)].
Putting X =Y = U in (3.11) and using (3.8) we obtain
(3.12) S(U,U) = —ko.
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Since the spacetime under consideration satisfies timelike convergence condition
and k > 0, we have

(3.13) o <0.

Hence p > 0 and r < 0. This implies that the scalar curvature r of the
spacetime is negative and the isotropic pressure p of the spacetime is positive.
Thus we can state the following theorem:

Theorem 3.3. If a quasi-conformally flat perfect fluid spacetime satisfying
Einstein’s field equation without cosmological constant obeys the timelike con-
vergence condition, then such a spacetime has positive isotropic pressure.

Taking a frame field after contraction over X and Y we get from (3.2) that
(3.14) r = —kt,
where t = trace T'.
Therefore, equation (3.2) can be written as

(3.15) S(X,Y) = k[T(X,Y) — %g(X,Y)].

Einstein’s field equation without cosmological constant for a purely electro-
magnetic distribution takes the form [1]

(3.16) S(X,Y) = kT(X,Y).

Using (3.15) and (3.16) we obtain ¢ = 0. So from (3.14) we get » = 0. Thus
from (2.4) we obtain R(X,Y, Z,W) = 0 which means that the spacetime is flat.
Thus we can state the following theorem.

Theorem 3.4. A quasi-conformally flat spacetime satisfying Einstein’s equa-
tion without cosmological constant for a purely electromagnetic distribution is
an Fuclidean space.

Remark 3.5. This theorem points out towards a condition under which a
semi-Riemannian space can be reduced to an Euclidean space.

Taking again a frame field after contraction we have from (3.1) that
(3.17) t=3p—o,

where t = trace T. Since for a purely electromagnetic distribution ¢ = 0 here,
we obtain from (3.17) that ¢ = 3p. This means that the spacetime under
consideration is filled with radiation and extremely relavistic fluid or extremely
hot gases. Thus we can state the following theorem:

Theorem 3.6. In a purely electromagnetic distribution the spacetime with van-
ishing quasi-conformal curvature tensor is filled with radiation and extremely
hot gases.
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In a quasi-conformally flat perfect fluid spacetime, from (2.4) it follows that
the curvature tensor R is given by
r

(3.18) R(X,Y)Z = Sl9(Y, 2)X — g(X, Z)Y],

where r is the scalar curvature of the spacetime.

Since quasi-conformally flat spacetime is Einstein space, it follows that r=constant.
Let Ut denote the 3-dimensional distribution in a quasi-conformally flat per-
fect fluid spacetime orthogonal to U.

Then

(3.19) R(X,Y)Z = T[g(Y. 2)X — g(X. 2)Y),
for all X,Y,Z € U+ and

(3.20) R(X,U)U = féx,

for every Xe U+.

According to Karchar [14] a Lorentzian manifold is called infinitesimally spa-
tially isotropic relative to timelike unit vector field U if its curvature tensor R
satisfies the relation

(3.21) R(X,Y)Z = U[g(Y, Z)X — g(X, Z)Y],

for all X,Y,Z € U+ and R(X,U)U = mX for all X€ U+, where I, m are real
valued function on the manifold. So by virtue of (3.19) and (3.20) we can state
the following theorem.

Theorem 3.7. A quasi-conformally flat perfect fluid spacetime obeying the
Einstein’s field equation without cosmological constant and having the vector
field U as the velocity vector field is infinitesimally spatially isotropic relative
to the unit timelike vector field U.

Let X,Ye UL, K, denote the sectional curvature of the spacetime deter-
mined by X, Y and K5 denote the sectional curvature of the spacetime deter-

mined by X, U.
Then
e gBXYYVX)
L a(X X)g(VY) — {g(X, V)P T 12
Ky — g(R(X,U)U, X) _r

9(X, X)g(U,U) ~ {9(X,0)}* 12
Thus we can state the following:
Theorem 3.8. In a quasi-conformally flat perfect fluid spacetime the sectional

curvature determined by two vectors X,Y € U+ and the sectional curvature
determined by two vectors X and U are equal.
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4. Dust fluid spacetime with vanishing quasi-conformal curvature
tensor

In a dust or pressureless fluid spacetime, the energy momentum tensor is in
the form [21]

(4.1) T(X,Y) = cA(X)A(Y),

where o is the energy density of the dust-like matter and A is a non-zero 1-form
such that g(X,U) = A(X), for all X, U being the velocity vector field of the
flow, that is, g(U,U) = —1.

Using (2.6) and (4.1) we obtain

(4.2) (A — %)g(X, Y) = ko A(X)A(Y).
A frame field after contraction over X and Y leads to
r KO

4.3 A=———.
Again, if we put X =Y =U in (4.2), we get
(4.4) A= % — ko
Thus combining the equations (4.3)and (4.4), we finally obtain that
(4.5) o=0.
Thus from (4.1) and (4.5) we conclude that

T(X,Y) = 0.

This means that the spacetime is devoid of the matter. Thus we can state the
following:

Theorem 4.1. A quasi-conformally flat dust fluid spacetime satisfying Fin-
stein’s field equation with cosmological constant is vacuum.
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