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1. Introduction and preliminaries

Let RN (N = n or m), N ≥ 2 be the N -dimensional Euclidean space, and
let SN−1 be the unit sphere in RN which is equipped with the normalized
Lebesgue surface measure dσ = dσ(·). Also, let p′ denote to the exponent
conjugate to p; that is 1/p+ 1/p′ = 1.

For i = 1, 2, · · · , N , let αi be fixed real numbers such that αi ≥ 1. For fixed

z ∈ RN , the function F (z, ρ) =
N∑
i=1

z2
i

ρ2αi
is decreasing in ρ > 0. The unique

solutions of the equations F (z, ρ) = 1 is denoted by ρ(z).

For λ > 0, let Aλ =

λ
α1 0

. . .

0 λαN

, and let KΩ,ρ(z) = Ω(z)ρ(z)
1−α

,

where α =
N∑
i=1

αi and Ω is a real valued and measurable function on RN with

Ω ∈ L1(SN−1) satisfying the conditions

Ω(Aλz) = Ω(z) and

∫
SN−1

Ω(z′)J(z′)dσ(z′) = 0,
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where J(z′) is defined as in [8]. The parabolic Marcinkiewicz integral µΩ, which
was introduced by Ding, Xue and Yabuta in [15], is defined by

µΩf(z) =

(∫ ∞

0

|FΩ,t(z)|2
dt

t3

)1/2

,

where

FΩ,t(z) =

∫
ρ(u)≤t

KΩ,ρ(u)f(z − u)du.

In particular, the authors of [15] proved that the parabolic Littlewood-Paley
operator µΩ is bounded for p ∈ (1,∞) provided that Ω ∈ Lq(SN−1) for q > 1.
Subsequently, the study of the Lp boundedness of µΩ under various conditions
on the function Ω has been studied by many authors (see for example [?,8,24]).
A particular result that is closely related to our work is the boundedness result
of µΩ obtained by Cheng and Ding in [8]. If fact, they proved that µΩ is
bounded under the condition Ω ∈ L(logL)1/2(Sn−1) for 1 < p < ∞.

We point out that the class of the operators µΩ is related to the class of the
parabolic singular integral operators

TΩf(z) = p.v.

∫
RN

Ω(u)

ρ(u)α
f(z − u)du.

The class of the operators TΩ belongs to the class of singular Radon trans-
forms, which has considered to study by many mathematicians (we refer the
readers, in particular, to [18,21]).

If α1 = · · · = αN = 1, then ρ(z) = |z|, α = N and (RN , ρ) = (RN , | · |). In
this case, µΩ is just the classical Marcinkiewicz integral, which were introduced
by Stein in [23]. For more information about the importance and the recent
advances on the study of such operators, the readers are refereed (for instance
to [3, 4, 10,14,17,19], and the references therein).

Although some open problems related to the boundedness of parabolic Marci-
nkiewicz integral in the one-parameter setting remain open, the investigation of
Lp estimates of the Marcinkiewicz integral on product spaces has been started
(see for example [1, 2, 5–7,11–13].)

Our main interest in this paper is to study the Lp boundedness of the par-
abolic Marcinkiewicz integral with a rough kernel on product spaces. Namely,
for i = 1, 2, · · · , n and j = 1, 2, · · · ,m, let αi, βj be fixed real numbers such that

αi, βj ≥ 1, and let KΩ,ρ1,ρ2(x, y) = Ω(x, y)ρ1(x)
1−α

ρ2(y)
1−β

, where α =
n∑

i=1

αi,

β =
m∑
j=1

βj and Ω is a real valued and measurable function on Rn ×Rm with
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Ω ∈ L1(Sn−1 × Sm−1) satisfying the conditions

Ω(Aλ1
x,Aλ2

y) = Ω(x, y) and(1.1) ∫
Sn−1

Ω(x′, .)J(x′, .)dσ(x′) =

∫
Sm−1

Ω(., y′)J(., y′)dσ(y′) = 0,(1.2)

where λ1, λ2 > 0, and J(x′, y′) is a function on the unit sphere Sn−1 × Sm−1

in Rn ×Rm, that will be defined later.
The parabolic Marcinkiewicz integral operator MΩ for f ∈ S(Rn ×Rm) is

given by

(1.3) MΩf(x, y) =

(∫ ∞

0

∫ ∞

0

|Ft,s(x, y)|2
dtds

t3s3

)1/2

,

where

Ft,s(x, y) =

∫
ρ1(u)≤t

∫
ρ2(v)≤s

KΩ,ρ1,ρ2(u, v)f(x− u, y − v)dudv.

When α1 = · · · = αn = 1, and β1 = · · · = βm = 1, then ρ1(x) = |x|,
ρ2(y) = |y|, α = n, and β = m. In this case, MΩ is just the classical
Marcinkiewicz integral on product domains, which was studied by many math-
ematicians. For instance, the author of [13] gave the L2 boundedness of MΩ if
Ω ∈ L(logL)2(Sn−1 × Sm−1). Subsequently, it was verified in [11] that MΩ is
bounded for all 1 < p < ∞ provided that Ω ∈ L(logL)2(Sn−1 × Sm−1). This
result was improved (for p = 2) in [12] in which the author established that
MΩ is bounded on L2(Rn×Rm) for all Ω ∈ L(logL)(Sn−1×Sm−1). Recently,
Al-Qaseem et al. found in [1] that the boundedness of MΩ is obtained under
the condition Ω ∈ L(logL)(Sn−1 × Sm−1) for 1 < p < ∞. Furthermore, they
proved that the exponent 1 is the best possible.

In this article, we extend and improve the corresponding results in [1,11,12].
Our main result is formulated as follows.

Theorem 1.1. Suppose that Ω ∈ L(logL)(Sn−1 × Sm−1) and satisfies (1.2)-
(1.3). Then MΩ is bounded on Lp(Rn ×Rm) for p ∈ (1,∞).

Throughout this paper, the letter C denotes a bounded positive constant
that may vary at each occurrence but independent of the essential variables.

2. Some lemmas

In this section, we give some auxiliary lemmas used in the sequel. The
following is found in [8, 24]. For (x, y) ∈ Rn ×Rm, set
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x1 = ρα1
1 cos θ1 · · · cos θn−2 cos θn−1, y1 = ρβ1

2 cosϑ1 · · · cosϑm−2 cosϑm−1,

x2 = ρα2
1 cos θ1 · · · cos θn−2 sin θn−1, y2 = ρβ2

2 cosϑ1 · · · cosϑm−2 sinϑm−1,
...

...

xn−1 = ρ
αn−1

1 cos θ1 sin θ2, ym−1 = ρ
βm−1

2 cosϑ1 sinϑ2,

xn = ραn
1 sin θ1, ym = ρβm2 sinϑ1.

Then dxdy = ρα−1
1 ρβ−1

2 J1(θ1, · · · , θn−1)J2(ϑ1, · · · , ϑm−1)dρ1dρ2dσ(x
′)dσ(y′),

where ρα−1
1 J1

(θ1, · · · , θn−1) and ρβ−1
2 J2(ϑ1, · · · , ϑm−1) are the Jacobians of the above trans-

forms. In [18], it was shown that J1 = J1(θ1, · · · , θn−1) is a C∞ function in the
variable x′ ∈ Sn−1, also it was proved that 1 ≤ J1(θ1, · · · , θn−1) ≤ L for some
real number L ≥ 1, and so for J2(ϑ1, · · · , ϑm−1). For simplicity, we denote
J1(θ1, · · · , θn−1)J2(ϑ1, · · · , ϑm−1) by J(x′, y′).

In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. [22] Suppose that λ′
is and α′

is are fixed real numbers, and Γ(t) =

(λ1t
α1 , · · · , λN tαN ) is a function from R+ to RN . For suitable f , let MΓ be

the maximal operator defined on RN by

MΓf(x) = sup
h>0

1

h

∣∣∣∣∣
∫ h

0

f(x− Γ(t))dt

∣∣∣∣∣
for x ∈ RN . Then for 1 < p ≤ ∞, there exists a constant Cp > 0 such that

∥MΓf∥p ≤ Cp ∥f∥p .

The constant Cp is independent of λ′
is and f .

Lemma 2.2. Suppose that a′is, b
′
is, α

′
is, and β′

is are fixed real numbers. Let
Γ(t) = (a1t

α1 , · · · , antαn) and Λ(t) = (b1t
β1 , · · · , bmtβm); and let MΓ,Λ be the

maximal operator defined on Rn ×Rm by

MΓ,Λf(x, y) = sup
h1,h2>0

1

h1h2

∣∣∣∣∣
∫ h1

0

∫ h2

0

f(x− Γ(t), y − Λ(r))dtdr

∣∣∣∣∣
for (x, y) ∈ Rn × Rn. Then for 1 < p ≤ ∞, there exists a constant Cp > 0
(independent of a′is, b

′
js, and f) such that

∥MΓ,Λf∥p ≤ Cp ∥f∥p .

The proof of Lemma 2.2 follows immediately by using Lemma 2.1 and the
inequality MΓ,Λf(x, y) ≤ MΛ ◦MΓf(x, y), where ◦ denotes the composition
of operators.

We shall recall the following lemma due to Madych.
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Lemma 2.3. [20] Let Φ ∈ S(Rn) satisfy Φ̂(0)=0.Denote Φt(x) = t−αΦ(At−1x)
for t > 0, the Littlewood-Paley g-function related to the transform A is defined
by

gΦ(f)(x) =

(∫ ∞

0

|Φt ∗ f(x)|2
dt

t

)1/2

.

Then there is a positive constant C such that ∥gΦ(f)∥p ≤ C∥f∥p for any f ∈
Lp(Rn) and 1 < p < ∞.

Similarly, we derive the following lemma.

Lemma 2.4. Let Φ ∈ S(Rn),Ψ ∈ S(Rm) with Φ̂(0) = Ψ̂(0) = 0. For s, t > 0,
let Φt(x) = t−αΦ(At−1x), Ψs(y) = s−βΨ(As−1y) and Γt,s(x, y) = Φt(x)Ψs(y).
Assume that the Littlewood-Paley g-function is defined by

gΦ,Ψ(f)(x, y) =

(∫ ∞

0

∫ ∞

0

|Γt,s ∗ f(x, y)|2
dtds

ts

)1/2

.

Then there exists C > 0 such that ∥gΦ,Ψ(f)∥p ≤ C∥f∥p for any f ∈ Lp(Rn ×
Rm) and 1 < p < ∞.

Lemma 2.5. [8] Let γ ∈ [0, 1] and u, ξ ∈ Rn. Then∣∣∣∣∫ 2

1

eAλu·ξ dλ

λ

∣∣∣∣ ≤ C |u · ξ|−
γ
τ ,

where Aλ is defined as above and τ denotes the distinct numbers of {αi}.
For a two-parameter family of measures ν = {νt,s : t, s ∈ R} on Rn × Rm,

we define the operator Gν and its corresponding maximal operator ν∗ by

Gν(f)(x, y) =

(∫∫
R× R

|νt,s ∗ f(x, y)|2 dtds
)1/2

(2.1)

and

ν∗(f) = sup
t,s∈R

||νt,s| ∗ f | .(2.2)

We write t±α = min{t+α, t−α} and ∥νt,s∥ for the total variation of νt,s.
The following is the main lemma of this section.

Lemma 2.6. Let a, b ≥ 2, γ1, γ2 > 0, q > 1 and B > 0. Suppose that the
family of measures {νt,s : t, s ∈ R} satisfies the following conditions:
(i) ∥νt,s∥ ≤ CB for t, s ∈ R;

(ii) ∥ν̂t,s(ξ, η)∥ ≤ CB |Aatξ|±γ1/ ln a |Abtη|±γ2/ ln b
for (ξ, η) ∈ Rn × Rm and

t, s ∈ R;
(iii) ∥ν∗(f)∥q ≤ CB ∥f∥q for f ∈ Lq(Rn ×Rm).

Then, for every p satisfying |1/p − 1/2| < 1/(2q), there is a constant Cp (in-
dependent of a, b, B, f) such that for any f ∈ Lp(Rn ×Rm),

∥Gν(f)∥p ≤ CpB∥f∥p.
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Proof. We employ some ideas from [1, 8]. For κ > 2, let φ(κ) be a ∈ C∞

function supported in [4/(5κ), (5κ)/4] such that

(i) φ(κ)(ζ) = φ(κ)(ρ(ζ)) for ρ > 0 and ζ ∈ RN ;
(ii) 0 < φ(κ)(ζ) ≤ 1;

(iii)
∫∞
0

φ(κ)(t)
t dt = 2 lnκ.

For a, b > 2, and for (ξ, η) ∈ Rn × Rm, let Φ ∈ C∞(Rn) and Ψ ∈ C∞(Rm)

be given by Φ̂(ξ) = φ(a)(ρ1(ξ)
2) and Ψ̂(η) = φ(b)(ρ2(η)

2). For x ∈ Rn, y ∈ Rm

and t, s ∈ R, set

Φt(x) = t−αΦ(At−1x) ,Ψs(y) = s−βΦ(As−1y) and Γt,s(x, y) = Φt(x)Ψs(y).

Thus, for any f ∈ S(Rn ×Rm), we get

(2.3) f(x, y) =

∫
R×R

Γat,bs ∗ f(x, y)dtds.

By Minkowski’s inequality, we reach that

Gν(f)(u, v) =

 ∫
R×R

∣∣∣∣∣∣
∫

R×R

Γat+u,bs+v ∗ νt,s ∗ f(x, y)dudv

∣∣∣∣∣∣
2

dtds

1/2

≤
∫

R×R

(Hu,vf)(x, y)dudv,(2.4)

where

(Hu,vf)(x, y) =

 ∫
R×R

∣∣Γat+u,bs+v ∗ νt,s ∗ f(x, y)
∣∣2 dtds

1/2

.(2.5)

Let us start estimating ∥ Hu,vf ∥2 for the case u, v ≥ 0; the proof for the
other cases are essentially the same and require only minor modifications. By
Plancherel’s theorem, assumption (ii) and the techniques used in [8], we con-
clude that

∥ Hu,vf ∥22 ≤ CB

∫
R×R

(∫
Rn×Rm

|f̂(ξ, η)|2|φ(a)(ρ1(Aau+tξ)
2)|2|Aatξ|2γ1/ ln a

× |φ(b)(ρ2(Abv+sη)
2)|2|Absη|2γ2/ ln b

)
dξdηdtds

≤ CB

∫
R×R

(∫
Eu,v,t,s

|f̂(ξ, η)|2{|Aatξ|2γ1/ ln a}{|Absη|2γ2/ ln b}dξdη

)
dtds

≤ CBe−2(|u|γ1+|v|γ2) ∥ f ∥22,(2.6)

where Eu,v,t,s = {(ξ, η) ∈ Rn ×Rm :

2√
5
a−u−1/2 ≤ atρ1(ξ) ≤

√
5

2
a−u+1/2,

2√
5
b−v−1/2 ≤ bsρ2(η) ≤

√
5

2
b−v+1/2}.
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Now, let us estimate ∥ Hu,vf ∥p0 for p0 satisfying
∣∣∣12 − 1

p0

∣∣∣ = 1
2q with p0 ̸= 2.

First, we consider 1 < p0 < 2. By the assumption (i), we get

(2.7)

∥∥∥∥∫
R×R

νt,s ∗ Γau+t,bv+s ∗ f(x, y)dtds
∥∥∥∥
1

≤ CB

∥∥∥∥∫
R×R

Γat,bs ∗ f(x, y)dtds
∥∥∥∥
1

.

Further, by using the assumption (iii), we achieve that∥∥∥∥ sup
t,s∈R

∣∣νt,s ∗ Γau+t,bv+s ∗ f
∣∣∥∥∥∥

q

≤
∥∥∥∥ν∗( sup

t,s∈R

∣∣Γat,bs ∗ f
∣∣)∥∥∥∥

q

≤ CB

∥∥∥∥ sup
t,s∈R

∣∣Γat,bs ∗ f
∣∣∥∥∥∥

q

.(2.8)

By using the interpolation theorem between (2.7) and (2.8) and the Lemma
2.4, we deduce that

∥Hu,vf∥p0 ≤ CB

∥∥∥∥∫
R×R

(∣∣Γat,bs ∗ f
∣∣2 dtds)1/2∥∥∥∥

p0

≤ CB ∥f∥p0 .(2.9)

Next, consider the case 2 < p0 < ∞. As q = (p0

2 )′ and
∥∥∥(Hu,v(f))

1/2
∥∥∥
p0

=

∥Hu,v(f)∥1/2p0/2
, there is a non-negative function 𝟋 ∈ Lq(Rn×Rm) with ∥𝟋∥q ≤

1 such that

∥Hu,v(f)∥2p0
=

∥∥∥∥∥
(∫

R×R

∣∣Γau+t,bv+s ∗ νt,s ∗ f(x, y)
∣∣2 dtds)1/2

∥∥∥∥∥
2

p0

=

∫
Rn×Rm

∫
R×R

∣∣Γau+t,bv+s ∗ νt,s ∗ f(x, y)
∣∣2 dtds𝟋(x, y)dxdy.(2.10)

By using Holder’s inequality, (2.10), Lemma 2.4 plus the assumptions (i) and
(iii), we obtain that

∥Hu,v(f)∥2p0 ≤∥ νt,s ∥1
∫
Rn×Rm

∫
R×R

| νt,s | ∗
∣∣Γau+t,bv+s ∗ f

∣∣2 dtds | 𝟋(x, y) | dxdy

≤CB

(∫
Rn×Rm

(∫
R×R

∣∣Γau+t,bv+s ∗ f(x, y)
∣∣2 dtds)p0/2

dxdy

)2/p0

∥ ν∗(𝟋̃) ∥q

≤CB∥f∥2p0 ,(2.11)

where 𝟋̃(x, y) = 𝟋(−x,−y). Thus, by (2.9) and (2.11) we reach that

∥Hu,v(f)∥p0
≤ CB |f |p0

(2.12)

for any p0 satisfying | 1
2 − 1

p0
|= 1

2q with p0 ̸= 2. Hence, interpolation between

(2.6) and (2.12) gives that

∥Hu,v(f)∥p0
≤ CBe−(|u|γ1+|v|γ2) ∥f∥p0

.(2.13)
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Therefore, by this and (2.2), we deduce that

(2.14) ∥Gν(f)∥p ≤
∫
R×R

∥Hu,v(f)∥p dudv ≤ Cp ∥f∥p .

□

3. Proof of Theorem 1.1

We prove Theorem 1.1 by applying the same approaches found in [1,8], which
have their roots in [16, 17]. Let us assume that Ω ∈ L(logL)(Sn−1 × Sm−1)
and satisfies (1.2)-(1.3). For k ∈ N, let Ek = {(x, y) ∈ Sn−1 × Sm−1 : 2k−1 ≤
|Ω(x, y)| < 2k}, D = {k ∈ N : σ(Ek) > 2−4k}. Denote ϱn =

∫
Sn−1 J(x, ·)dσ(x)

and ϱm =
∫
Sm−1 J(·, y)dσ(y). For k ∈ N, define Ωk by

(3.1)

Ωk(x, y)=Ω(x, y)χEk(x, y)−
1

ϱn

∫
Sn−1

Ω(x, y)J(x, y)χEk(x, y)dσ(x)

− 1

ϱm

∫
Sm−1

Ω(x, y)J(x, y)χEk(x, y)dσ(y)+
1

ϱnϱm

∫
Ek

(x, y)Ω(x, y)J(x, y)dσ(x)dσ(y),

and

Ω0(x, y) = Ω(x, y)−
∑
k∈D

Ωk(x, y).(3.2)

As in [8], it is easy to verify that ∥Ω0∥2 ≤ C; and for k ∈ N ∪ {0}, Ωk satisfies

(1.2)-(1.3). For k ∈ D, we define the family of measures ν(k) = {νk,t,s : t, s ∈
R} on Rn ×Rm by∫
Rn×Rm

fdνk,t,s =
1

2k(t+s)

∫
ρ1(u)≤2kt

∫
ρ2(v)≤2ks

Ωk(u, v)

ρ1(u)α−1ρ2(v)β−1
f(u, v)dudv.

Set ak = bk = 2k, Bk = 2kσ(Ek), γ1 = 2δ ln 2
N∗

1
, and γ2 = 2δ ln 2

N∗
2

, where

N∗
1 , N

∗
2 denote the distinct numbers {αi}, {βj}, respectively; and 0 < δ <

min{1, N∗
1

2 ,
N∗

2

2 ,
N∗

1

α ,
N∗

2

β }. Thus,

∥νk,t,s∥1≤
1

2k(t+s)

∫ 2kt

0

∫ 2ks

0

∫∫
Sn−1×Sm−1

|Ωk(u, v)| J(u, v)dσ(u)dσ(v)dρ1dρ2

≤ C2kσ(Bk) = CBk.(3.3)

By the cancelation properties of Ωk, and a simple change of variables, we derive
that

|ν̂k,t,s|≤
1

2k(t+s)

∫ 2kt

0

∫ 2ks

0

∫∫
Sn−1×Sm−1

J(u, v) |Ωk(u, v)|
∣∣∣e−iAρ1u·ξ − 1

∣∣∣ dσ(u)dσ(v)dρ2dρ1
≤ 1

2kt

∫ 2kt

0

∫∫
Sn−1×Sm−1

|Ωk(u, v)| |Aρ1u · ξ| dσ(u)dσ(v)dρ1
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≤C |A2ktξ|
∫ 1

0

∫∫
Sn−1×Sm−1

|Ωk(u, v)| |Aρ1u| dσ(u)dσ(v)dρ1

≤CBk

∣∣∣Aat
k
ξ
∣∣∣ ,

which when combined with the trivial estimate |ν̂k,t,s| ≤ CBk gives that

|ν̂k,t,s| ≤ CBk

∣∣∣Aat
k
ξ
∣∣∣ γ1
ln ak .(3.4)

In the same manner, we attain

|ν̂k,t,s| ≤ CBk

∣∣Absk
η
∣∣ γ2
ln bk .(3.5)

On the other hand, Lemma 2.5 and Hölder’s inequality lead to

|ν̂k,t,s|2≤
∞∑

i,j=0

1

2i+j

2kt−j∫
2kt−j−1

2ks−i∫
2ks−i−1

∣∣∣∣ ∫
Sn−1×Sm−1

J(u, v)Ωk(u, v)

× e−i(Aρ1u·ξ+Aρ2v·η)dσ(u)dσ(v)
∣∣∣2 dρ1dρ2

ρ1ρ2

≤C

∫
Sm−1

∫
Sn−1×Sn−1

Ωk(u, v)Ωk(x, v)

×
∞∑
j=0

1

2j

∣∣∣∣∣∣
2∫

1

e
−iA

2kt−j−1ρ1
(u−x)·ξ dρ1

ρ1

∣∣∣∣∣∣ dσ(u)dσ(x)dσ(v)
≤C

∫
Sm−1

∫
Sn−1×Sn−1

Ωk(u, v)Ωk(x, v)

×
∞∑
j=0

1

2j
(|A2kt−j−1(u− x) · ξ|)

−δ
N∗

1 dσ(u)dσ(x)dσ(v)

≤C
∞∑
j=0

1

2j
2(αδ/N∗

1 )(j+1) |A2ktξ|
−δ
N∗

1

×
∫
Sm−1

∫
Sn−1×Sn−1

Ωk(u, v)Ωk(x, v)

∣∣∣∣(u− x)· A2kt−j−1ξ

| A2kt−j−1ξ |

∣∣∣∣ −δ
N∗

1
dσ(u)dσ(x)dσ(v)

≤C

∞∑
j=0

1

2j
|A2ktξ|

−δ
N∗

1 ∥Ωk∥22 .

Thus,

|ν̂k,t,s| ≤ CakBk |A2ktξ|
−δ
2N∗

1 .

Combining this estimate with the trivial estimate |ν̂k,t,s| ≤ CBk yields

|ν̂k,t,s| ≤ CBk |A2ktξ|−
γ1

ln ak .(3.6)

Similarly, we derive

|ν̂k,t,s| ≤ CBk |A2ksξ|−
γ2

ln bk .(3.7)
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Finally, by definition of (ν
(k)

)∗(f), we have that

(ν(k))∗(f)(x, y) = sup
t,s∈R

||νk,t,s| ∗ f | ≤ C

∫∫
Sn−1×Sm−1

|Ωk(u, v)|

×

(
sup
t,s∈R

1

2k(t+s)

∫ 2kt

0

∫ 2ks

0

|f(x−Aρ1u, y −Aρ2v)| dρ2dρ1

)
dσ(u)dσ(v)

≤ C

∫∫
Sn−1×Sm−1

|Ωk(u, v)|MΓ,Λ(f)(x, y)dσ(u)dσ(v).

Therefore, by Lemma 2.2, we obtain that∥∥∥(ν(k))∗(f)
∥∥∥
q

≤ C ∥f∥p ∥Ωk(u, v)∥1
≤ CBk ∥f∥q(3.8)

Lemma 2.6 and (3.3)-(3.8) give that

∥Gν(k)(f)∥p ≤ Cp ∥f∥p .(3.9)

By this and Minkowski’s inequality, we conclude that

∥MΩ(f)∥p ≤ Cp ∥MΩ0(f)∥p +
∑
k∈D

(ln 2k)Bk ∥Gν(k)(f)∥p

≤ Cp

(
1 +

∑
k∈D

(k)Bk

)
∥f∥p

≤ Cp

(
1 + ∥Ω∥L(logL)

)
∥f∥p ≤ Cp ∥f∥p

for 1 < p < ∞ and f ∈ Lp(Rn ×Rm). Thus, we finish the proof of Theorem
1.1.
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