Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 6, pp. 1547-1557

Title:

Parabolic Marcinkiewicz integrals on product spaces
Author(s):
M. Ali

Published by Iranian Mathematical Society

PARABOLIC MARCINKIEWICZ INTEGRALS ON PRODUCT SPACES

M. ALI
(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we study the $L^{p}(1<p<\infty)$ boundedness for the parabolic Marcinkiewicz integral when the kernel function Ω belongs to the class $L(\log L)\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$. Our result essentially extend and improve some known results. Keywords: L^{p} boundedness, parabolic Marcinkiewicz integrals, rough kernels, product spaces. MSC(2010): Primary: 40B20; Secondary: 40B15, 40B25.

1. Introduction and preliminaries

Let $\mathbf{R}^{N}(N=n$ or $m), N \geq 2$ be the N-dimensional Euclidean space, and let \mathbf{S}^{N-1} be the unit sphere in \mathbf{R}^{N} which is equipped with the normalized Lebesgue surface measure $d \sigma=d \sigma(\cdot)$. Also, let p^{\prime} denote to the exponent conjugate to p; that is $1 / p+1 / p^{\prime}=1$.

For $i=1,2, \cdots, N$, let α_{i} be fixed real numbers such that $\alpha_{i} \geq 1$. For fixed $z \in \mathbf{R}^{N}$, the function $F(z, \rho)=\sum_{i=1}^{N} \frac{z_{i}^{2}}{\rho^{2 \alpha_{i}}}$ is decreasing in $\rho>0$. The unique solutions of the equations $F(z, \rho)=1$ is denoted by $\rho(z)$.

For $\lambda>0$, let $A_{\lambda}=\left[\begin{array}{ccc}\lambda^{\alpha_{1}} & & 0 \\ & \ddots & \\ 0 & & \lambda^{\alpha_{N}}\end{array}\right]$, and let $K_{\Omega, \rho}(z)=\Omega(z) \rho(z)^{1-\alpha}$,
where $\alpha=\sum_{i=1}^{N} \alpha_{i}$ and Ω is a real valued and measurable function on \mathbf{R}^{N} with $\Omega \in L^{1}\left(\mathbf{S}^{N-1}\right)$ satisfying the conditions

$$
\Omega\left(A_{\lambda} z\right)=\Omega(z) \quad \text { and } \quad \int_{\mathbf{S}^{N-1}} \Omega\left(z^{\prime}\right) J\left(z^{\prime}\right) d \sigma\left(z^{\prime}\right)=0
$$

[^0]where $J\left(z^{\prime}\right)$ is defined as in [8]. The parabolic Marcinkiewicz integral μ_{Ω}, which was introduced by Ding, Xue and Yabuta in [15], is defined by
$$
\mu_{\Omega} f(z)=\left(\int_{0}^{\infty}\left|F_{\Omega, t}(z)\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2}
$$
where
$$
F_{\Omega, t}(z)=\int_{\rho(u) \leq t} K_{\Omega, \rho}(u) f(z-u) d u .
$$

In particular, the authors of [15] proved that the parabolic Littlewood-Paley operator μ_{Ω} is bounded for $p \in(1, \infty)$ provided that $\Omega \in L^{q}\left(\mathbf{S}^{N-1}\right)$ for $q>1$. Subsequently, the study of the L^{p} boundedness of μ_{Ω} under various conditions on the function Ω has been studied by many authors (see for example [?, 8,24$]$). A particular result that is closely related to our work is the boundedness result of μ_{Ω} obtained by Cheng and Ding in [8]. If fact, they proved that μ_{Ω} is bounded under the condition $\Omega \in L(\log L)^{1 / 2}\left(\mathbf{S}^{n-1}\right)$ for $1<p<\infty$.

We point out that the class of the operators μ_{Ω} is related to the class of the parabolic singular integral operators

$$
T_{\Omega} f(z)=p \cdot v \cdot \int_{\mathbf{R}^{N}} \frac{\Omega(u)}{\rho(u)^{\alpha}} f(z-u) d u .
$$

The class of the operators T_{Ω} belongs to the class of singular Radon transforms, which has considered to study by many mathematicians (we refer the readers, in particular, to $[18,21]$).

If $\alpha_{1}=\cdots=\alpha_{N}=1$, then $\rho(z)=|z|, \alpha=N$ and $\left(\mathbf{R}^{N}, \rho\right)=\left(\mathbf{R}^{N},|\cdot|\right)$. In this case, μ_{Ω} is just the classical Marcinkiewicz integral, which were introduced by Stein in [23]. For more information about the importance and the recent advances on the study of such operators, the readers are refereed (for instance to $[3,4,10,14,17,19]$, and the references therein).

Although some open problems related to the boundedness of parabolic Marcinkiewicz integral in the one-parameter setting remain open, the investigation of L^{p} estimates of the Marcinkiewicz integral on product spaces has been started (see for example [1,2,5-7,11-13].)

Our main interest in this paper is to study the L^{p} boundedness of the parabolic Marcinkiewicz integral with a rough kernel on product spaces. Namely, for $i=1,2, \cdots, n$ and $j=1,2, \cdots, m$, let α_{i}, β_{j} be fixed real numbers such that $\alpha_{i}, \beta_{j} \geq 1$, and let $K_{\Omega, \rho_{1}, \rho_{2}}(x, y)=\Omega(x, y) \rho_{1}(x)^{1-\alpha} \rho_{2}(y)^{1-\beta}$, where $\alpha=\sum_{i=1}^{n} \alpha_{i}$, $\beta=\sum_{j=1}^{m} \beta_{j}$ and Ω is a real valued and measurable function on $\mathbf{R}^{n} \times \mathbf{R}^{m}$ with
$\Omega \in L^{1}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ satisfying the conditions

$$
\begin{align*}
\Omega\left(A_{\lambda_{1}} x, A_{\lambda_{2}} y\right) & =\Omega(x, y) \text { and } \tag{1.1}\\
\int_{\mathbf{S}^{n-1}} \Omega\left(x^{\prime}, .\right) J\left(x^{\prime}, .\right) d \sigma\left(x^{\prime}\right) & =\int_{\mathbf{S}^{m-1}} \Omega\left(., y^{\prime}\right) J\left(., y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0, \tag{1.2}
\end{align*}
$$

where $\lambda_{1}, \lambda_{2}>0$, and $J\left(x^{\prime}, y^{\prime}\right)$ is a function on the unit sphere $\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}$ in $\mathbf{R}^{n} \times \mathbf{R}^{m}$, that will be defined later.

The parabolic Marcinkiewicz integral operator \mathcal{M}_{Ω} for $f \in \mathcal{S}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$ is given by

$$
\begin{equation*}
\mathcal{M}_{\Omega} f(x, y)=\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|F_{t, s}(x, y)\right|^{\frac{d}{}} \frac{d t d s}{t^{3} s^{3}}\right)^{1 / 2} \tag{1.3}
\end{equation*}
$$

where

$$
F_{t, s}(x, y)=\int_{\rho_{1}(u) \leq t} \int_{\rho_{2}(v) \leq s} K_{\Omega, \rho_{1}, \rho_{2}}(u, v) f(x-u, y-v) d u d v
$$

When $\alpha_{1}=\cdots=\alpha_{n}=1$, and $\beta_{1}=\cdots=\beta_{m}=1$, then $\rho_{1}(x)=|x|$, $\rho_{2}(y)=|y|, \alpha=n$, and $\beta=m$. In this case, \mathcal{M}_{Ω} is just the classical Marcinkiewicz integral on product domains, which was studied by many mathematicians. For instance, the author of [13] gave the L^{2} boundedness of \mathcal{M}_{Ω} if $\Omega \in L(\log L)^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$. Subsequently, it was verified in [11] that \mathcal{M}_{Ω} is bounded for all $1<p<\infty$ provided that $\Omega \in L(\log L)^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$. This result was improved (for $p=2$) in [12] in which the author established that \mathcal{M}_{Ω} is bounded on $L^{2}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$ for all $\Omega \in L(\log L)\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$. Recently, Al-Qaseem et al. found in [1] that the boundedness of \mathcal{M}_{Ω} is obtained under the condition $\Omega \in L(\log L)\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ for $1<p<\infty$. Furthermore, they proved that the exponent 1 is the best possible.

In this article, we extend and improve the corresponding results in $[1,11,12]$. Our main result is formulated as follows.

Theorem 1.1. Suppose that $\Omega \in L(\log L)\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ and satisfies (1.2)(1.3). Then \mathcal{M}_{Ω} is bounded on $L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$ for $p \in(1, \infty)$.

Throughout this paper, the letter C denotes a bounded positive constant that may vary at each occurrence but independent of the essential variables.

2. Some lemmas

In this section, we give some auxiliary lemmas used in the sequel. The following is found in $[8,24]$. For $(x, y) \in \mathbf{R}^{n} \times \mathbf{R}^{m}$, set

$$
\begin{array}{ll}
x_{1}=\rho_{1}^{\alpha_{1}} \cos \theta_{1} \cdots \cos \theta_{n-2} \cos \theta_{n-1}, & y_{1}=\rho_{2}^{\beta_{1}} \cos \vartheta_{1} \cdots \cos \vartheta_{m-2} \cos \vartheta_{m-1}, \\
x_{2}=\rho_{1}^{\alpha_{2}} \cos \theta_{1} \cdots \cos \theta_{n-2} \sin \theta_{n-1}, & y_{2}=\rho_{2}^{\beta_{2}} \cos \vartheta_{1} \cdots \cos \vartheta_{m-2} \sin \vartheta_{m-1}, \\
\vdots & \vdots \\
x_{n-1}=\rho_{1}^{\alpha_{n-1}} \cos \theta_{1} \sin \theta_{2}, & y_{m-1}=\rho_{2}^{\beta_{m-1}} \cos \vartheta_{1} \sin \vartheta_{2}, \\
x_{n}=\rho_{1}^{\alpha_{n}} \sin \theta_{1}, & y_{m}=\rho_{2}^{\beta m} \sin \vartheta_{1} .
\end{array}
$$

Then $d x d y=\rho_{1}^{\alpha-1} \rho_{2}^{\beta-1} J_{1}\left(\theta_{1}, \cdots, \theta_{n-1}\right) J_{2}\left(\vartheta_{1}, \cdots, \vartheta_{m-1}\right) d \rho_{1} d \rho_{2} d \sigma\left(x^{\prime}\right) d \sigma\left(y^{\prime}\right)$, where $\rho_{1}^{\alpha-1} J_{1}$
$\left(\theta_{1}, \cdots, \theta_{n-1}\right)$ and $\rho_{2}^{\beta-1} J_{2}\left(\vartheta_{1}, \cdots, \vartheta_{m-1}\right)$ are the Jacobians of the above transforms. In [18], it was shown that $J_{1}=J_{1}\left(\theta_{1}, \cdots, \theta_{n-1}\right)$ is a C^{∞} function in the variable $x^{\prime} \in \mathbf{S}^{n-1}$, also it was proved that $1 \leq J_{1}\left(\theta_{1}, \cdots, \theta_{n-1}\right) \leq L$ for some real number $L \geq 1$, and so for $J_{2}\left(\vartheta_{1}, \cdots, \vartheta_{m-1}\right)$. For simplicity, we denote $J_{1}\left(\theta_{1}, \cdots, \theta_{n-1}\right) J_{2}\left(\vartheta_{1}, \cdots, \vartheta_{m-1}\right)$ by $J\left(x^{\prime}, y^{\prime}\right)$.

In order to prove Theorem 1.1, we need the following lemmas.
Lemma 2.1. [22] Suppose that $\lambda_{i}^{\prime} s$ and $\alpha_{i}^{\prime} s$ are fixed real numbers, and $\Gamma(t)=$ $\left(\lambda_{1} t^{\alpha_{1}}, \cdots, \lambda_{N} t^{\alpha_{N}}\right)$ is a function from \boldsymbol{R}^{+}to \boldsymbol{R}^{N}. For suitable f, let \mathcal{M}_{Γ} be the maximal operator defined on \boldsymbol{R}^{N} by

$$
\mathcal{M}_{\Gamma} f(x)=\sup _{h>0} \frac{1}{h}\left|\int_{0}^{h} f(x-\Gamma(t)) d t\right|
$$

for $x \in \boldsymbol{R}^{N}$. Then for $1<p \leq \infty$, there exists a constant $C_{p}>0$ such that

$$
\left\|\mathcal{M}_{\Gamma} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

The constant C_{p} is independent of $\lambda_{i}^{\prime} s$ and f.
Lemma 2.2. Suppose that $a_{i}^{\prime} s, b_{i}^{\prime} s, \alpha_{i}^{\prime} s$, and $\beta_{i}^{\prime} s$ are fixed real numbers. Let $\Gamma(t)=\left(a_{1} t^{\alpha_{1}}, \cdots, a_{n} t^{\alpha_{n}}\right)$ and $\Lambda(t)=\left(b_{1} t^{\beta_{1}}, \cdots, b_{m} t^{\beta_{m}}\right)$; and let $\mathcal{M}_{\Gamma, \Lambda}$ be the maximal operator defined on $\boldsymbol{R}^{n} \times \boldsymbol{R}^{m}$ by

$$
\mathcal{M}_{\Gamma, \Lambda} f(x, y)=\sup _{h_{1}, h_{2}>0} \frac{1}{h_{1} h_{2}}\left|\int_{0}^{h_{1}} \int_{0}^{h_{2}} f(x-\Gamma(t), y-\Lambda(r)) d t d r\right|
$$

for $(x, y) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$. Then for $1<p \leq \infty$, there exists a constant $C_{p}>0$ (independent of $a_{i}^{\prime} s, b_{j}^{\prime} s$, and f) such that

$$
\left\|\mathcal{M}_{\Gamma, \Lambda} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

The proof of Lemma 2.2 follows immediately by using Lemma 2.1 and the inequality $\mathcal{M}_{\Gamma, \Lambda} f(x, y) \leq \mathcal{M}_{\Lambda} \circ \mathcal{M}_{\Gamma} f(x, y)$, where \circ denotes the composition of operators.

We shall recall the following lemma due to Madych.

Lemma 2.3. [20] Let $\Phi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$ satisfy $\hat{\Phi}(0)=0$. Denote $\Phi_{t}(x)=t^{-\alpha} \Phi\left(A_{t^{-1}} x\right)$ for $t>0$, the Littlewood-Paley g-function related to the transform A is defined by

$$
g_{\Phi}(f)(x)=\left(\int_{0}^{\infty}\left|\Phi_{t} * f(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2}
$$

Then there is a positive constant C such that $\left\|g_{\Phi}(f)\right\|_{p} \leq C\|f\|_{p}$ for any $f \in$ $L^{p}\left(\boldsymbol{R}^{n}\right)$ and $1<p<\infty$.

Similarly, we derive the following lemma.
Lemma 2.4. Let $\Phi \in \mathcal{S}\left(\boldsymbol{R}^{n}\right), \Psi \in \mathcal{S}\left(\boldsymbol{R}^{m}\right)$ with $\hat{\Phi}(0)=\hat{\Psi}(0)=0$. For $s, t>0$, let $\Phi_{t}(x)=t^{-\alpha} \Phi\left(A_{t^{-1}} x\right), \Psi_{s}(y)=s^{-\beta} \Psi\left(A_{s^{-1}} y\right)$ and $\Gamma_{t, s}(x, y)=\Phi_{t}(x) \Psi_{s}(y)$. Assume that the Littlewood-Paley g-function is defined by

$$
g_{\Phi, \Psi}(f)(x, y)=\left(\int_{0}^{\infty} \int_{0}^{\infty}\left|\Gamma_{t, s} * f(x, y)\right|^{2} \frac{d t d s}{t s}\right)^{1 / 2}
$$

Then there exists $C>0$ such that $\left\|g_{\Phi, \Psi}(f)\right\|_{p} \leq C\|f\|_{p}$ for any $f \in L^{p}\left(\boldsymbol{R}^{n} \times\right.$ \boldsymbol{R}^{m}) and $1<p<\infty$.
Lemma 2.5. [8] Let $\gamma \in[0,1]$ and $u, \xi \in \boldsymbol{R}^{n}$. Then

$$
\left|\int_{1}^{2} e^{A_{\lambda} u \cdot \xi} \frac{d \lambda}{\lambda}\right| \leq C|u \cdot \xi|^{-\frac{\gamma}{\tau}}
$$

where A_{λ} is defined as above and τ denotes the distinct numbers of $\left\{\alpha_{i}\right\}$.
For a two-parameter family of measures $\nu=\left\{\nu_{t, s}: t, s \in \mathbf{R}\right\}$ on $\mathbf{R}^{n} \times \mathbf{R}^{m}$, we define the operator G_{ν} and its corresponding maximal operator ν^{*} by

$$
\begin{equation*}
G_{\nu}(f)(x, y)=\left(\iint_{\mathbf{R} \times \mathbf{R}}\left|\nu_{t, s} * f(x, y)\right|^{2} d t d s\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu^{*}(f)=\sup _{t, s \in \mathbf{R}}| | \nu_{t, s}|* f| \tag{2.2}
\end{equation*}
$$

We write $t^{ \pm \alpha}=\min \left\{t^{+\alpha}, t^{-\alpha}\right\}$ and $\left\|\nu_{t, s}\right\|$ for the total variation of $\nu_{t, s}$. The following is the main lemma of this section.
Lemma 2.6. Let $a, b \geq 2, \gamma_{1}, \gamma_{2}>0, q>1$ and $B>0$. Suppose that the family of measures $\left\{\nu_{t, s}: t, s \in \boldsymbol{R}\right\}$ satisfies the following conditions:
(i) $\left\|\nu_{t, s}\right\| \leq C B$ for $t, s \in \mathbf{R}$;
(ii) $\left\|\widehat{\nu}_{t, s}(\xi, \eta)\right\| \leq C B\left|A_{a^{t}} \xi\right|^{ \pm \gamma_{1} / \ln a}\left|A_{b^{t}} \eta\right|^{ \pm \gamma_{2} / \ln b}$ for $(\xi, \eta) \in \mathbf{R}^{n} \times \mathbf{R}^{m}$ and $t, s \in \mathbf{R}$;
(iii) $\left\|\nu^{*}(f)\right\|_{q} \leq C B\|f\|_{q}$ for $f \in L^{q}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$.

Then, for every p satisfying $|1 / p-1 / 2|<1 /(2 q)$, there is a constant C_{p} (independent of $a, b, B, f)$ such that for any $f \in L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$,

$$
\left\|G_{\nu}(f)\right\|_{p} \leq C_{p} B\|f\|_{p}
$$

Proof. We employ some ideas from $[1,8]$. For $\kappa>2$, let $\varphi^{(\kappa)}$ be a $\in C^{\infty}$ function supported in $[4 /(5 \kappa),(5 \kappa) / 4]$ such that
(i) $\varphi^{(\kappa)}(\zeta)=\varphi^{(\kappa)}(\rho(\zeta))$ for $\rho>0$ and $\zeta \in \mathbf{R}^{N}$;
(ii) $0<\varphi^{(\kappa)}(\zeta) \leq 1$;
(iii) $\int_{0}^{\infty} \frac{\varphi^{(\kappa)}(t)}{t} d t=2 \ln \kappa$.

For $a, b>2$, and for $(\xi, \eta) \in \mathbf{R}^{n} \times \mathbf{R}^{m}$, let $\Phi \in C^{\infty}\left(\mathbf{R}^{n}\right)$ and $\Psi \in C^{\infty}\left(\mathbf{R}^{m}\right)$ be given by $\hat{\Phi}(\xi)=\varphi^{(a)}\left(\rho_{1}(\xi)^{2}\right)$ and $\hat{\Psi}(\eta)=\varphi^{(b)}\left(\rho_{2}(\eta)^{2}\right)$. For $x \in \mathbf{R}^{n}, y \in \mathbf{R}^{m}$ and $t, s \in \mathbf{R}$, set

$$
\Phi_{t}(x)=t^{-\alpha} \Phi\left(A_{t^{-1}} x\right), \Psi_{s}(y)=s^{-\beta} \Phi\left(A_{s^{-1}} y\right) \quad \text { and } \quad \Gamma_{t, s}(x, y)=\Phi_{t}(x) \Psi_{s}(y)
$$

Thus, for any $f \in \mathcal{S}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$, we get

$$
\begin{equation*}
f(x, y)=\int_{\mathbf{R} \times \mathbf{R}} \Gamma_{a^{t}, b^{s}} * f(x, y) d t d s \tag{2.3}
\end{equation*}
$$

By Minkowski's inequality, we reach that

$$
\begin{align*}
G_{\nu}(f)(u, v) & =\left(\int_{\mathbf{R} \times \mathbf{R}}\left|\int_{\mathbf{R} \times \mathbf{R}} \Gamma_{a^{t+u}, b^{s+v}} * \nu_{t, s} * f(x, y) d u d v\right|^{2} d t d s\right)^{1 / 2} \\
& \leq \int_{\mathbf{R} \times \mathbf{R}}\left(H_{u, v} f\right)(x, y) d u d v \tag{2.4}
\end{align*}
$$

where

$$
\begin{equation*}
\left(H_{u, v} f\right)(x, y)=\left(\int_{\mathbf{R} \times \mathbf{R}}\left|\Gamma_{a^{t+u}, b^{s+v}} * \nu_{t, s} * f(x, y)\right|^{2} d t d s\right)^{1 / 2} . \tag{2.5}
\end{equation*}
$$

Let us start estimating $\left\|H_{u, v} f\right\|_{2}$ for the case $u, v \geq 0$; the proof for the other cases are essentially the same and require only minor modifications. By Plancherel's theorem, assumption (ii) and the techniques used in [8], we conclude that

$$
\left.\begin{array}{rl}
\left\|H_{u, v} f\right\|_{2}^{2} \leq & C B \int_{\mathbf{R} \times \mathbf{R}}\left(\int_{\mathbf{R}^{n} \times \mathbf{R}^{m}}|\hat{f}(\xi, \eta)|^{2}\left|\varphi^{(a)}\left(\rho_{1}\left(A_{a^{u+t}} \xi\right)^{2}\right)\right|^{2}\left|A_{a^{t}} \xi\right|^{2 \gamma_{1} / \ln a}\right. \\
& \left.\times\left|\varphi^{(b)}\left(\rho_{2}\left(A_{b^{v+s}} \eta\right)^{2}\right)\right|^{2}\left|A_{b^{s}} \eta\right|^{2 \gamma_{2} / \ln b}\right) d \xi d \eta d t d s \\
\leq & C B \int_{\mathbf{R} \times \mathbf{R}}\left(\int_{E_{u, v, t, s}}|\hat{f}(\xi, \eta)|^{2}\left\{\left|A_{a^{t}} \xi\right|^{2 \gamma_{1} / \ln a}\right\}\left\{\left|A_{b^{s}} \eta\right|^{2 \gamma_{2} / \ln b}\right\} d \xi d \eta\right) d t d s \\
\leq & C B e^{-2\left(|u| \gamma_{1}+|v| \gamma_{2}\right)}\|f\|_{2}^{2}, \\
\text { (2.6) } \quad
\end{array}\right\} \begin{aligned}
& \text { where } E_{u, v, t, s}=\left\{(\xi, \eta) \in \mathbf{R}^{n} \times \mathbf{R}^{m}:\right. \\
& \left.\frac{2}{\sqrt{5}} a^{-u-1 / 2} \leq a^{t} \rho_{1}(\xi) \leq \frac{\sqrt{5}}{2} a^{-u+1 / 2}, \quad \frac{2}{\sqrt{5}} b^{-v-1 / 2} \leq b^{s} \rho_{2}(\eta) \leq \frac{\sqrt{5}}{2} b^{-v+1 / 2}\right\}
\end{aligned}
$$

Now, let us estimate $\left\|H_{u, v} f\right\|_{p_{0}}$ for p_{0} satisfying $\left|\frac{1}{2}-\frac{1}{p_{0}}\right|=\frac{1}{2 q}$ with $p_{0} \neq 2$. First, we consider $1<p_{0}<2$. By the assumption (i), we get

$$
\begin{equation*}
\left\|\int_{\mathbf{R} \times \mathbf{R}} \nu_{t, s} * \Gamma_{a^{u+t}, b^{v+s}} * f(x, y) d t d s\right\|_{1} \leq C B\left\|\int_{\mathbf{R} \times \mathbf{R}} \Gamma_{a^{t}, b^{s}} * f(x, y) d t d s\right\|_{1} . \tag{2.7}
\end{equation*}
$$

Further, by using the assumption (iii), we achieve that

$$
\begin{align*}
\left\|\sup _{t, s \in \mathbf{R}}\left|\nu_{t, s} * \Gamma_{a^{u+t}, b^{v+s}} * f\right|\right\|_{q} & \leq\left\|\nu^{*}\left(\sup _{t, s \in \mathbf{R}}\left|\Gamma_{a^{t}, b^{s}} * f\right|\right)\right\|_{q} \\
& \leq C B\left\|\sup _{t, s \in \mathbf{R}}\left|\Gamma_{a^{t}, b^{s}} * f\right|\right\|_{q} . \tag{2.8}
\end{align*}
$$

By using the interpolation theorem between (2.7) and (2.8) and the Lemma 2.4, we deduce that

$$
\begin{align*}
\left\|H_{u, v} f\right\|_{p_{0}} & \leq C B\left\|\int_{\mathbf{R} \times \mathbf{R}}\left(\left|\Gamma_{a^{t}, b^{s}} * f\right|^{2} d t d s\right)^{1 / 2}\right\|_{p_{0}} \\
& \leq C B\|f\|_{p_{0}} \tag{2.9}
\end{align*}
$$

Next, consider the case $2<p_{0}<\infty$. As $q=\left(\frac{p_{0}}{2}\right)^{\prime}$ and $\left\|\left(H_{u, v}(f)\right)^{1 / 2}\right\|_{p_{0}}=$ $\left\|H_{u, v}(f)\right\|_{p_{0} / 2}^{1 / 2}$, there is a non-negative function $\digamma \in L^{q}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$ with $\|\digamma\|_{q} \leq$ 1 such that

$$
\begin{align*}
\left\|H_{u, v}(f)\right\|_{p_{0}}^{2} & =\left\|\left(\int_{\mathbf{R} \times \mathbf{R}}\left|\Gamma_{a^{u+t}, b^{v+s}} * \nu_{t, s} * f(x, y)\right|^{2} d t d s\right)^{1 / 2}\right\|_{p_{0}}^{2} \\
(2.10) & =\int_{\mathbf{R}^{n} \times \mathbf{R}^{m}} \int_{\mathbf{R} \times \mathbf{R}}\left|\Gamma_{a^{u+t}, b^{v+s}} * \nu_{t, s} * f(x, y)\right|^{2} d t d s \digamma(x, y) d x d y \tag{2.10}
\end{align*}
$$

By using Holder's inequality, (2.10), Lemma 2.4 plus the assumptions (i) and (iii), we obtain that
$\left\|H_{u, v}(f)\right\|_{p_{0}}^{2} \leq\left\|\nu_{t, s}\right\|_{1} \int_{\mathbf{R}^{n} \times \mathbf{R}^{m}} \int_{\mathbf{R} \times \mathbf{R}}\left|\nu_{t, s}\right| *\left|\Gamma_{a^{u+t}, b^{v+s}} * f\right|^{2} d t d s|\digamma(x, y)| d x d y$ $\leq C B\left(\int_{\mathbf{R}^{n} \times \mathbf{R}^{m}}\left(\int_{\mathbf{R} \times \mathbf{R}}\left|\Gamma_{a^{u+t}, b^{v+s}} * f(x, y)\right|^{2} d t d s\right)^{p_{0} / 2} d x d y\right)^{2 / p_{0}}\left\|\nu^{*}(\widetilde{\digamma})\right\|_{q}$

$$
\leq C B\|f\|_{p_{0}}^{2}
$$

where $\widetilde{\digamma}(x, y)=\digamma(-x,-y)$. Thus, by (2.9) and (2.11) we reach that

$$
\begin{equation*}
\left\|H_{u, v}(f)\right\|_{p_{0}} \leq C B|f|_{p_{0}} \tag{2.12}
\end{equation*}
$$

for any p_{0} satisfying $\left|\frac{1}{2}-\frac{1}{p_{0}}\right|=\frac{1}{2 q}$ with $p_{0} \neq 2$. Hence, interpolation between (2.6) and (2.12) gives that

$$
\begin{equation*}
\left\|H_{u, v}(f)\right\|_{p_{0}} \leq C B e^{-\left(|u| \gamma_{1}+|v| \gamma_{2}\right)}\|f\|_{p_{0}} \tag{2.13}
\end{equation*}
$$

Therefore, by this and (2.2), we deduce that

$$
\begin{equation*}
\left\|G_{\nu}(f)\right\|_{p} \leq \int_{\mathbf{R} \times \mathbf{R}}\left\|H_{u, v}(f)\right\|_{p} d u d v \leq C_{p}\|f\|_{p} \tag{2.14}
\end{equation*}
$$

3. Proof of Theorem 1.1

We prove Theorem 1.1 by applying the same approaches found in $[1,8]$, which have their roots in $[16,17]$. Let us assume that $\Omega \in L(\log L)\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ and satisfies (1.2)-(1.3). For $k \in \mathbf{N}$, let $E_{k}=\left\{(x, y) \in \mathbf{S}^{n-1} \times \mathbf{S}^{m-1}: 2^{k-1} \leq\right.$ $\left.|\Omega(x, y)|<2^{k}\right\}, D=\left\{k \in \mathbf{N}: \sigma\left(E_{k}\right)>2^{-4 k}\right\}$. Denote $\varrho_{n}=\int_{\mathbf{S}^{n-1}} J(x, \cdot) d \sigma(x)$ and $\varrho_{m}=\int_{\mathbf{S}^{m-1}} J(\cdot, y) d \sigma(y)$. For $k \in \mathbf{N}$, define Ω_{k} by

$$
\begin{align*}
\Omega_{k}(x, y) & =\Omega(x, y) \chi_{E_{k}}(x, y)-\frac{1}{\varrho_{n}} \int_{\mathbf{S}^{n-1}} \Omega(x, y) J(x, y) \chi_{E_{k}}(x, y) d \sigma(x) \tag{3.1}\\
& -\frac{1}{\varrho_{m}} \int \Omega(x, y) J(x, y) \chi_{E_{k}}(x, y) d \sigma(y)+\frac{1}{\varrho_{n} \varrho_{m}} \int_{E_{k}}(x, y) \Omega(x, y) J(x, y) d \sigma(x) d \sigma(y),
\end{align*}
$$

and

$$
\begin{equation*}
\Omega_{0}(x, y)=\Omega(x, y)-\sum_{k \in D} \Omega_{k}(x, y) \tag{3.2}
\end{equation*}
$$

As in [8], it is easy to verify that $\left\|\Omega_{0}\right\|_{2} \leq C$; and for $k \in \mathbf{N} \cup\{0\}, \Omega_{k}$ satisfies (1.2)-(1.3). For $k \in D$, we define the family of measures $\nu^{(k)}=\left\{\nu_{k, t, s}: t, s \in\right.$ $\mathbf{R}\}$ on $\mathbf{R}^{n} \times \mathbf{R}^{m}$ by
$\int_{\mathbf{R}^{n} \times \mathbf{R}^{m}} f d \nu_{k, t, s}=\frac{1}{2^{k(t+s)}} \int_{\rho_{1}(u) \leq 2^{k t}} \int_{\rho_{2}(v) \leq 2^{k s}} \frac{\Omega_{k}(u, v)}{\rho_{1}(u)^{\alpha-1} \rho_{2}(v)^{\beta-1}} f(u, v) d u d v$.
Set $a_{k}=b_{k}=2^{k}, B_{k}=2^{k} \sigma\left(E_{k}\right), \gamma_{1}=\frac{2 \delta \ln 2}{N_{1}^{*}}$, and $\gamma_{2}=\frac{2 \delta \ln 2}{N_{2}^{*}}$, where N_{1}^{*}, N_{2}^{*} denote the distinct numbers $\left\{\alpha_{i}\right\},\left\{\beta_{j}\right\}$, respectively; and $0<\delta<$ $\min \left\{1, \frac{N_{1}^{*}}{2}, \frac{N_{2}^{*}}{2}, \frac{N_{1}^{*}}{\alpha}, \frac{N_{2}^{*}}{\beta}\right\}$. Thus,

$$
\begin{align*}
\left\|\nu_{k, t, s}\right\|_{1} & \leq \frac{1}{2^{k(t+s)}} \int_{0}^{2^{k t}} \int_{0}^{2^{k s}} \iint_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}}\left|\Omega_{k}(u, v)\right| J(u, v) d \sigma(u) d \sigma(v) d \rho_{1} d \rho_{2} \\
& \leq C 2^{k} \sigma\left(B_{k}\right)=C B_{k} \tag{3.3}
\end{align*}
$$

By the cancelation properties of Ω_{k}, and a simple change of variables, we derive that

$$
\begin{aligned}
\left|\hat{\nu}_{k, t, s}\right| & \leq \frac{1}{2^{k(t+s)}} \int_{0}^{2^{k t}} \int_{0}^{2^{k s}} \iint_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} J(u, v)\left|\Omega_{k}(u, v)\right|\left|e^{-i A_{\rho_{1}} u \cdot \xi}-1\right| d \sigma(u) d \sigma(v) d \rho_{2} d \rho_{1} \\
& \leq \frac{1}{2^{k t}} \int_{0}^{2^{k t}} \iint_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}}\left|\Omega_{k}(u, v)\right|\left|A_{\rho_{1}} u \cdot \xi\right| d \sigma(u) d \sigma(v) d \rho_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left|A_{2^{k t}} \xi\right| \int_{0}^{1} \iint_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}}\left|\Omega_{k}(u, v)\right|\left|A_{\rho_{1}} u\right| d \sigma(u) d \sigma(v) d \rho_{1} \\
& \leq C B_{k}\left|A_{a_{k}^{t}} \xi\right|
\end{aligned}
$$

which when combined with the trivial estimate $\left|\hat{\nu}_{k, t, s}\right| \leq C B_{k}$ gives that

$$
\begin{equation*}
\left|\hat{\nu}_{k, t, s}\right| \leq C B_{k}\left|A_{a_{k}^{t}} \xi\right|^{\frac{\gamma_{1}}{\ln a_{k}}} \tag{3.4}
\end{equation*}
$$

In the same manner, we attain

$$
\begin{equation*}
\left|\hat{\nu}_{k, t, s}\right| \leq C B_{k}\left|A_{b_{k}^{s}} \eta\right|^{\frac{\gamma_{2}}{\ln b_{k}}} \tag{3.5}
\end{equation*}
$$

On the other hand, Lemma 2.5 and Hölder's inequality lead to

$$
\begin{aligned}
\left|\hat{\nu}_{k, t, s}\right|^{2} \leq & \left.\sum_{i, j=0}^{\infty} \frac{1}{2^{i+j}} \int_{2^{k t-j-1}}^{2^{k t-j}} \int_{2^{k s-i-1}}^{2^{k s-i}} \right\rvert\, \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} J(u, v) \Omega_{k}(u, v) \\
& \times\left. e^{-i\left(A_{\rho_{1}} u \cdot \xi+A_{\rho_{2}} v \cdot \eta\right)} d \sigma(u) d \sigma(v)\right|^{2} \frac{d \rho_{1} d \rho_{2}}{\rho_{1} \rho_{2}} \\
\leq & C \int_{\mathbf{S}^{m-1}} \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{n-1}} \Omega_{k}(u, v) \overline{\Omega_{k}(x, v)} \\
& \times \sum_{j=0}^{\infty} \frac{1}{2^{j}}\left|\int_{1}^{2} e^{-i A_{2^{k t-j-1} \rho_{1}}(u-x) \cdot \xi} \frac{d \rho_{1}}{\rho_{1}}\right| d \sigma(u) d \sigma(x) d \sigma(v) \\
\leq & C \int_{\mathbf{S}^{m-1}} \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{n-1}} \Omega_{k}(u, v) \frac{\Omega_{k}(x, v)}{\infty} \\
& \times \sum_{j=0}^{\infty} \frac{1}{2^{j}}\left(\left|A_{2^{k t-j-1}}(u-x) \cdot \xi\right|\right)^{\frac{-\delta}{N_{1}^{*}}} d \sigma(u) d \sigma(x) d \sigma(v) \\
\leq & C \sum_{j=0}^{\infty} \frac{1}{2^{j}} 2^{\left(\alpha \delta / N_{1}^{*}\right)(j+1)}\left|A_{2^{k t}} \xi\right|^{\frac{-\delta}{N_{1}^{*}}} \\
& \times \int_{\mathbf{S}^{m-1}} \int_{\mathbf{S}^{n-1} \times \mathbf{S}^{n-1}} \Omega_{k}(u, v) \overline{\Omega_{k}(x, v)}\left|(u-x) \cdot \frac{A_{2^{k t-j-1}} \xi}{\left|A_{2^{k t-j-1}} \xi\right|}\right|^{\frac{-\delta}{N_{1}^{*}}} d \sigma(u) d \sigma(x) d \sigma(v) \\
\leq & C \sum_{j=0}^{\infty} \frac{1}{2^{j}}\left|A_{2^{k t}} \xi\right|^{\frac{-\delta}{N_{1}^{*}}}\left\|\Omega_{k}\right\|_{2}^{2} .
\end{aligned}
$$

Thus,

$$
\left|\hat{\nu}_{k, t, s}\right| \leq C a_{k} B_{k}\left|A_{2^{k t}} \xi\right|^{\frac{-\delta}{2 N_{1}^{*}}}
$$

Combining this estimate with the trivial estimate $\left|\hat{\nu}_{k, t, s}\right| \leq C B_{k}$ yields

$$
\begin{equation*}
\left|\hat{\nu}_{k, t, s}\right| \leq C B_{k}\left|A_{2^{k t}} \xi\right|^{-\frac{\gamma_{1}}{\ln a_{k}}} \tag{3.6}
\end{equation*}
$$

Similarly, we derive

$$
\begin{equation*}
\left|\hat{\nu}_{k, t, s}\right| \leq C B_{k}\left|A_{2^{k s}} \xi\right|^{-\frac{\gamma_{2}}{\ln b_{k}}} \tag{3.7}
\end{equation*}
$$

Finally, by definition of $\left(\nu^{(k)}\right)^{*}(f)$, we have that

$$
\begin{aligned}
& \left(\nu^{(k)}\right)^{*}(f)(x, y)=\sup _{t, s \in \mathbf{R}} \| \nu_{k, t, s}|* f| \leq C \iint_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}}\left|\Omega_{k}(u, v)\right| \\
\times & \left(\sup _{t, s \in \mathbf{R}} \frac{1}{2^{k(t+s)}} \int_{0}^{2^{k t}} \int_{0}^{2^{k s}}\left|f\left(x-A_{\rho_{1}} u, y-A_{\rho_{2}} v\right)\right| d \rho_{2} d \rho_{1}\right) d \sigma(u) d \sigma(v) \\
\leq & C \iint_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}}\left|\Omega_{k}(u, v)\right| M_{\Gamma, \Lambda}(f)(x, y) d \sigma(u) d \sigma(v) .
\end{aligned}
$$

Therefore, by Lemma 2.2, we obtain that

$$
\begin{align*}
\left\|\left(\nu^{(k)}\right)^{*}(f)\right\|_{q} & \leq C\|f\|_{p}\left\|\Omega_{k}(u, v)\right\|_{1} \\
& \leq C B_{k}\|f\|_{q} \tag{3.8}
\end{align*}
$$

Lemma 2.6 and (3.3)-(3.8) give that

$$
\begin{equation*}
\left\|G_{\nu^{(k)}}(f)\right\|_{p} \leq C_{p}\|f\|_{p} \tag{3.9}
\end{equation*}
$$

By this and Minkowski's inequality, we conclude that

$$
\begin{aligned}
\left\|\mathcal{M}_{\Omega}(f)\right\|_{p} & \leq C_{p}\left\|\mathcal{M}_{\Omega_{0}}(f)\right\|_{p}+\sum_{k \in D}\left(\ln 2^{k}\right) B_{k}\left\|G_{\nu^{(k)}}(f)\right\|_{p} \\
& \leq C_{p}\left(1+\sum_{k \in D}(k) B_{k}\right)\|f\|_{p} \\
& \leq C_{p}\left(1+\|\Omega\|_{L(\log L)}\right)\|f\|_{p} \leq C_{p}\|f\|_{p}
\end{aligned}
$$

for $1<p<\infty$ and $f \in L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$. Thus, we finish the proof of Theorem 1.1.

Acknowledgements

The author would like to thank Dr. Hussain Al-Qassem for his suggestions and comments on this note.

References

[1] H. Al-Qassem, A. Al-Salman, L. Cheng and Y. Pan, Marcinkiewicz integrals on product spaces, Studia Math. 167 (2005), no. 3, 227-234.
[2] H. Al-Qassem, L. Cheng and Y. Pan, On the boundedness of a class of rough maximal operators on product spaces, Hokkaido Math. J. 40 (2011), no. 1, 1-32.
[3] H. Al-Qassem and Y. Pan, L^{p} estimates for singular integrals with kernels belonging to certain block spaces, Rev. Mat. Iberoam. 18 (2002), no. 3, 701-730.
[4] A. Al-Salman, On Marcinkiewicz integrals along flat surfaces, Turkish J. Math. 29 (2005), no. 2, 111-120.
[5] A. Al-Salman, Rough Marcinkiewicz integrals on product spaces, Int. Math. Forum 23 (2007), no. 2, 1119-1128.
[6] M. Ali, L^{p} estimates for Marcinkiewicz integral operators and extrapolation, J. Inequal. Appl. 2014 (2014), no. 269, 10 pages.
[7] M. Ali, L^{p} estimates for Marcinkiewicz integrals on product spaces, Houston J. Math., to appear.
[8] Y. Chen and Y. Ding, L^{p} Bounds for the parabolic Marcinkiewicz integral with rough kernels, J. Korean Math. Soc. 44 (2007), no. 3, 733-745.
[9] Y. Chen and Y. Ding, The parabolic Littlewood-Paley operator with Hardy space kernels, Canad. Math. Bull. 52 (2009), no. 4, 521-534.
[10] J. Chen, D. Fan and Y. Pan, A note on a Marcinkiewicz integral operator, Math. Nachr. 227 (2001), no. 1, 33-42.
[11] J. Chen, D. Fan and Y. Ying, Rough Marcinkiewicz integrals with $L(\log L)^{2}$ kernels, Adv. Math. (China) 2 (2001) 179-181.
[12] Y. Choi, Marcinkiewicz integrals with rough homogeneous kernel of degree zero in product domains, J. Math. Anal. Appl. 261 (2001), no. 1, 53-60.
[13] Y. Ding, L^{2}-boundedness of Marcinkiewicz integral with rough kernel, Hokkaido Math. J. 27 (1998), no. 1, 105-115.
[14] Y. Ding, D. Fan and Y. Pan, On the L^{p}-boundedness of Marcinkiewicz integrals with Hardy space function kernels, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 4, 593-600.
[15] Y. Ding, Q. Xue and K. Yabuta, Parabolic Littlewood-Paley g-function with rough kernels, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 12, 2049-2060.
[16] J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier 36 (1986), no. 4, 185-206.
[17] J. Duoandikoetxea and J. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541-561.
[18] E. Fabes and N. Riviére, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), no. 1, 19-38.
[19] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), no. 4, 799-839.
[20] W. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), no. 1, 43-63.
[21] A. Nagel, N. Riviére and S. Wainger, On Hilbert transforms along curves. II, Amer. J. Math. 98 (1976), no. 2, 395-403.
[22] F. Ricci and E. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier 42 (1992), no. 3, 637-670.
[23] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993.
[24] F. Wang, Y. Chen and W. Yu, L^{p} Bounds for the parabolic Littlewood-Paley operator associated to surfaces of revolution, Bull. Korean Math. Soc. 29 (2012), no. 4, 787-797.
(Mohammed Ali) Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan.

E-mail address: myali@just.edu.jo

[^0]: Article electronically published on December 18, 2016.
 Received: 9 January 2014, Accepted: 29 September 2015.

