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ABSTRACT. In this paper, we study the LP (1 < p < o) boundedness for
the parabolic Marcinkiewicz integral when the kernel function €2 belongs
to the class L(log L)(S™™! x 8™~1). Our result essentially extend and
improve some known results.
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1. Introduction and preliminaries

Let RY (N = n or m), N > 2 be the N-dimensional Euclidean space, and
let S¥~! be the unit sphere in R which is equipped with the normalized
Lebesgue surface measure do = do(-). Also, let p’ denote to the exponent
conjugate to p; that is 1/p+1/p’ = 1.

Fori=1,2,--- N, let a; be fixed real numbers such that «; > 1. For fixed

N -
z € RV, the function F(z,p) = Y -5 is decreasing in p > 0. The unique

=17
solutions of the equations F(z, p) = 1 is denoted by p(z).
A% 0
For A > 0, let Ay = , and let Kq ,(2) = Q(2)p(z)' ",
0 AN

N

where a = Y «a; and € is a real valued and measurable function on RY with
i=1

Q € L*(SN~1) satisfying the conditions

Q(Axz) = Q2) and Q2" J(2)do(2") = 0,

SN-1
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Parabolic Marcinkiewicz integrals on product spaces 1548

where J(2') is defined as in [8]. The parabolic Marcinkiewicz integral pq, which
was introduced by Ding, Xue and Yabuta in [15], is defined by

st = ([Tirr &)

where

Fo(z) = /( ) 75KQ’p(u)f(z — u)du.
p(u)<

In particular, the authors of [15] proved that the parabolic Littlewood-Paley
operator pgq is bounded for p € (1, 00) provided that Q € L4(SN~1) for ¢ > 1.
Subsequently, the study of the LP boundedness of ug under various conditions
on the function  has been studied by many authors (see for example [?,8,24]).
A particular result that is closely related to our work is the boundedness result
of uq obtained by Cheng and Ding in [8]. If fact, they proved that uq is
bounded under the condition Q € L(log L)'/?(S"~1) for 1 < p < oc.

We point out that the class of the operators ugq is related to the class of the
parabolic singular integral operators

Taf(z) = p.v./ w) f(z —uw)du.

Ry p(u)*

The class of the operators T, belongs to the class of singular Radon trans-
forms, which has considered to study by many mathematicians (we refer the
readers, in particular, to [18,21]).

Ifa; =---=ay =1, then p(z) = |z, a = N and (RY,p) = (RY,|-]). In
this case, pq is just the classical Marcinkiewicz integral, which were introduced
by Stein in [23]. For more information about the importance and the recent
advances on the study of such operators, the readers are refereed (for instance
to [3,4,10,14,17,19], and the references therein).

Although some open problems related to the boundedness of parabolic Marci-
nkiewicz integral in the one-parameter setting remain open, the investigation of
LP estimates of the Marcinkiewicz integral on product spaces has been started
(see for example [1,2,5-7,11-13].)

Our main interest in this paper is to study the LP boundedness of the par-
abolic Marcinkiewicz integral with a rough kernel on product spaces. Namely,

fori=1,2,--- ;nandj=1,2,--- ,m,let o, B; be fixed real numbers such that
Qg Bj Z ]-7 and let KQ,pth (xay) = Q(Iay)pl(x)liapQ(y)liﬁa where a = Z g,
i=1

B =3 B; and Q is a real valued and measurable function on R™ x R™ with

J=1
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Qe LY(S" ! x S™~1) satisfying the conditions

(1.1) QAN z, Axy) = Qx,y) and

(1.2) /s » Q' )J (2, )do(z") /S » Q> y)J(,y")do(y') =0,

where A1, A2 > 0, and J(2/,y’) is a function on the unit sphere S~ x §™~!
in R™ x R™, that will be defined later.

The parabolic Marcinkiewicz integral operator Mg for f € S(R™ x R™) is
given by

(1.3) Maf(z,y) = ( / - / e ‘“ds)w,

t3s3

where

Fis(z,y) = / / Ka,py,pp(u,0) f(z — u,y — v)dudv.
p1(u)<t Jpa(v)<s

When oy = --- = a, = 1, and By = --- = B,, = 1, then py(z) = ||,
p2(y) = ly|, @« = n, and § = m. In this case, Mg is just the classical
Marcinkiewicz integral on product domains, which was studied by many math-
ematicians. For instance, the author of [13] gave the L? boundedness of Mg if
Q € L(log L)*(S™~! x S™~1). Subsequently, it was verified in [11] that Mg is
bounded for all 1 < p < oo provided that Q € L(log L)%(S"~! x S™~1). This
result was improved (for p = 2) in [12] in which the author established that
Mg is bounded on L?(R™ x R™) for all Q € L(log L)(S"~! x S™~1). Recently,
Al-Qaseem et al. found in [1] that the boundedness of Mg is obtained under
the condition Q € L(log L)(S"~! x S™~1) for 1 < p < co. Furthermore, they
proved that the exponent 1 is the best possible.

In this article, we extend and improve the corresponding results in [1,11,12].
Our main result is formulated as follows.

Theorem 1.1. Suppose that @ € L(log L)(S"~1 x S™~1) and satisfies (1.2)-
(1.8). Then Mg is bounded on LP(R™ x R™) for p € (1,00).

Throughout this paper, the letter C' denotes a bounded positive constant
that may vary at each occurrence but independent of the essential variables.

2. Some lemmas

In this section, we give some auxiliary lemmas used in the sequel. The
following is found in [8,24]. For (z,y) € R™ x R™, set
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x1 = pitcosfy - cosb,_ocosby,_1, Y1 = pgl cos ¥ - -+ cos o cos Py, _1,
o = p72cosby ---cosby,_osinb, 1, Yo = p§2 cos ¥ -+ cosWpm_osintdy, 1,
_ QGn-—1 9 : 9 _ Bm—1 19 3 19
Tp—1 = p; """ cos b sinby, Ym—1 = pp" " cos ¥y sin vy,
Uy _ pBm .
Tp = py"sinby, Ym = p5  sind;.

Then dady = p& p I (01, 0n_1)J2 (1, , Om_1)dprdpado(z)do(y'),
where p{ ! Jy

(61, ,0n,—1) and p§‘1J2(191, -+, ¥m—1) are the Jacobians of the above trans-
forms. In [18], it was shown that J; = J1(01,- -+ ,6,_1) is a C* function in the
variable 2/ € S"~!  also it was proved that 1 < J;(61,---,0,_1) < L for some
real number L > 1, and so for Ja(¢1,--- ,%m—1). For simplicity, we denote

Ji(01,- - 0p1)J2(V1, -+ ,Um_1) by J(2', ).
In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. [22] Suppose that \;s and os are fized real numbers, and I'(t) =
(At -« ANEON) is a function from RT to RN . For suitable f, let Mrp be
the mazximal operator defined on R™ by

i) e

for x € RY. Then for 1 < p < oo, there exists a constant Cp > 0 such that
IMrfll, < Cpllfll,
The constant C), is independent of N;s and f.

My f(z) = sup
n>0 b

Lemma 2.2. Suppose that a.s, bis, ais, and Bls are fized real numbers. Let
L(t) = (a1t a,t®) and A(t) = (byt?1, -+ [ byutPm); and let Mr 5 be the
mazimal operator defined on R™ x R™ by

hi phe
Mraf(z,y) = sup / flx =T(@),y — A(r))dtdr

hiha>0 P hz

for (z,y) € R" x R™. Then for 1 < p < oo, there exists a constant C, > 0
(independent of a;s, b}s, and f) such that

IMrafll, <Cplifll, -

The proof of Lemma 2.2 follows immediately by using Lemma 2.1 and the
inequality Mp a f(z,y) < Ma o Mrf(z,y), where o denotes the composition
of operators.

We shall recall the following lemma due to Madych.
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Lemma 2.3. [20] Let ® € S(R™) satisfy &(0) =0. Denote ®;(x) = t*®(As-1 )
fort > 0, the Littlewood-Paley g-function related to the transform A is defined

by
w0 = ([ e P f)/

Then there is a positive constant C such that ||ga(f)|l, < C|fllp for any f €
LP(R") and 1 < p < 0.

Similarly, we derive the following lemma.

Lemma 2.4. Let & € S(R"), ¥ € S(R™) with ®(0) = ¥(0) = 0. For s,t > 0,
let ®4(z) =t~ ®(A-17), Us(y) = s PU(As-1y) and Ty (2, y) = O4(2)Vs(y).
Assume that the Littlewood-Paley g-function is defined by

oo [ 1/2
maNn = ([ [T s 5E)

Then there exists C > 0 such that ||go.w(f)llp < C|fllp for any f € LP(R"™ x
R™) and 1 < p < 0.

Lemma 2.5. [8] Let v € [0,1] and u,§ € R". Then

2
/ cArug @A
1 A

where Ay is defined as above and T denotes the distinct numbers of {a;}.

<Clu-¢°7,

For a two-parameter family of measures v = {v; ; : t,s € R} on R" x R"™,
we define the operator (G, and its corresponding maximal operator v* by

21 Gy = ( I s f(x,y)IthdS>1/2
and

(2.2) Vi(f) = sup ||ves|* f].
t,seR

We write t¥% = min{tt%,+=*} and ||v; | for the total variation of v; .
The following is the main lemma of this section.
Lemma 2.6. Let a,b > 2, y1,72 > 0, ¢ > 1 and B > 0. Suppose that the
family of measures {v; s : t,s € R} satisfies the following conditions:
() ||lvrsll < CB fort,s € R
(i) [75(&mIl < OB A ™ [ Ay ™" for (6,1) € R” x R™ and
t,s € R;
(i1d) [lv*(N)lly < CBIfll, for f€ LYR" x R™).
Then, for every p satisfying |1/p — 1/2| < 1/(2q), there is a constant C), (in-
dependent of a,b, B, f) such that for any f € LP(R™ x R™),

1GL(Nllp < CoBIlflp-
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Proof. We employ some ideas from [1,8]. For £ > 2, let ¢*) be a € C™
function supported in [4/(5k), (5x)/4] such that

(i) ¢*(¢) = " (p(Q)) for p > 0 and ¢ € RY;

(i) 0 < ¢"(¢) < 15

(i) [ 2D gt = 21n k.
For a,b > 2, and for (§,7) € R" x R™, let ® € C*°(R") and ¥ € C*(R™)
be given by &(£) = ¢ (py(€)2) and ¥(n) = ® (py(n)?). For z € R",y € R™
and t,s € R, set

Oy(x) =t (A1), Wy(y) = s PO(A1y) and Ty(x,y) = 4(2)Us(y).
Thus, for any f € S(R™ x R™), we get

(23) f@g) = [ Tare s fary)dids.
RxR
By Minkowski’s inequality, we reach that
2 1/2
Gu(f)(u,v) = ( / / L ttu psto ¥ Vs * f(x,y)dudv dtds)
RXxR | RxR
(24) S / (Hu,vf)(l’, y)dudv,
RXR
where

1/2
/ |Fat+u’bs+v * Uy g K f(ac,y)}2 dtds) .

RXxR

(2~5) (Hu,vf)(x7 y) = (

Let us start estimating || Hy ,f |2 for the case u,v > 0; the proof for the
other cases are essentially the same and require only minor modifications. By
Plancherel’s theorem, assumption (i7) and the techniques used in [8], we con-
clude that

| Huwf I3 < CB (/ 1F(& 710" (p1(Agure€)?)*| Ageg 1/ 12
RxR R xR™

% 10" (pa(Aysem)”) | Age[*72/ " ) dgdntds

IN

b (/ |f<§,n>|2{|Aazs|2“”““}{AbsnF”Q“"b}dsdn)dtds
RXR E

w,v,t,8

(2.6) < O Be2Uulritlvlr2) | f ”g’
where E, ¢ = {(&,n) e R" x R™:

2 u-1/2 V5 12 2 w1y ; Vb, +1/2
v < < “ b~ <b® < —b"" .
NG Sap(§) = a 7 < bp2(n) < }
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Now, let us estimate || Hy, o f ||p, for po satisfying ‘% - pio

First, we consider 1 < pg < 2. By the assumption (i), we get

(2.7) H/ Ut,s * Dguse pots * f(x,y)dtds
RxR

<CB H/ Lyt ps * fx,y)dtds
RXxR

1 1

Further, by using the assumption (iii), we achieve that

sup |ve,s * Tgure yore * f| < |V (sup |Tarps = f])
t,s€R . t,s€R p
(2.8) < CB]|| sup ’Fat,bs * f| .

t,s€ER q

By using the interpolation theorem between (2.7) and (2.8) and the Lemma
2.4, we deduce that

[ Huo £l

IN

CB H/ (|Fat,bs *f|2dtds)l/2
RXR
CB|fll,, -

po

(2.9)

IN

Next, consider the case 2 < pg < co. As ¢ = (&) and H(Hu,,,(f))lﬂu =
Po

||Hu,v(f)H;[<22a there is a non-negative function f € LY(R" xR™) with |[F ||, <
1 such that

) 1/2]2
||Huv(f)||]2,0 = H (/ |Fau+t,bv+s * Vg g % f(x,y)} dtds)

RXxR
Po
(2.10) = / / ‘Fauﬁ»t’bvﬁ»s * Uy g % f(x,y)|2 dtdsF (z,y)dzdy.
"xR™ JRXR

By using Holder’s inequality, (2.10), Lemma 2.4 plus the assumptions (i) and
(#4i), we obtain that

2
1n (DI, <Dl [ [ o [P v xS deds | (2,9) | dady
R"XR™ JRXR

Po/2 2/vo
ch(/ Ty dmdy) 1)
R XR™\J/RXR

(2.11) < CB||fl5
where [ (z,y) = F (—x, —y). Thus, by (2.9) and (2.11) we reach that
(2.12) [Huw(Pll,, < CBIfl,,

for any pq satisfying | % —
(2.6) and (2.12) gives that

(2.13) 1Huw (D, < CBe(mtlh gy -

|= L with py # 2. Hence, interpolation between

1
Po 2q
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Therefore, by this and (2.2), we deduce that

(2.14) 1GL (I, < / [ Huw (], dudv < Cp || ],
RXxR
O
3. Proof of Theorem 1.1
We prove Theorem 1.1 by applying the same approaches found in [1,8], which
have their roots in [16,17]. Let us assume that Q € L(log L)(S"~! x S™~1)

and satisfies (1.2)-(1.3). For k € N, let Ej, = {(2,y) € S"~! x Sm~1:2k"1 <
|Q(z,y)| < 28}, D = {k € N : ¢(E})) > 27*}. Denote 0, = [gu_1 J(z,")do(x)
and 9p = [gm-1 J(-,y)do(y). For k € N, define €, by

(3.1)
(2, ) = o) (0.9) — - / e, y)J (&, y) x5 (2, y)do ()
gn—1
o [0 xe, @ ey [0 do @) ),
gm—1 Ey
and
keD

As in [5], it is easy to verify that [|Qo][, < C; and for k € N U {0}, Q, satisfies
(1.2)-(1.3). For k € D, we define the family of measures v®) = {v}., ; : t,s €
R} on R™ x R™ by

1 Q (u,v)
fdvi s = 7/ / f(u,v)dudv.
/Ranm P T T Joyurean Jpsycae @ a1 )

Set a, = b, = 2F, By = 2Fa(EL), 71 = 2%{32, and v = 2‘3\}{32, where
1 2

N{, N3 denote the distinct numbers {a;}, {5;}, respectively; and 0 < 6 <
min{1, —1 N N —} Thus,

27 a?
2kt ka
1Vk,e,sll, < o t+s) / //3n N |Q% (u, v)| J (u, v)do(uw)do(v)dprdpa
(3.3) < C2Fo( CBk

By the cancelation propertles of i, and a simple change of variables, we derive
that

) 12 Cid
[Pk, ] < m/ / //S” Lsm J(u,v) |Q%(u,v)]| |e 1€ _ 1 do(u)do(v)dpadpr

okt

<o [ fL ool oo o)
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1
<C[Ague] / / / 2%, )| | Ay, u] dor(u)dor(v)dpr
0 gn—lxgm-—1

<CBy, ’Aazg

?

which when combined with the trivial estimate |y ¢ | < C'By gives that

71
Tnay,

(3.4) Prisl < CBi|Aué

In the same manner, we attain
v
(35) ‘f/k,t,s| CBy, |Abz77| by
On the other hand, Lemma 2.5 and Holder’s inequality lead to

IN

. th—j 2ks—i
N 1
|l/k,t,5|2§2 P / / ‘/ ) ) J(u, v) Qe (u,v)
i,j=0 gktjo1 gkstio1 sn—1yxgm—1
2 dp1dps
P1P2

SC/ / Qe (u, v) (2, v)
sgm—1 Jgn—1xgn—1

2
3L / o~ HAakt—=1, (S PLL G g0 () dor (v)
1

% 6—7-'(1401“‘5+A02“‘77)do.(u)da.(v)’

p1

<[ | U, 0) O, 0)
sm—1 Jgn—1xgn—1

x>0 A (Aguass (=) €)™ do(u)do(x)do(v)

)

<y 1 gs/NnG+1) | Ay M5

-5
- . NF
X / / Qe (u, ) (2, 0) | (u — a:)-M 'do(v)do(z)do(v)
gm—1,/gn—1ygn—1 | Azkt7j71£|
=1 =
<OY o5 [Agme €l ™ 1%l
j=0
Thus,
=9
|ZA/k7t)S| S CakBk; ‘Agktglzjvf .
Combining this estimate with the trivial estimate |2y ¢ 5| < C'By, yields
S
(36) |Vk:,t7s| S CBk |A2kt§| Inag
Similarly, we derive

(3.7) [Dt,s] < OBy |Agrsé

2
by
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Finally, by definition of (V(k))*(f), we have that

09 (F)w.v) = sup chtsl*f|<0//s” o 2w

t,seR

X ( sup 2k(t+s / / flx—Apu,y — Ap,v)| dpzdp1) do(u)do(v)

< C’//Sn_lxsm_1 [Q% (u, v)| Mr A (f)(x,y)do(w)do(v).

Therefore, by Lemma 2.2, we obtain that

(3.8)

IN

|y () A FMORHI

q

IN

CB|flly

Lemma 2.6 and (3.3)-(3.8) give that
(3.9) G, (DI, < Collfll,

By this and Minkowski’s inequality, we conclude that

IMa()ll, < ColMag(f)ll, + D (In2%)Bi G, (N,

keD
< p<1+ Z(k)&) 1£1,
keD
< Co (1419050051 ) 171, < ColI£1,

for 1 <p<ooand fe LP(R" x R™). Thus, we finish the proof of Theorem

1.1.
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