Title:
Parabolic Marcinkiewicz integrals on product spaces

Author(s):
M. Ali
PARABOLIC MARCINKIEWICZ INTEGRALS ON PRODUCT SPACES

M. ALI

(Communicated by Madjid Eshaghi Gordji)

Abstract. In this paper, we study the L^p ($1 < p < \infty$) boundedness for the parabolic Marcinkiewicz integral when the kernel function Ω belongs to the class $L(\log L)(S^{n-1} \times S^{m-1})$. Our result essentially extend and improve some known results.

Keywords: L^p boundedness, parabolic Marcinkiewicz integrals, rough kernels, product spaces.

1. Introduction and preliminaries

Let \mathbb{R}^N ($N = n$ or m), $N \geq 2$ be the N-dimensional Euclidean space, and let S^{N-1} be the unit sphere in \mathbb{R}^N which is equipped with the normalized Lebesgue surface measure $d\sigma = d\sigma(z)$. Also, let p' denote to the exponent conjugate to p; that is $1/p + 1/p' = 1$.

For $i = 1, 2, \ldots, N$, let α_i be fixed real numbers such that $\alpha_i \geq 1$. For fixed $z \in \mathbb{R}^N$, the function $F(z, \rho) = \sum_{i=1}^{N} \frac{z_i^2}{\rho^{\alpha_i}}$ is decreasing in $\rho > 0$. The unique solutions of the equations $F(z, \rho) = 1$ is denoted by $\rho(z)$.

For $\lambda > 0$, let $A_\lambda = \begin{bmatrix} \lambda^{\alpha_1} & 0 & \cdots & 0 \\ 0 & \lambda^{\alpha_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda^{\alpha_N} \end{bmatrix}$, and let $K_{\Omega, \rho}(z) = \Omega(z)\rho(z)^{1-\alpha}$,

where $\alpha = \sum_{i=1}^{N} \alpha_i$ and Ω is a real valued and measurable function on \mathbb{R}^N with $\Omega \in L^1(S^{N-1})$ satisfying the conditions

$\Omega(A_\lambda z) = \Omega(z)$ and $\int_{S^{N-1}} \Omega(z')J(z')d\sigma(z') = 0$,

Article electronically published on December 18, 2016.
Received: 9 January 2014, Accepted: 29 September 2015.

©2016 Iranian Mathematical Society
where \(J(z') \) is defined as in [8]. The parabolic Marcinkiewicz integral \(\mu_\Omega \), which was introduced by Ding, Xue and Yabuta in [15], is defined by

\[
\mu_\Omega f(z) = \left(\int_0^\infty |F_{\Omega,t}(z)|^2 \frac{dt}{t^3} \right)^{1/2},
\]

where

\[
F_{\Omega,t}(z) = \int_{|\rho(u)|\leq t} K_{\Omega,\rho}(u)f(z-u)du.
\]

In particular, the authors of [15] proved that the parabolic Littlewood-Paley operator \(\mu_\Omega \) is bounded for \(p \in (1, \infty) \) provided that \(\Omega \in L^q(S^{N-1}) \) for \(q > 1 \). Subsequently, the study of the \(L^p \) boundedness of \(\mu_\Omega \) under various conditions on the function \(\Omega \) has been studied by many authors (see for example [7, 8, 24]). A particular result that is closely related to our work is the boundedness result of \(\mu_\Omega \) obtained by Cheng and Ding in [8]. In fact, they proved that \(\mu_\Omega \) is bounded under the condition \(\Omega \in L(\log L)^{1/2}(S^{n-1}) \) for \(1 < p < \infty \).

We point out that the class of the operators \(\mu_\Omega \) is related to the class of the parabolic singular integral operators

\[
T_\Omega f(z) = p.v. \int_{\mathbb{R}^N} \frac{\Omega(u)}{\rho(u)^\alpha} f(z-u)du.
\]

The class of the operators \(T_\Omega \) belongs to the class of singular Radon transforms, which has considered to study by many mathematicians (we refer the readers, in particular, to [18, 21]).

If \(\alpha_1 = \cdots = \alpha_N = 1 \), then \(\rho(z) = |z| \), \(\alpha = N \) and \((\mathbb{R}^N, \rho) = (\mathbb{R}^N, |\cdot|)\). In this case, \(\mu_\Omega \) is just the classical Marcinkiewicz integral, which were introduced by Stein in [23]. For more information about the importance and the recent advances on the study of such operators, the readers are refereed (for instance to [3, 4, 10, 14, 17, 19], and the references therein).

Although some open problems related to the boundedness of parabolic Marcinkiewicz integral in the one-parameter setting remain open, the investigation of \(L^p \) estimates of the Marcinkiewicz integral on product spaces has been started (see for example [1, 2, 5–7, 11–13].)

Our main interest in this paper is to study the \(L^p \) boundedness of the parabolic Marcinkiewicz integral with a rough kernel on product spaces. Namely, for \(i = 1, 2, \cdots, n \) and \(j = 1, 2, \cdots, m \), let \(\alpha_i, \beta_j \) be fixed real numbers such that \(\alpha_i, \beta_j \geq 1 \), and let \(K_{\Omega,\rho_1,\rho_2}(x,y) = \Omega(x,y)\rho_1(x)^{1-\alpha}\rho_2(y)^{1-\beta} \), where \(\alpha = \sum_{i=1}^n \alpha_i \), \(\beta = \sum_{j=1}^m \beta_j \) and \(\Omega \) is a real valued and measurable function on \(\mathbb{R}^n \times \mathbb{R}^m \) with
\(\Omega \in L^1(S^{n-1} \times S^{m-1}) \) satisfying the conditions

\[
\begin{align*}
(1.1) & & \Omega(A_1, x, A_2 y) & = \Omega(x, y) & \text{and} \\
(1.2) & & \int_{S^{n-1}} \Omega(x', .) J(x', .) d\sigma(x') & = \int_{S^{m-1}} \Omega(., y') J(., y') d\sigma(y') = 0,
\end{align*}
\]

where \(\lambda_1, \lambda_2 > 0 \), and \(J(x', y') \) is a function on the unit sphere \(S^{n-1} \times S^{m-1} \) in \(\mathbb{R}^n \times \mathbb{R}^m \), that will be defined later.

The parabolic Marcinkiewicz integral operator \(\mathcal{M}_\Omega \) for \(f \in \mathcal{S}(\mathbb{R}^n \times \mathbb{R}^m) \) is given by

\[
(1.3) \quad \mathcal{M}_\Omega f(x, y) = \left(\int_0^\infty \int_0^\infty |F_{t,s}(x, y)|^2 \frac{dt ds}{t s^2} \right)^{1/2},
\]

where

\[
F_{t,s}(x, y) = \int_{\rho_1(t) \leq t} \int_{\rho_2(s) \leq s} K_{\Omega, \rho_1, \rho_2}(u, v) f(x - u, y - v) du dv.
\]

When \(\alpha_1 = \cdots = \alpha_n = 1 \), and \(\beta_1 = \cdots = \beta_m = 1 \), then \(\rho_1(x) = |x| \), \(\rho_2(y) = |y| \), \(\alpha = n \), and \(\beta = m \). In this case, \(\mathcal{M}_\Omega \) is just the classical Marcinkiewicz integral on product domains, which was studied by many mathematicians. For instance, the author of [13] gave the \(L^2 \) boundedness of \(\mathcal{M}_\Omega \) if \(\Omega \in L(\log L)^2(S^{n-1} \times S^{m-1}) \). Subsequently, it was verified in [11] that \(\mathcal{M}_\Omega \) is bounded for all \(1 < p < \infty \) provided that \(\Omega \in L(\log L)^2(S^{n-1} \times S^{m-1}) \). This result was improved (for \(p = 2 \)) in [12] in which the author established that \(\mathcal{M}_\Omega \) is bounded on \(L^2(\mathbb{R}^n \times \mathbb{R}^m) \) for all \(\Omega \in L(\log L)(S^{n-1} \times S^{m-1}) \). Recently, Al-Qaseem et al. found in [1] that the boundedness of \(\mathcal{M}_\Omega \) is obtained under the condition \(\Omega \in L(\log L)(S^{n-1} \times S^{m-1}) \) for \(1 < p < \infty \). Furthermore, they proved that the exponent 1 is the best possible.

In this article, we extend and improve the corresponding results in [1, 11, 12]. Our main result is formulated as follows.

Theorem 1.1. Suppose that \(\Omega \in L(\log L)(S^{n-1} \times S^{m-1}) \) and satisfies (1.2)-(1.3). Then \(\mathcal{M}_\Omega \) is bounded on \(L^p(\mathbb{R}^n \times \mathbb{R}^m) \) for \(p \in (1, \infty) \).

Throughout this paper, the letter \(C \) denotes a bounded positive constant that may vary at each occurrence but independent of the essential variables.

2. Some lemmas

In this section, we give some auxiliary lemmas used in the sequel. The following is found in [8, 24]. For \((x, y) \in \mathbb{R}^n \times \mathbb{R}^m\), set
\[x_1 = \rho_1^\alpha_1 \cos \theta_1 \cdots \cos \theta_{n-2} \cos \theta_{n-1}, \quad y_1 = \rho_2^\beta_1 \cos \theta_1 \cdots \cos \theta_{m-2} \cos \theta_{m-1}, \]
\[x_2 = \rho_1^\alpha_2 \cos \theta_1 \cdots \cos \theta_{n-2} \sin \theta_{n-1}, \quad y_2 = \rho_2^\beta_2 \cos \theta_1 \cdots \cos \theta_{m-2} \sin \theta_{m-1}, \]
\[\vdots \]
\[x_{n-1} = \rho_1^\alpha_{n-1} \cos \theta_1 \sin \theta_2, \quad y_{m-1} = \rho_2^\beta_{m-1} \cos \theta_1 \sin \theta_2, \]
\[x_n = \rho_1^\alpha_n \sin \theta_1, \quad y_m = \rho_2^\beta_m \sin \theta_1. \]

Then \(\rho_1^\alpha \rho_2^\beta = \rho_1^\alpha \rho_2^\beta \), \(J_1(\theta_1, \cdots, \theta_{n-1}) J_2(\theta_1, \cdots, \theta_{m-1}) \) is a function from \(\mathbb{R}^n \) to \(\mathbb{R}^m \). For suitable \(f \), let \(M_{f} \) be the maximal operator defined on \(\mathbb{R}^n \) by

\[M_{f}(x) = \sup_{h>0} \frac{1}{h} \left| \int_0^h f(x - \Gamma(t)) dt \right| \]

for \(x \in \mathbb{R}^n \). Then for \(1 < p \leq \infty \), there exists a constant \(C_p > 0 \) such that

\[\| M_{f} \|_p \leq C_p \| f \|_p. \]

The constant \(C_p \) is independent of \(\alpha_i \) and \(f \).

Lemma 2.2. Suppose that \(\alpha_i \), \(\beta_i \), \(\alpha'_i \), and \(\beta'_i \) are fixed real numbers. Let \(\Gamma(t) = (a_1 t^{\alpha_1}, \cdots, a_n t^{\alpha_n}) \) and \(\Lambda(t) = (b_1 t^{\beta_1}, \cdots, b_m t^{\beta_m}) \), and let \(M_{f, \Lambda} \) be the maximal operator defined on \(\mathbb{R}^n \times \mathbb{R}^m \) by

\[M_{f, \Lambda}(x, y) = \sup_{h_1, h_2 > 0} \frac{1}{h_1 h_2} \left| \int_0^{h_2} \int_0^{h_1} f(x - \Gamma(t), y - \Lambda(r)) dr dt \right| \]

for \((x, y) \in \mathbb{R}^n \times \mathbb{R}^m \). Then for \(1 < p \leq \infty \), there exists a constant \(C_p > 0 \) (independent of \(\alpha_i \), \(\beta_i \), \(\alpha'_i \), \(\beta'_i \), and \(f \)) such that

\[\| M_{f, \Lambda} \|_p \leq C_p \| f \|_p. \]

The proof of Lemma 2.2 follows immediately by using Lemma 2.1 and the inequality \(M_{f, \Lambda}(x, y) \leq M_\Lambda \circ M_f(x, y) \), where \(\circ \) denotes the composition of operators.

We shall recall the following lemma due to Madych.

\[\text{Parabolic Marcinkiewicz integrals on product spaces} \]

1550
Lemma 2.3. [20] Let \(\Phi \in \mathcal{S}(\mathbb{R}^n) \) satisfy \(\hat{\Phi}(0) = 0 \). Denote \(\Phi_t(x) = t^{-\alpha} \Phi(A_{t^{-1}}x) \) for \(t > 0 \), the Littlewood-Paley \(g \)-function related to the transform \(A \) is defined by

\[
g_{\Phi}(f)(x) = \left(\int_0^\infty |\Phi_t * f(x)|^2 \frac{dt}{t} \right)^{1/2}.
\]

Then there is a positive constant \(C \) such that \(\|g_{\Phi}(f)\|_p \leq C\|f\|_p \) for any \(f \in L^p(\mathbb{R}^n) \) and \(1 < p < \infty \).

Similarly, we derive the following lemma.

Lemma 2.4. Let \(\Phi \in \mathcal{S}(\mathbb{R}^n), \Psi \in \mathcal{S}(\mathbb{R}^m) \) with \(\hat{\Phi}(0) = \hat{\Psi}(0) = 0 \). For \(s, t > 0 \), let \(\Phi_t(x) = t^{-\alpha} \Phi(A_{t^{-1}}x) \), \(\Psi_s(y) = s^{-\beta} \Psi(A_{s^{-1}}y) \) and \(\Gamma_{t,s}(x,y) = \Phi_t(x)\Psi_s(y) \).

Assume that the Littlewood-Paley \(g \)-function is defined by

\[
g_{\Phi,\Psi}(f)(x,y) = \left(\int_0^\infty \int_0^\infty |\Gamma_{t,s} * f(x,y)|^2 \frac{dt}{ts} \right)^{1/2}.
\]

Then there exists \(C > 0 \) such that \(\|g_{\Phi,\Psi}(f)\|_p \leq C\|f\|_p \) for any \(f \in L^p(\mathbb{R}^n \times \mathbb{R}^m) \) and \(1 < p < \infty \).

Lemma 2.5. [8] Let \(\gamma \in [0,1] \) and \(u, \xi \in \mathbb{R}^n \). Then

\[
\left| \int_1^2 e^{A_\lambda u \cdot \xi} \frac{d\lambda}{\lambda} \right| \leq C |u \cdot \xi|^{-\gamma},
\]

where \(A_\lambda \) is defined as above and \(\tau \) denotes the distinct numbers of \(\{\alpha_i\} \).

For a two-parameter family of measures \(\nu = \{\nu_{t,s} : t, s \in \mathbb{R}\} \) on \(\mathbb{R}^n \times \mathbb{R}^m \), we define the operator \(G_\nu \) and its corresponding maximal operator \(\nu^* \) by

\[
G_\nu(f)(x,y) = \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^m} |\nu_{t,s} * f(x,y)|^2 \, dt \, ds \right)^{1/2}
\]

and

\[
\nu^*(f) = \sup_{t,s \in \mathbb{R}} \|\nu_{t,s} * f\|.
\]

We write \(t^\pm = \min\{t^+, t^-\} \) and \(\|\nu_{t,s}\|_\nu \) for the total variation of \(\nu_{t,s} \).

The following is the main lemma of this section.

Lemma 2.6. Let \(a, b \geq 2, \gamma_1, \gamma_2 > 0, q > 1 \) and \(B > 0 \). Suppose that the family of measures \(\nu_{t,s} : t, s \in \mathbb{R} \) satisfies the following conditions:

(i) \(\|\nu_{t,s}\|_\nu \leq CB \) for \(t, s \in \mathbb{R} \);

(ii) \(\|\nu_{t,s}(\xi,\eta)\|_\nu \leq CB |A_{a^\gamma_1/\ln a} \xi|^{\pm\gamma_1/\ln a} |A_{b^\gamma_2/\ln b} \eta|^{\pm\gamma_2/\ln b} \) for \((\xi,\eta) \in \mathbb{R}^n \times \mathbb{R}^m \) and \(t, s \in \mathbb{R} \);

(iii) \(\|\nu^*(f)\|_q \leq CB \|f\|_q \) for \(f \in L^q(\mathbb{R}^n \times \mathbb{R}^m) \).

Then, for every \(p \) satisfying \(|1/p - 1/2| < 1/(2q) \), there is a constant \(C_p \) (independent of \(a, b, B, f \)) such that for any \(f \in L^p(\mathbb{R}^n \times \mathbb{R}^m) \),

\[
\|G_\nu(f)\|_p \leq C_p B \|f\|_p.
\]
Proof. We employ some ideas from [1, 8]. For $\kappa > 2$, let $\varphi^{(\kappa)}$ be a C^{∞} function supported in $[4/(5\kappa), (5\kappa)/4]$ such that

(i) $\varphi^{(\kappa)}(\xi) = \varphi^{(\kappa)}(\rho(\xi))$ for $\rho > 0$ and $\xi \in \mathbb{R}^N$;

(ii) $0 < \varphi^{(\kappa)}(\xi) \leq 1$;

(iii) $\int_{0}^{\infty} \frac{\varphi^{(\kappa)}(t)}{t} dt = 2 \ln \kappa$.

For $a, b > 2$, and for $(\xi, \eta) \in \mathbb{R}^n \times \mathbb{R}^m$, let $\Phi \in C^{\infty}(\mathbb{R}^n)$ and $\Psi \in C^{\infty}(\mathbb{R}^m)$ be given by $\Phi(\xi) = \varphi^{(a)}(\rho_1(\xi)^2)$ and $\Psi(\eta) = \varphi^{(b)}(\rho_2(\eta)^2)$. For $x \in \mathbb{R}^n, y \in \mathbb{R}^m$ and $t, s \in \mathbb{R}$, set

$$\Phi_t(x) = t^{-\alpha} \Phi(A_{t^{-1}}x), \Psi_s(y) = s^{-\beta} \Phi(A_{s^{-1}}y) \quad \text{and} \quad \Gamma_{t,s}(x,y) = \Phi_t(x)\Psi_s(y).$$

Thus, for any $f \in \mathcal{S}(\mathbb{R}^n \times \mathbb{R}^m)$, we get

$$f(x,y) = \int_{\mathbb{R} \times \mathbb{R}} \Gamma_{a^t,b^s} * f(x,y)dtds. \quad (2.3)$$

By Minkowski’s inequality, we reach that

$$G_{u,v}(f)(u,v) = \left(\int_{\mathbb{R} \times \mathbb{R}} \left| \int_{\mathbb{R} \times \mathbb{R}} \Gamma_{a^t+u,b^s+v} * \nu_{t,s} * f(x,y)dudv \right|^2 dtds \right)^{1/2} \quad (2.4)$$

where

$$H_{u,v}(f)(x,y) = \left(\int_{\mathbb{R} \times \mathbb{R}} \left| \int_{\mathbb{R} \times \mathbb{R}} \Gamma_{a^t+u,b^s+v} * \nu_{t,s} * f(x,y) \right|^2 dtds \right)^{1/2}. \quad (2.5)$$

Let us start estimating $\|H_{u,v}f\|_2$ for the case $u, v \geq 0$; the proof for the other cases are essentially the same and require only minor modifications. By Plancherel’s theorem, assumption (ii) and the techniques used in [8], we conclude that

$$\|H_{u,v}f\|_2^2 \leq CB \int_{\mathbb{R} \times \mathbb{R}} \left(\int_{\mathbb{R}^n \times \mathbb{R}^m} \left| \hat{f}(\xi, \eta) \right|^2 \left| \varphi^{(a)}(\rho_1(A_{u^{-1}}\xi)) \right|^2 |A_{u} \xi|^{2\gamma_1/lna} \right. \times \left| \varphi^{(b)}(\rho_2(A_{v^{-1}}\eta)) \right|^2 |A_{v} \eta|^{2\gamma_2/lnb} d\xi d\eta dt ds \\leq CB \int_{\mathbb{R} \times \mathbb{R}} \left(\int_{E_{u,v,t,s}} \left| \hat{f}(\xi, \eta) \right|^2 \left| A_{u} \xi \right|^{2\gamma_1/lna} \left| A_{v} \eta \right|^{2\gamma_2/lnb} d\xi d\eta \right) dt ds \quad (2.6)$$

where $E_{u,v,t,s} = \{(\xi, \eta) \in \mathbb{R}^n \times \mathbb{R}^m : \}$

$$\frac{2}{\sqrt{5}} a^{-u - 1/2} \leq a^t \rho_1(\xi) \leq \frac{\sqrt{5}}{2} a^{-u+1/2}, \quad \frac{2}{\sqrt{5}} b^{-v - 1/2} \leq b^s \rho_2(\eta) \leq \frac{\sqrt{5}}{2} b^{-v+1/2}. \}$$
Now, let us estimate \(\| H_{u,v} f \|_{p_0} \) for \(p_0 \) satisfying \(\frac{1}{2} - \frac{1}{p_0} = \frac{1}{2q} \) with \(p_0 \neq 2 \).

First, we consider \(1 < p_0 < 2 \). By the assumption \((i)\), we get

\[
(2.7) \quad \left\| \int_{\mathbb{R} \times \mathbb{R}} \nu_{t,s} \ast \Gamma_{u^{n+1},b^{n+1}} f(x,y) dt ds \right\|_1 \leq CB \left\| \int_{\mathbb{R} \times \mathbb{R}} \Gamma_{a^{n},b^{n}} f(x,y) dt ds \right\|_1.
\]

Further, by using the assumption \((iii)\), we achieve that

\[
(2.8) \quad \| \sup_{t,s \in \mathbb{R}} \| \nu_{t,s} \ast \Gamma_{u^{n+1},b^{n+1}} f \|_q \| \leq CB \| \sup_{t,s \in \mathbb{R}} \| \Gamma_{a^{n},b^{n}} f \|_q.
\]

By using the interpolation theorem between (2.7) and (2.8) and the Lemma 2.4, we deduce that

\[
(2.9) \quad \| H_{u,v} f \|_{p_0} \leq CB \left\| \int_{\mathbb{R} \times \mathbb{R}} \left(\| \Gamma_{a^{n},b^{n}} f \|_p \right)^2 dt ds \right\|_{p_0}^{1/2} \leq CB \| f \|_{p_0}.
\]

Next, consider the case \(2 < p_0 < \infty \). As \(q = \left(\frac{p_0}{2} \right)' \) and \(\left\| (H_{u,v}(f))^{1/2} \right\|_{p_0} = \| H_{u,v}(f) \|_{1/2} \), there is a non-negative function \(F \in L^q(\mathbb{R}^n \times \mathbb{R}^m) \) with \(\| F \|_q \leq 1 \) such that

\[
(2.10) \quad \| H_{u,v}(f) \|_{p_0}^2 = \left\| \left(\int_{\mathbb{R} \times \mathbb{R}} \left| \Gamma_{u^{n+1},b^{n+1}} \ast \nu_{t,s} f(x,y) \right|^2 dt ds \right)^{1/2} \right\|_{p_0}^2 \leq \int_{\mathbb{R}^n \times \mathbb{R}^m} \int_{\mathbb{R} \times \mathbb{R}} \left| \Gamma_{a^{n+1},b^{n+1}} \ast \nu_{t,s} f(x,y) \right|^2 dt ds f(x,y) dx dy.
\]

By using Holder’s inequality, (2.10), Lemma 2.4 plus the assumptions \((i)\) and \((iii)\), we obtain that

\[
(2.11) \quad \| H_{u,v}(f) \|_{p_0}^2 \leq \| \nu_{t,s} \|_1 \left\| \int_{\mathbb{R}^n \times \mathbb{R}^m} \int_{\mathbb{R} \times \mathbb{R}} \left| \Gamma_{a^{n+1},b^{n+1}} \ast f(x,y) \right|^2 dt ds \right\|_{p_0/2}^{p_0/2} \| F \|_{q} \leq CB \left(\int_{\mathbb{R}^n \times \mathbb{R}^m} \int_{\mathbb{R} \times \mathbb{R}} \left| \Gamma_{a^{n+1},b^{n+1}} \ast f(x,y) \right|^2 dt ds \right)^{p_0/2} dx dy \left\| \nu^{*}(\tilde{F}) \right\|_q.
\]

where \(\tilde{F}(x,y) = F(-x,-y) \). Thus, by (2.9) and (2.11) we reach that

\[
(2.12) \quad \| H_{u,v}(f) \|_{p_0} \leq CB \| f \|_{p_0}
\]

for any \(p_0 \) satisfying \(\frac{1}{2} - \frac{1}{p_0} = \frac{1}{2q} \) with \(p_0 \neq 2 \). Hence, interpolation between (2.6) and (2.12) gives that

\[
(2.13) \quad \| H_{u,v}(f) \|_{p_0} \leq CBE^{-\langle |u|^\gamma_1 + |v|^\gamma_2 \rangle} \| f \|_{p_0}.
\]
Therefore, by this and (2.2), we deduce that
\[
\|G_\nu(f)\|_p \leq \int_{\mathbb{R} \times \mathbb{R}} \|H_{u,v}(f)\|_p \, dudv \leq C_p \|f\|_p.
\]

3. Proof of Theorem 1.1

We prove Theorem 1.1 by applying the same approaches found in [1, 8], which have their roots in [16, 17]. Let us assume that $\Omega \in L(\log L)\left(\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}\right)$ and satisfies (1.2)-(1.3). For $k \in \mathbb{N}$, let $E_k = \{(x, y) \in \mathbb{S}^{n-1} \times \mathbb{S}^{m-1} : 2^{k-1} \leq |\Omega(x, y)| < 2^k\}$, $D = \{k \in \mathbb{N} : \sigma(E_k) > 2^{-2k}\}$. Denote $\varrho_n = \int_{\mathbb{S}^{n-1}} J(x, \cdot) \sigma(x)$ and $\varrho_m = \int_{\mathbb{S}^{m-1}} J(\cdot, y) \sigma(y)$. For $k \in \mathbb{N}$, define Ω_k by
\[
\Omega_k(x, y) = \Omega(x, y) \chi_{E_k}(x, y) - \frac{1}{\varrho_n} \int_{\mathbb{S}^{n-1}} \Omega(x, y) J(x, y) \chi_{E_k}(x, y) d\sigma(x)
\]
\[-\frac{1}{\varrho_m} \int_{\mathbb{S}^{m-1}} \Omega(x, y) J(x, y) \chi_{E_k}(x, y) d\sigma(y) + \frac{1}{\varrho_n \varrho_m} \int_{E_k} (x, y) \Omega(x, y) J(x, y) d\sigma(x) d\sigma(y),
\]
and
\[
\Omega_0(x, y) = \Omega(x, y) - \sum_{k \in D} \Omega_k(x, y).
\]

As in [8], it is easy to verify that $\|\Omega_0\|_2 \leq C$; and for $k \in \mathbb{N} \cup \{0\}$, Ω_k satisfies (1.2)-(1.3). For $k \in D$, we define the family of measures $\nu^{(k)} = \{\nu_{k,t,s} : t, s \in \mathbb{R}\}$ on $\mathbb{R}^n \times \mathbb{R}^m$ by
\[
\int_{\mathbb{R}^n \times \mathbb{R}^m} f \, d\nu_{k,t,s} = \frac{1}{2^{k(t+s)}} \int_{\rho_1(u) \leq 2^{kt}} \int_{\rho_2(v) \leq 2^{ks}} \frac{\Omega_k(u, v)}{\rho_1(u)^\alpha \rho_2(v)^\beta} f(u, v) \, dudv.
\]

Set $a_k = b_k = 2^k$, $B_k = 2^k \sigma(E_k)$, $\gamma_1 = \frac{2\ln 2}{N_1^2}$, and $\gamma_2 = \frac{2\ln 2}{N_2^2}$, where N_1^2, N_2^2 denote the distinct numbers $\{\alpha_i\}, \{\beta_j\}$, respectively; $0 < \delta < \min\{1, \frac{N_1^2}{2}, \frac{N_2}{2}, \frac{N_1^2}{\alpha}, \frac{N_2}{\beta}\}$. Thus,
\[
\|\nu_{k,t,s}\|_1 \leq \frac{1}{2^{k(t+s)}} \int_0^{2^{kt}} \int_{2^{ks}}^{2^{2ks}} \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}} |\Omega_k(u, v)| J(u, v) \sigma(u) \sigma(v) \, d\rho_1 \, d\rho_2 \, dJ(u, v)
\]
\[
\leq C 2^{k} \sigma(B_k) = CB_k.
\]

By the cancelation properties of Ω_k, and a simple change of variables, we derive that
\[
|\nu_{k,t,s}| \leq \frac{1}{2^{k(t+s)}} \int_0^{2^{kt}} \int_{2^{ks}}^{2^{2ks}} \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}} J(u, v) \Omega_k(u, v) \left| e^{-iA \mu_i u \cdot \xi} - 1 \right| \sigma(u) \sigma(v) \, d\rho_1 \, d\rho_2 \, dJ(u, v)
\]
\[
\leq \frac{1}{2^{kt}} \int_0^{2^{kt}} \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{m-1}} |\Omega_k(u, v)| |A \mu_i u \cdot \xi| \sigma(u) \sigma(v) \, d\rho_1 \, d\rho_2 \, dJ(u, v)
\]
Combining this estimate with the trivial estimate $|\hat{\nu}_{k,t,s}| \leq CB_k$ gives that
\begin{equation}
|\hat{\nu}_{k,t,s}| \leq CB_k \left| A_{\eta_k} \xi \right|^\frac{m}{m+k} \tag{3.4}
\end{equation}

In the same manner, we attain
\begin{equation}
|\hat{\nu}_{k,t,s}| \leq CB_k \left| A_{\eta_k} \eta \right|^\frac{m}{m+k} \tag{3.5}
\end{equation}

On the other hand, Lemma 2.5 and Hölder’s inequality lead to
\begin{align*}
|\hat{\nu}_{k,t,s}|^2 &\leq \sum_{i,j=0}^{\infty} \frac{1}{2^{i+j}} \int_{2^{i+j-1}}^{2^{i+j}} \int_{2^{i+j-1}}^{2^{i+j}} \left| \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}} J(u,v) \Omega_k(u,v)
ight| \left| e^{-i(A_{\rho_1} u \xi + A_{\rho_2} v \eta)} d\sigma(u)d\sigma(v) \right|^2 \frac{d\rho_1 d\rho_2}{\rho_1 \rho_2} \\
&\leq C \int_{\mathbb{S}^{n-1}} \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}} \Omega_k(u,v) \Omega_k(x,v) \\
&\times \sum_{j=0}^{\infty} \frac{1}{2^j} \int_{2^{j-1}}^{2^j} e^{-iA_{2^{j-1} \rho_1} (u-x) \cdot \xi} d\sigma(u) d\sigma(x) d\sigma(v) \\
&\leq C \sum_{j=0}^{\infty} \frac{1}{2^j} 2^{(\alpha^N)^{j+1}} \left| A_{2^j \xi} \xi \right|^{\frac{m}{m+k}} \\
&\times \int_{\mathbb{S}^{n-1}} \int_{\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}} \Omega_k(u,v) \Omega_k(x,v) \left| (u-x) \right| A_{2^j \rho_1} \left| \frac{2^j \xi}{A_{2^j \rho_1}} \right|^{\frac{m}{m+k}} d\sigma(u) d\sigma(x) d\sigma(v) \\
&\leq C \sum_{j=0}^{\infty} \frac{1}{2^j} \left| A_{2^j \xi} \xi \right|^{\frac{m}{m+k}} \left\| \Omega_k \right\|_2^2.
\end{align*}

Thus,
\begin{equation}
|\hat{\nu}_{k,t,s}| \leq C a_k B_k \left| A_{2^j \xi} \xi \right|^{\frac{m}{m+k}} \tag{3.6}
\end{equation}

Combining this estimate with the trivial estimate $|\hat{\nu}_{k,t,s}| \leq CB_k$ yields
\begin{equation}
|\hat{\nu}_{k,t,s}| \leq CB_k \left| A_{2^j \xi} \xi \right|^{-\frac{m}{m+k}} \tag{3.7}
\end{equation}

Similarly, we derive
\begin{equation}
|\hat{\nu}_{k,t,s}| \leq CB_k \left| A_{2^j \xi} \xi \right|^{-\frac{m}{m+k}} \tag{3.7}
\end{equation}
Finally, by definition of \((\nu^{(k)})^* (f) \), we have that
\[
(\nu^{(k)})^*(f)(x,y) = \sup_{t,s \in \mathbb{R}} |[\nu_{k,t,s}] * f| \leq C \int_{S^{n-1} \times S^{m-1}} |\Omega_k(u,v)|
\]
\[
\times \left(\sup_{t,s \in \mathbb{R}} \frac{1}{2^{k(t+s)}} \int_0^{2^{k(t+s)}} \int_0^{2^{k(t+s)}} |f(x - A_{\rho_1} u, y - A_{\rho_2} v)| d\rho_1 d\rho_2 \right) d\sigma(u) d\sigma(v)
\]
\[
\leq C \int_{S^{n-1} \times S^{m-1}} |\Omega_k(u,v)| M_{\Gamma, A}(f)(x,y) d\sigma(u) d\sigma(v).
\]
Therefore, by Lemma 2.2, we obtain that
\[
\left\| (\nu^{(k)})^*(f) \right\|_q \leq C \| f \|_p \|\Omega_k(u,v)\|_1
\]
(3.8)

Lemma 2.6 and (3.3)-(3.8) give that
\[
\| G_{\nu^{(k)}}(f) \|_p \leq C_p \| f \|_p.
\]
(3.9)

By this and Minkowski's inequality, we conclude that
\[
\| M_{\Gamma}(f) \|_p \leq C_p \| M_{\Omega}_k(f) \|_p + \sum_{k \in \mathcal{D}} (\ln 2^k) B_k \| G_{\nu^{(k)}}(f) \|_p
\]
\[
\leq C_p \left(1 + \sum_{k \in \mathcal{D}} (k) B_k \right) \| f \|_p
\]
\[
\leq C_p \left(1 + \| \Omega \|_{L(\log L)} \right) \| f \|_p \leq C_p \| f \|_p
\]
for \(1 < p < \infty \) and \(f \in L^p(\mathbb{R}^n \times \mathbb{R}^m) \). Thus, we finish the proof of Theorem 1.1.

Acknowledgements

The author would like to thank Dr. Hussain Al-Qassem for his suggestions and comments on this note.

References

(Mohammed Ali) DEPARTMENT OF MATHEMATICS AND STATISTICS, JORDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, IRBID, JORDAN.

E-mail address: myali@just.edu.jo