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Abstract. The object of the present paper is to study spacetimes ad-
mitting quasi-conformal curvature tensor. At first we prove that a quasi-
conformally flat spacetime is Einstein and hence it is of constant curvature
and the energy momentum tensor of such a spacetime satisfying Einstein’s

field equation with cosmological constant is covariant constant. Next, we
prove that if the perfect fluid spacetime with vanishing quasi-conformal
curvature tensor obeys Einstein’s field equation without cosmological con-
stant, then the spacetime has constant energy density and isotropic pres-

sure and the perfect fluid always behave as a cosmological constant and
also such a spacetime is infinitesimally spatially isotropic relative to the
unit timelike vector field U . Moreover, it is shown that in a purely elec-

tromagnetic distribution the spacetime with vanishing quasi-conformal
curvature tensor is filled with radiation and extremely hot gases. We also
study dust-like fluid spacetime with vanishing quasi-conformal curvature
tensor.
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1. Introduction

The present paper is concerned with certain investigations in general rela-
tivity by the coordinate free method of differential geometry. In this method
of study spacetime of general relativity is regarded as a connected four dimen-
sional semi-Riemannian manifold (M4, g) with Lorentzian metric g of signature
(−,+,+,+). The geometry of the Lorentzian manifold begins with the study
of the causal character of vectors of the manifold. It is due to this causal-
ity that the Lorentzian manifold becomes a convenient choice for the study
of general relativity. The Einstein’s equations [19] (p. 337), imply that the
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energy-momentum tensor is of vanishing divergence. This requirement is satis-
fied if the energy-momentum tensor is covariant-constant [4]. In the paper [4]
M. C. Chaki and Sarbari Ray showed that a general relativistic spacetime
with covariant-constant energy-momentum tensor is Ricci symmetric, that is,
∇S = 0, where S is the Ricci tensor of the spacetime. Several authors stud-
ied spacetimes in several ways such as spacetimes with semisymmetric energy
momentum tensor by De and Velimirović [9], m-Projectively flat spacetimes
by Zengin [26], pseudo Z symmetric spacetimes by Mantica and Suh [17] and
many others.

The notion of quasi-conformal curvature tensor was given by Yano and
Sawaki [25] and is defined as follows:

C⋆(X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y

+g(Y,Z)QX − g(X,Z)QY ]

− r

n
[

a

n− 1
+ 2b][g(Y, Z)X − g(X,Z)Y ],(1.1)

where a and b are constants, R is the Riemann curvature tensor of type (1,3),
S is the Ricci tensor of type (0,2), Q is the Ricci operator and r is the scalar
curvature of the manifold.
If a = 1 and b = − 1

n−2 , then (1.1) reduces to the conformal curvature ten-
sor. A semi-Riemannian manifold is called quasi-conformally flat if C⋆ = 0
for n > 3. The quasi-conformal curvature tensor have been studied by several
authors in various ways such as Amur and Maralabhavi [3], De and Sarkar [6],
De and Matsuyama [7], De, Jun and Gazi [8], Guha [12], Hosseinzadeh and

Taleshian [13], Özgür and Sular [22], Mantica and Suh [16] and many others.
The present paper is organized as follows:
After introduction, in Section 2, we characterize a spacetime with vanish-
ing quasi-conformal curvature tensor and some geometric properties of such a
spacetime have been obtained. In the next Section, we study perfect fluid space-
time with vanishing quasi-conformal curvature tensor and investigate some geo-
metric and physical properties of this spacetime under certain condition. Fi-
nally, we consider dust-like fluid spacetime admitting vanishing quasi-conformal
curvature tensor.

2. Spacetime with vanishing quasi-conformal curvature tensor

Let V4 be the spacetime of general relativity, then from equation (1.1) we
have

C̃⋆(X,Y, Z,W ) = aR̃(X,Y, Z,W ) + b[S(Y,Z)g(X,Z)− S(X,Z)g(Y,W )

+g(Y, Z)S(X,W )− g(X,Z)S(Y,W )]

−r

4
[
a

3
+ 2b][g(Y, Z)g(X,W )− g(X,Z)g(Y,W )],(2.1)

where C̃⋆(X,Y, Z,W ) = g(C⋆(X,Y )Z,W ) and R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ).
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If C̃⋆(X,Y, Z,W ) = 0, then equation (2.1) leads to

aR(X,Y, Z,W ) + b[S(Y, Z)g(X,Z)− S(X,Z)g(Y,W )

+g(Y, Z)S(X,W )− g(X,Z)S(Y,W )]

−r

4
[
a

3
+ 2b][g(Y, Z)g(X,W )− g(X,Z)g(Y,W )] = 0.(2.2)

Taking a frame field over X and W, we have from (2.2) that

(2.3) (a+ 2b)S(Y,Z) = (a+ 2b)
r

4
g(Y,Z),

where S and r denote the Ricci tensor and the scalar curvature of the manifold
respectively.
Thus we can state the following theorem.

Theorem 2.1. A quasi-conformally flat spacetime is an Einstein spacetime,
provided a+ 2b ̸= 0.

Again, equations (2.2) and (2.3) give

(2.4) R̃(X,Y, Z,W ) =
r

12
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].

Thus we have the following.

Theorem 2.2. A quasi-conformally flat spacetime is a spacetime of constant
curvature, provided a+ 2b ̸= 0.

Remark 2.3. The spaces of constant curvature play a significant role in cos-
mology. The simplest cosmological model is obtained by making the assump-
tion that the universe is isotropic and homogeneous. This is known as cosmolog-
ical principle. This principle, when translated into the language of Riemannian
geometry, asserts that the three dimensional position space is a space of max-
imal symmetry [23], that is, a space of constant curvature whose curvature
depends upon time. The cosmological solution of Einstein equations which
contain a three dimensional spacelike surface of a constant curvature are the
Robertson-Walker metrics, while four dimensional space of constant curvature
is the de Sitter model of the universe ([18,23]).

Let us consider a spacetime satisfying the Einstein’s field equation with
cosmological constant

(2.5) S(X,Y )− r

2
g(X,Y ) + λg(X,Y ) = κT (X,Y ),

where S, r and κ denote the Ricci tensor, scalar curvature and the gravitational
constant respectively. λ is the cosmological constant and T (X,Y ) is the energy
momentum tensor.
Using (2.3) and (2.5), we obtain

(2.6) T (X,Y ) =
1

κ
[λ− r

4
]g(X,Y ).
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Taking covariant derivative of (2.6) we get

(2.7) (∇ZT )(X,Y ) = − 1

4κ
dr(Z)g(X,Y ).

Since quasi-conformally flat spacetime is Einstein, therefore the scalar curva-
ture r is constant. Hence

(2.8) dr(X) = 0,

for all X.
Equations (2.7) and (2.8) together yield

(∇ZT )(X,Y ) = 0.

Thus we can state the following.

Theorem 2.4. In a quasi-conformally flat spacetime satisfying Einstein’s field
equation with cosmological constant, the energy momentum tensor is covariant
constant.

Katzin et al. [15] were the pioneers in carring out a detailed study of curva-
ture collineation(CC), in the context of the related particle and field conserva-
tion laws that may be admitted in the standard form of general relativity.

The geometrical symmetries of a spacetime are expressed through the equa-
tion

(2.9) £ξA− 2ΩA = 0,

where A represents a geometrical/physical quantity, £ξ denotes the Lie deriv-
ative with respect to the vector field ξ and Ω is a scalar [15].
One of the most simple and widely used example is the metric inheritance sym-
metry for A = g in (2.9) and for this case, ξ is the Killing vector field if Ω = 0.
Therefore,

(2.10) (£ξg)(X,Y ) = 2Ωg(X,Y ).

A spacetimeM is said to admit a symmetry called a curvature collineation(CC)
([10], [11]) provided there exists a vector field ξ such that

(2.11) (£ξR)(X,Y )Z = 0,

where R is the Riemann curvature tensor.
Now we shall investigate the role of such symmetry inheritance for the space-

time admitting quasi-conformal curvature tensor.
Let us consider a spacetime admitting quasi-conformal curvature tensor with

a Killing vector field ξ is a CC. Then we have

(2.12) (£ξg)(X,Y ) = 0.

Again, since M admits a CC we have from (2.11)

(2.13) (£ξS)(X,Y ) = 0,
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where S is the Ricci tensor of the manifold.
Taking Lie derivative of (1.1) and then using (2.11), (2.12) and (2.13) we obtain

(£ξC
⋆)(X,Y )Z = 0.

Thus we can state the following:

Theorem 2.5. If a spacetime M admitting the quasi-conformal curvature ten-
sor with ξ as a Killing vector field is CC, then the Lie derivative of the quasi-
conformal curvature tensor vanishes along the vector field ξ.

The well known symmetry of the energy momentum tensor T is the matter
collineation defined by

(£ξT )(X,Y ) = 0,

where ξ is the vector field generating the symmetry and £ξ is the Lie derivative
operator along the vector field ξ.
Let ξ be a Killing vector field on the spacetime with vanishing quasi-conformal
curvature tensor. Then

(2.14) (£ξg)(X,Y ) = 0,

where £ξ denotes Lie derivative with respect to ξ.
Taking Lie derivatives of both sides of (2.6) with respect to ξ we obtain

(2.15)
1

κ
(λ− r

4
)(£ξg)(X,Y ) = (£ξT )(X,Y ).

In virtue of (2.14), it follows from (2.15) that

(£ξT )(X,Y ) = 0,

which implies that the spacetime admits matter collineation.
Conversely, if (£ξT )(X,Y ) = 0, it follows from (2.15) that

(£ξg)(X,Y ) = 0.

Hence we can state the following Theorem:

Theorem 2.6. If a spacetime obeying Einstein’s field equation has vanishing
quasi-conformal curvature tensor, then the spacetime admits matter collineation
with respect to a vector field ξ if and only if ξ is a Killing vector field.

Next, let us suppose that ξ is a conformal Killing vector field. Then we have

(2.16) (£ξg)(X,Y ) = 2ϕg(X,Y ),

where ϕ is a scalar.
Then from (2.15) we get

(2.17) (λ− r

4
)2ϕg(X,Y ) = κ(£ξT )(X,Y ).

Using (2.6) in (2.17) we obtain

(2.18) (£ξT )(X,Y ) = 2ϕT (X,Y ).
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From (2.18) we can say that the energy-momentum tensor has Lie inheritance
property along ξ.
Conversely, if (2.18) holds, then it follows that (2.16) holds, that is, ξ is a
conformal Killing vector field. Thus we state the following:

Theorem 2.7. If a spacetime obeying Einstein’s field equation has vanishing
quasi-conformal curvature tensor, then a vector field ξ on the spacetime is a
conformal Killing vector field if and only if the energy-momemtum tensor has
the Lie inheritance property along ξ.

3. Perfect fluid spacetime with vanishing quasi-conformal curvature
tensor

In this section we consider a perfect fluid spacetime with vanishing quasi-
conformal curvature tensor obeying Einstein’s field equation without cosmo-
logical constant.
The energy momentum tensor T of a perfect fluid is given by [19]

(3.1) T (X,Y ) = (σ + p)A(X)A(Y ) + pg(X,Y ),

where σ is the energy density, p the isotropic pressure and A is a non-zero
1-form such that g(X,U) = A(X), for all X, U being the velocity vector field
of the flow, that is, g(U,U) = −1.
Einstein’s field equation without cosmological constant is given by

(3.2) S(X,Y )− r

2
g(X,Y ) = kT (X,Y ),

where r is the scalar curvature of the manifold and κ ̸= 0.
In this case Einstein equation can be written as

(3.3) − (
r

4
+ kp)g(X,Y ) = k(σ + p)A(X)A(Y ).

Taking a frame field after contraction over X and Y we obtain

(3.4) r = κ(σ − 3p).

In virtue of (2.3) and (3.4), the Ricci tensor of a quasi-conformally flat space-
time can be written as

(3.5) S(X,Y ) =
κ(σ − 3p)

4
g(X,Y ).

Let Q be the Ricci operator given by

g(QX,Y ) = S(X,Y ),

and

S(QX,Y ) = S2(X,Y ).

Then we have

A(QX) = g(QX,U) = S(X,U).



1541 Mallick, Zhao and De

Hence we obtain from (3.5) that

(3.6) S(QX,Y ) =
κ2(σ − 3p)2

16
g(X,Y ).

Taking a frame field after contraction over X and Y we obtain from (3.6) that

(3.7) ∥Q∥2 =
κ2(σ − 3p)2

4
.

Hence we obtain the following theorem:

Theorem 3.1. If a quasi-conformally flat perfect fluid spacetime obeys Ein-
stein’s field equation without cosmological constant, then the square of the length

of the Ricci operator of the spacetime is κ2(σ−3p)2

4 .

Now putting X = Y = U in (3.3) we obtain

(3.8) r = 4κσ.

Equations (3.4) and (3.8) together give σ + p = 0. Therefore equation (3.1) in
this case takes the form

(3.9) T (X,Y ) = pg(X,Y ).

Since the scalar curvature r of a quasi-conformally flat spacetime is constant,
therefore from (3.8) it follows that σ = constant and hence from σ + p = 0 we
get p = constant. Now σ + p = 0 means the fluid behaves as a cosmological
constant [24]. This is also termed as Phantom Barrier [5]. Now in a cosmology
we know such a choice σ = −p leads to rapid expansion of the spacetime which
is now termed as inflation [2].
Thus we can state the following:

Theorem 3.2. If a perfect fluid spacetime with vanishing quasi-conformal cur-
vature tensor obeying Einstein’s equation without cosmological constant, then
the spacetime has constant energy density and isotropic pressure and the space-
time represents inflation and also the fluid behaves as a cosmological constant.

We know [20] that if the Ricci tensor S of type (0,2) of the spacetime satisfies
the condition

(3.10) S(X,X) > 0,

for every timelike vector field X, then (3.10) is called the timelike convergence
condition.

Equations (3.1) and (3.2) together yield

(3.11) S(X,Y )− r

2
g(X,Y ) = κ[(σ + p)A(X)A(Y ) + pg(X,Y )].

Putting X = Y = U in (3.11) and using (3.8) we obtain

(3.12) S(U,U) = −κσ.
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Since the spacetime under consideration satisfies timelike convergence condition
and κ > 0, we have

(3.13) σ < 0.

Hence p > 0 and r < 0. This implies that the scalar curvature r of the
spacetime is negative and the isotropic pressure p of the spacetime is positive.
Thus we can state the following theorem:

Theorem 3.3. If a quasi-conformally flat perfect fluid spacetime satisfying
Einstein’s field equation without cosmological constant obeys the timelike con-
vergence condition, then such a spacetime has positive isotropic pressure.

Taking a frame field after contraction over X and Y we get from (3.2) that

(3.14) r = −κt,

where t = trace T .
Therefore, equation (3.2) can be written as

(3.15) S(X,Y ) = κ[T (X,Y )− t

2
g(X,Y )].

Einstein’s field equation without cosmological constant for a purely electro-
magnetic distribution takes the form [1]

(3.16) S(X,Y ) = κT (X,Y ).

Using (3.15) and (3.16) we obtain t = 0. So from (3.14) we get r = 0. Thus

from (2.4) we obtain R̃(X,Y, Z,W ) = 0 which means that the spacetime is flat.
Thus we can state the following theorem.

Theorem 3.4. A quasi-conformally flat spacetime satisfying Einstein’s equa-
tion without cosmological constant for a purely electromagnetic distribution is
an Euclidean space.

Remark 3.5. This theorem points out towards a condition under which a
semi-Riemannian space can be reduced to an Euclidean space.

Taking again a frame field after contraction we have from (3.1) that

(3.17) t = 3p− σ,

where t = trace T . Since for a purely electromagnetic distribution t = 0 here,
we obtain from (3.17) that σ = 3p. This means that the spacetime under
consideration is filled with radiation and extremely relavistic fluid or extremely
hot gases. Thus we can state the following theorem:

Theorem 3.6. In a purely electromagnetic distribution the spacetime with van-
ishing quasi-conformal curvature tensor is filled with radiation and extremely
hot gases.
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In a quasi-conformally flat perfect fluid spacetime, from (2.4) it follows that
the curvature tensor R is given by

(3.18) R(X,Y )Z =
r

12
[g(Y, Z)X − g(X,Z)Y ],

where r is the scalar curvature of the spacetime.
Sincequasi-conformallyflatspacetime isEinstein space,it follows that r=constant.
Let U⊥ denote the 3-dimensional distribution in a quasi-conformally flat per-
fect fluid spacetime orthogonal to U.
Then

(3.19) R(X,Y )Z =
r

12
[g(Y, Z)X − g(X,Z)Y ],

for all X,Y ,Z ∈ U⊥ and

(3.20) R(X,U)U = − r

12
X,

for every X∈ U⊥.
According to Karchar [14] a Lorentzian manifold is called infinitesimally spa-
tially isotropic relative to timelike unit vector field U if its curvature tensor R
satisfies the relation

(3.21) R(X,Y )Z = l[g(Y, Z)X − g(X,Z)Y ],

for all X,Y ,Z ∈ U⊥ and R(X,U)U = mX for all X∈ U⊥, where l, m are real
valued function on the manifold. So by virtue of (3.19) and (3.20) we can state
the following theorem.

Theorem 3.7. A quasi-conformally flat perfect fluid spacetime obeying the
Einstein’s field equation without cosmological constant and having the vector
field U as the velocity vector field is infinitesimally spatially isotropic relative
to the unit timelike vector field U.

Let X,Y∈ U⊥, K1 denote the sectional curvature of the spacetime deter-
mined by X, Y and K2 denote the sectional curvature of the spacetime deter-
mined by X, U .
Then

K1 =
g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− {g(X,Y )}2
=

r

12

K2 =
g(R(X,U)U,X)

g(X,X)g(U,U)− {g(X,U)}2
=

r

12

Thus we can state the following:

Theorem 3.8. In a quasi-conformally flat perfect fluid spacetime the sectional
curvature determined by two vectors X,Y ∈ U⊥ and the sectional curvature
determined by two vectors X and U are equal.
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4. Dust fluid spacetime with vanishing quasi-conformal curvature
tensor

In a dust or pressureless fluid spacetime, the energy momentum tensor is in
the form [21]

(4.1) T (X,Y ) = σA(X)A(Y ),

where σ is the energy density of the dust-like matter and A is a non-zero 1-form
such that g(X,U) = A(X), for all X, U being the velocity vector field of the
flow, that is, g(U,U) = −1.
Using (2.6) and (4.1) we obtain

(4.2) (λ− r

4
)g(X,Y ) = κσA(X)A(Y ).

A frame field after contraction over X and Y leads to

(4.3) λ =
r

4
− κσ

4
.

Again, if we put X = Y = U in (4.2), we get

(4.4) λ =
r

4
− κσ.

Thus combining the equations (4.3)and (4.4), we finally obtain that

(4.5) σ = 0.

Thus from (4.1) and (4.5) we conclude that

T (X,Y ) = 0.

This means that the spacetime is devoid of the matter. Thus we can state the
following:

Theorem 4.1. A quasi-conformally flat dust fluid spacetime satisfying Ein-
stein’s field equation with cosmological constant is vacuum.
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