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Abstract. In this paper, we prove a multiplicity result for some bihar-
monic elliptic equation of Kirchhoff type and involving nonlinearities with
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1. Introduction and statement of main results

In the present work, we consider the equation

(P )

(
a+ b

∫
R4

|∆u|2 dx
)
∆2u+ V (x)u = f(x, u) + h(x), in R4,

where a > 0 and b > 0. We assume

(H1) V : R4 → [0,+∞[ is some continuous function such that

V0 = inf
x∈R4

V (x) > 0.

Moreover, V is spherically symmetric (radial), that is

∀ x, y ∈ R4, |x| = |y| ⇒ V (x) = V (y).

(H2) f : R4×R → R is a Carathéodory function which is spherically symmetric
with respect to x ∈ R4, that is

∀ (x, y, s) ∈ R4 × R4 × R, |x| = |y| ⇒ f(x, s) = f(y, s).
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Kirchhoff-type biharmonic equation 1560

(H3) There exist α > 1, β > 1, p > 0 and C0 > 0 such that

|f(x, s)| ≤ C0

(
|s|α + |s|β

(
eps

2

− 1
))

, a.e x ∈ R4, ∀ s ∈ R.

(H4) There exist A > 0 and q > 4 such that

F (x, s) =

∫ s

0

f(x, t)dt ≥ A |s|q , a.e x ∈ R4, ∀ s ∈ R.

(H5) There exists ν > 4 such that

νF (x, s) ≤ f(x, s)s, a.e x ∈ R4, ∀ s ∈ R.

(H6) h : R4 → R is spherically symmetric such that h ∈ L2(R4).
Higher order nonlinear equations and especially those involving a biharmonic

operator arise in many physical applications such as deformations of an elastic
beam in equilibrium state, travelling waves in suspension bridges, thin film
theory, surface diffusion on solids, interface dynamics, and phase field models
of multiphase systems. The interested reader can be referred to [7, 11, 14, 22]
and references therein. On the other hand, nowadays, it is becoming clear
and even obvious the importance of studying Kirchhoff-type equations (and in
general nonlinear equations containing nonlocal terms) in view of their various
possibilities to modelize several physical and biological phenomena. Among
these equations, a special attention has recently been given to fourth-order
ones. We can, for example, cite [4, 20, 21, 24]. In these cited references and
others, the authors are mainly concerned with equation of the form

∆2u−M

(∫
Ω

|∆u|2 dx
)
∆u = g(x, u), x ∈ Ω,

where Ω is some subset of RN , N ≥ 3, and g is some Carathéodory function
whose growth at infinity is controlled by some polynomial. A special case with
great interest is when M(s) = a + bs, with a and b two positive constants.
In our case we study the situation when the nonlinearities enjoy a critical ex-
ponential growth at infinity. This kind of problems has known a very great
interest in last few decades but the number of papers dealing with Kirchhoff
type equation involving this kind of growth condition is very limited. We can
quote [1–3,8,12]. All these works investigated existence and multiplicity of solu-
tions to some second-order equations and they are governed by the well known
Trudinger-Moser inequality. Concerning higher order, up to the best knowledge
of the author, the present paper is the first attempt to study Kirchhoff-type
equation involving exponential growth condition. Another aspect of novelty in
this article is that we prove the existence of at least two nontrivial solutions
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for both cases h ̸= 0 and h = 0. We look for solutions to the problem (P ) in
the Hilbert space

E =

{
u ∈ H2(R4),

∫
R4

V (x)u2dx < +∞
}

equipped with the norm

∥u∥ =

(∫
R4

(
|∆u|2 + V (x)u2

)
dx

) 1
2

.

The following results concerning the space H2(R4) are needed. See [16–18] for
proofs and more details. For u ∈ H2(R4), we denote

∥u∥H2(R4) = |(−∆+ I)u|2 =
(
|∆u|22 + 2 |∇u|22 + |u|22

) 1
2

,

where | · |2 denotes the norm in L2(R4), i.e.

|v|2 =

(∫
R4

v2dx

) 1
2

, v ∈ L2(R4).

Here, we state the Adams inequality for the whole space R4,

sup
u∈S

∫
R4

(
eαu

2

− 1
)
dx

{
< +∞ if α ≤ 32π2,
= +∞ if α > 32π2,

where S =
{
u ∈ H2(R4), ∥u∥H2(R4) ≤ 1

}
. Moreover, if α > 0, q ≥ 2 and

M > 0 such that αM2 < 32π2, then there exists a constant C = C(α, q,M) > 0
such that∫

R4

(
eαu

2

− 1
)
|u|q dx ≤ C ∥u∥qH2(R4) , ∀ u ∈ H2(R4), ∥u∥H2(R4) ≤ M.

Now, by (H1), there exists a constant χ0 > 0 such that

∥u∥H2(R4) ≤ χ0 ∥u∥ , ∀ u ∈ H2(R4).

It follows that there exists a positive constant C ′ = C ′(α, q,M) > 0 such that

(1.1)

∫
R4

(
eαu

2

− 1
)
|u|q dx ≤ C ′ ∥u∥q ,

provided that ∥u∥ ≤ M < 1
χ0

(
32π2

α

) 1
2

.

Definition 1.1. A function u ∈ E is said to be a weak solution of the problem
(P ) if it satisfies

a

∫
R4

∆u∆vdx+ b

(∫
R4

|∆u|2 dx
)∫

R4

∆u∆vdx+

∫
R4

V (x)uvdx

=

∫
R4

f(x, u)vdx+

∫
R4

hvdx, ∀ v ∈ E.
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The main result of this paper is given by the following theorem.

Theorem 1.2. Assume that (H1)− (H6) hold true. Then, there exist A0 > 0
and h0 > 0 such that the problem (P ) admits at least two nontrivial weak
solutions provided that A > A0 and 0 < |h|2 < h0. Moreover, if h = 0 and
F (x, s) is even with respect to s ∈ R, then (P ) has also at least two nontrivial
weak solutions.

2. Proof of Theorem 1.2

We will proceed by steps. First, we introduce the energy functional which
corresponds to (P ),

I(u) =
a

2

∫
R4

|∆u|2 dx+
b

4

(∫
R4

|∆u|2 dx
)2

+
1

2

∫
R4

V (x)u2dx

−
∫
R4

F (x, u)dx−
∫
R4

hudx, u ∈ E.

Lemma 2.1. Assume that (H1), (H3) and (H6) hold true. Then, there exist
µ > 0, ρ > 0 and h0 > 0 such that

I(u) ≥ µ, ∀ u ∈ E, ∥u∥ = ρ, provided that 0 ≤ |h|2 < h0.

Proof. By (H3), it yields∫
R4

F (x, u)dx ≤ c1

(∫
R4

|u|α+1
dx+

∫
R4

|u|β+1
(
epu

2

− 1
)
dx

)
.

Then, if ∥u∥ ≤ inf

(
1, 1

2χ0

(
32π2

p

) 1
2

)
, by (1.1) we obtain∫

R4

F (x, u)dx ≤ c1

(
∥u∥α+1

+ ∥u∥β+1
)
≤ (2c1) ∥u∥1+inf(α,β)

.

Thus,

I(u) ≥ inf(1, a)

2
∥u∥2 − (2c1) ∥u∥1+inf(α,β) − |h|2 ∥u∥ ,

for ∥u∥ ≤ inf

(
1, 1

2χ0

(
32π2

p

) 1
2

)
. Since inf(α, β) > 1, one can find ρ > 0

small enough such that ρ < inf

(
1, 1

2χ0

(
32π2

p

) 1
2

)
and inf(1,a)

2 > 2c1ρ
inf(α,β)−1.

Hence, Lemma 2.1 can be concluded by taking h0 = inf(1,a)
2 ρ− 2c1ρ

inf(α,β) and

µ = inf(1,a)
2 ρ2 − 2c1ρ

1+inf(α,β) − h0ρ. □

Lemma 2.2. Assume that (H1), (H2), (H3) and (H6) hold true. Then, the
problem (P ) admits a nontrivial radial weak solution U1 such that I(U1) < 0
provided that 0 < |h|2 < h0.
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Proof. Denote by Ir = I|Er
the restriction of I on the subspace Er consisting

of all radial functions in E. Since h ̸= 0, there is φ ∈ Er such that φ ̸= 0 and∫
R4 hφdx > 0. Let 0 < t < 1. We have

d

dt
Ir(tφ) = at

∫
R4

|∆φ|2 dx+ bt3
(∫

R4

|∆φ|2 dx
)2

+ t

∫
R4

V (x)φ2dx

−
∫
R4

φf(x, tφ)dx−
∫
R4

hφdx.

By the Lebesgue dominated convergence Theorem, it yields

lim
t→0+

∫
R4

φf(x, tφ)dx = 0.

Hence, one can find 0 < t0 < 1 small enough such that d
dtIr(tφ) < 0, ∀ 0 <

t < t0. Since Ir(0) = 0, it must exists 0 < t1 < inf
(
t0,

ρ
∥φ∥

)
(where ρ is given

by Lemma 2.1) such that Ir(t1φ) < 0. From the fact that ∥t1φ∥ < ρ, we infer

dρ = inf {Ir(u), u ∈ Er, ∥u∥ ≤ ρ} ≤ Ir(t1φ) < 0.

Now, by the virtue of the Ekeland’s variational principle (see [6]), there exists a
sequence (un) ⊂ Er, ∥un∥ ≤ ρ, ∀ n ≥ 0 such that Ir(un) → dρ and I ′r(un) → 0.
Then, there exists U1 ∈ Er such that un ⇀ U1 weakly in Er. We claim that,
up to a subsequence, (un) is strongly convergent to U1 in Er. Let 0 < ϵ < 1;
by (H3) there exists a constant cϵ > 0 such that

|f(x, s)| ≤ ϵ |s|+ cϵ |s|β
(
eps

2

− 1
)
, a.e x ∈ R4, ∀ s ∈ R.

It follows

(2.1)

∫
R4

|f(x, un)(un − U1)| dx ≤ ϵ

∫
R4

|un(un − U1)| dx

+ cϵ

∫
R4

|un|β
(
epu

2
n − 1

)
|un − U1| dx.

We have

(2.2)

∫
R4

|un(un − U1)| dx ≤
∫
R4

|un|2

2
dx+

∫
R4

|un − U1|2

2
dx

≤ c2, ∀ n ≥ 0.

On the other hand, by Hölder’s inequality

(2.3)

∫
R4

|un|β
(
epu

2
n − 1

)
|un − U1| dx

≤
(∫

R4

|un − U1|3 dx
) 1

3
(∫

R4

|un|
3β
2

(
e

3pu2
n

2 − 1

)
dx

) 2
3

.
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Obviously, one could choose ρ small enough such that

ρ <
1

χ0

(
32π2

3β
2

) 1
2

=
1

χ0

(
64π2

3β

) 1
2

.

By (1.1), it yields∫
R4

|un|
3β
2

(
e

3pu2
n

2 − 1

)
dx ≤ c3 ∥un∥

3β
2 ≤ c4, ∀ n ≥ 0.

Taking into account that the embeddings Er ↪→↪→ Lt(R4) are compact for all
2 < t < +∞ (see [13]), we deduce that, up to a subsequence,∫

R4

|un − U1|3 dx → 0, n → +∞.

By (2.3) , we infer

(2.4)

∫
R4

|un|β
(
epu

2
n − 1

)
|un − U1| dx → 0, n → +∞.

Using (2.4) , (2.2) and (2.1) , we obtain

lim
n→+∞

∫
R4

|f(x, un)(un − U1)| dx ≤ c2ϵ.

Since 0 < ϵ < 1 is arbitrary, we deduce that

(2.5) lim
n→+∞

∫
R4

f(x, un)(un − U1)dx = 0.

Taking the weak convergence of (un) to U1 in Er into account and using (2.5),
it follows(

a+ b

∫
R4

|∆un|2 dx
)∫

R4

|∆(un − U1)|2 dx+

∫
R4

V (x)(un − U1)
2dx → 0.

Consequently, un → U1 strongly in Er. Hence, I ′r(U1) = 0 and Ir(U1) =
I(U1) = dρ < 0. According to the principle of symmetric criticality (see [15,23]),
the function U1 is in fact a critical point of the functional I. □

Lemma 2.3. Assume that (H1) − (H6) hold true. Then, there exists A0 > 0
such that the problem (P ) admits a nontrivial weak radial solution U2 such that
I(U2) > 0 provided that A > A0.

Proof. Let t > 0 and φ ∈ Er be such that φ ̸= 0 and
∫
R4 hφdx > 0. By (H4),

it yields

Ir(tφ) ≤
at2

2

∫
R4

|∆φ|2 dx+
b

4
t4
(∫

R4

|∆φ|2 dx
)2

+
t2

2

∫
R4

V (x)φ2dx−Atq
∫
R4

|φ|q dx.
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Since q > 4, there exists τ0 > ρ
∥φ∥ large enough such that Ir(τ0φ) < 0. Now,

by the Mountain-Pass Theorem without the Palais-Smale condition (see [23,
Chapter 2]), there exists a sequence (un) ⊂ Er such that Ir(un) → c and
I ′r(un) → 0, where c = inf

γ∈Γ
max
0≤t≤1

Ir(γ(t)) > 0, and

Γ = {γ : [0, 1] → Er, γ(0) = 0, γ(1) = τ0φ} .

Observe that

Ir(un)−
1

ν
⟨I ′r(un), un⟩ ≤ c+ on(1) (1 + ∥un∥) , ∀ n ≥ 0.

Using (H5), we get

a

(
1

2
− 1

ν

)∫
R4

|∆un|2 dx+ b

(
1

4
− 1

ν

)(∫
R4

|∆un|2 dx
)2

+

(
1

2
− 1

ν

)∫
R4

V (x)u2
ndx

≤ c+ on(1) (1 + ∥un∥) + |h|2 ∥un∥ , ∀ n ≥ 0.

Thus,

(2.6)

(
1

2
− 1

ν

)
inf(1, a) ∥un∥2 ≤ c+ on(1) (1 + ∥un∥) + |h|2 ∥un∥ , ∀ n ≥ 0.

Then, (un) is bounded in Er. By Young’s inequality and (2.6), one can easily
find a positive constant c5 > 0 such that

(2.7)

(
1

2
− 1

ν

)
inf(1, a)

2
∥un∥2 ≤ c+ on(1) (1 + ∥un∥) + c5 |h|22 , ∀ n ≥ 0.

Passing to the upper limit in (2.7), we obtain

(2.8) lim sup
n→+∞

∥un∥2 ≤ 2c(
1
2 − 1

ν

)
inf(1, a)

+ c6 |h|22 .

Now, by the even definition of c and (H4), we have

(2.9) c ≤ max
t≥0

Ir(tφ) ≤ max
t≥0

(
k1t

2 + k2t
4 − k3t

q
)
,

where

k1 =
1 + a

2
∥φ∥2 , k2 =

b

4

(∫
R4

|∆φ|2 dx
)2

, k3 = A |φ|qq .

For t ≥ 0, define Ψ(t) = k1t
2 + k2t

4 − k3t
q. Clearly, one can choose A large

enough such that

(2.10)
4(k1 + k2)

qk3
< 1.
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That last inequality together with a direct computation lead to

(2.11)

max
0≤t≤1

Ψ(t) ≤ max
0≤t≤1

(
(k1 + k2)t

2 − k3t
q
)

=

(
1− 2

q

)
(k1 + k2)

(
2(k1 + k2)

qk3

) 2
q−2

.

On the other hand, again by (2.10) we have

(2.12) max
t≥1

Ψ(t) ≤ max
t≥1

(
(k1 + k2)t

4 − k3t
q
)
= k1 + k2 − k3.

Combining (2.10), (2.11) and (2.12), one can easily find A0 > 0 large enough
such that

max
t≥0

Ψ(t) ≤
(
1

2
− 1

ν

)
inf(1, a)

(
1

4χ0

)2(
64π2

3β

)
, ∀ A > A0.

By (2.9), it follows

(2.13)
2c(

1
2 − 1

ν

)
inf(1, a)

≤ 1

8

(
1

χ0

)2(
64π2

3β

)
, ∀ A > A0.

Clearly, one could choose h0 > 0 small enough such that

(2.14) c6h
2
0 ≤ 1

8

(
1

χ0

)2(
64π2

3β

)
.

By (2.14) ,(2.13) and (2.8) , we deduce that

lim sup
n→+∞

∥un∥2 ≤ 1

4

(
1

χ0

)2(
64π2

3β

)
, ∀ A > A0, ∀ |h|2 < h0.

Consequently, there exists n0 > 1 large enough such that

(2.15) ∥un∥ ≤ 1

2χ0

(
64π2

3β

) 1
2

, ∀ n ≥ n0,

provided that A > A0 and |h|2 < h0. Denote by U2 ∈ Er the weak limit of
(un). By (2.15) , it is immediate that (2.2) and (2.4) hold and by consequence
we get

lim
n→+∞

∫
R4

f(x, un)(un − U2)dx = 0,

which implies that, always up to a subsequence, un → U2 strongly in Er.
Therefore, I ′r(U2) = 0 and Ir(U2) = I(U2) = c > 0. Again by the virtue of the
principle of symmetric criticality, U2 is a critical point of I. □

Now, we will treat the case when h = 0 and F (x, s) is even with respect
to s ∈ R. In this case, we try to prove the existence of at least one nonradial
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(and sign-changing) solution to (P ). For that aim, we will try to adapt some
arguments found in [5]. More precisely, set

H = O(2)×O(2) =

{(
(a) (0)
(0) (b)

)
, (a), (b) ∈ O(2)

}
⊂ O(4).

Furthermore, let τ =

(
(0) i2
i2 (0)

)
∈ O(4) where i2 denotes the identity of

R2. Now, consider the subgroup G = ⟨H ∪ {τ}⟩ of O(4). Observe that τ−1 = τ
and τH = Hτ. Consequently, G = H ∪ {hτ, h ∈ H} . We define the action
∗ : G× E → E of G on E by

h ∗ u(x) = u(h−1x), ∀ x ∈ R4, ∀ u ∈ E, ∀ h ∈ H,

(hτ) ∗ u(x) = −u(τh−1x), ∀ x ∈ R4, ∀ u ∈ E, ∀ h ∈ H.

Clearly, ∥g ∗ u∥ = ∥u∥ , ∀ u ∈ E, ∀ g ∈ G. Thus, the action of G on E is
isometric. Since V (x) and f(x, s) are spherically symmetric with respect to x,
then

V (gx) = V (x), f(gx, s) = f(x, s), ∀ x ∈ R4, ∀ g ∈ G, ∀ s ∈ R.
Since the function u 7−→

∫
R4 F (x, u)dx is even, then I(g ∗ u) = I(u), ∀ u ∈

E, ∀ g ∈ G which means that I is G-invariant. Set

EG = FixE(G) = {u ∈ E, g ∗ u = u, ∀ g ∈ G} .
This space is nothing else than the space of the fixed points in E with respect
to the action of G on E. Moreover, we introduce the space

W 1,4
H (R4) =

{
u ∈ W 1,4(R4), u(x) = u(hx), ∀ x ∈ R4, ∀ h ∈ H

}
.

By the virtue of [9, Corollary 4], the embedding W 1,4
H (R4) ↪→ Lr(R4) is com-

pact, for all 4 < r < +∞. Observing that EG ↪→ W 1,4
H (R4) with continuous

embedding, it follows

(2.16) EG ↪→↪→ Lr(R4), ∀ 4 < r < +∞
with compact embedding.

Remark 2.4. It is clear that every point u ∈ EG\{0} is non spherically sym-
metric (i.e. nonradial) and is sign-changing.

Proof of Theorem 1.2 completed in view of Lemma 2.2 and Lemma 2.3, we
easily see that, for 0 < |h|2 < h0, the problem (P ) has at least two nontrivial
radial solutions. Now, we assume that h = 0 and F (x, s) is even with respect to
s ∈ R. By Lemma 2.3, the problem (P ) admits at least one weak radial solution
denoted by U1 such that I(U1) > 0. In order to conclude the proof of Theorem
1.1, it remains to show that the problem (P ) admits a nontrivial nonradial
weak solution. But this result can be reached by adapting the arguments used
in the proof of Lemma 2.3 to the functional IG = I|EG

, which is the restriction

of I on the subspace EG. It suffices to prove that a similar identity to (2.5)
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holds. Let (un) ⊂ EG and u ∈ EG be such that un ⇀ u weakly in EG. We
claim that

(2.17)

∫
R4

f(x, un)(un − u)dx → 0, n → +∞.

By Hölder’s inequality, we have

(2.18)

∫
R4

|un|β
(
epu

2
n − 1

)
|un − u| dx

≤
(∫

R4

|un − u|5 dx
) 1

5
(∫

R4

|un|
5β
4

(
e

5pu2
n

4 − 1

)
dx

) 4
5

.

As in (2.15), one can easily show that, for A > A0 and n large enough, we have

∥un∥ ≤ 1

2χ0

(
64π2

3β

) 1
2

<
1

2χ0

(
128π2

5β

) 1
2

.

By (1.1), it yields∫
R4

|un|
5β
4

(
e

5pu2
n

4 − 1

)
dx ≤ c7 ∥un∥

5β
4 ≤ c8, ∀ n ≥ 0.

By (2.16), EG ↪→↪→ L5(R4). Then, |un − u|5 → 0, and by consequence (2.17)
follows from (2.18) and (2.1). We deduce that IG admits at least one nontrivial
critical point U2 ∈ EG such that IG(U2) = I(U2) > 0. Taking into account that
the principle of symmetric criticality still holds (see [10]), we conclude that U2

is a critical point of I. Finally, since U2 ̸= 0, Remark 2.4 implies that U2 is
nonradial and sign-changing. This ends the proof of 1.2.
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[24] L. Xu and H. Chen, Existence and multiplicity of solutions for fourth-order ellptic equa-
tions of Kirchhoff type via genus theory, Bound. Value Probl. 2014 (2014), 12 pages.

(Sami Aouaoui) Institut Supérieur des Mathématiques Appliquées et de l’Informa-
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