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66 Mirzavaziri and MoslehianDerivations play essential role in some important branhes of math-ematis and physis suh as dynamial systems. The general theory ofdynamial systems is the paradigm for modeling and studying phenom-ena that undergo spatial and temporal evolution. The appliation ofdynamial systems has nowadays spread to a wide spetrum of disi-plines inluding physis, hemistry, biohemistry, biology, eonomy andeven soiology. In partiular, the theory of dynamial systems onernsthe theory of derivations in Banah algebras and is motivated by ques-tions in quantum physis and statistial mehanis, f. [13℄.It is known that the relation TS � ST = I is impossible for boundedoperators T and S on Banah spaes; f. [13℄ and referenes therein.In fat the study of this relation as a speial ase of T�(S) � �(S)T =R, where � is a linear mapping, leads the theory of derivations to beextensively developed.The above onsiderations motivate us to generalize the notion ofderivation as follow. Let D be a subalgebra of a Banah algebra Aand let �; d : D ! A be linear mappings. If d(ab) = d(a)�(b) + �(a)d(b)for all a; b 2 D then we say d is a �-derivation (see [1, 2, 3, 8, 9, 11, 12℄and the referenes therein). There are some interesting questions in thisarea of researh, e.g. one may ask `What are the �-derivations of theompat operators ating on a separable Hilbert spae?' The paper [4℄an be a starting point for answering this question. Note that if � is theidentity map then d (and every so-alled inner �-derivation) is indeed aderivation (inner derivation, respetively) in the usual sense.In this paper we introdue and study (inner) �-derivations, (inner)�-endomorphisms and one-parameter group of �-endomorphisms (�-dynamis). The importane of our approah is that � is a linear map-ping, not neessarily an algebra endomorphism. It is shown that the�-in�nitesimal generator of a �-dynamis of inner �-endomorphisms isan inner �-derivation and the onverse is true under some onditions.We give a formula for omputation dn(ab), where d is a �-derivation thatis interesting in its own right. We also generalize two known theorems inthe ontext of Banah algebras, namely the Wielandt{Wintner theoremand the Kleineke{Shirokov theorem.This paper is self-ontained. The reader, however, is referred to [5℄for details on Banah algebras and to [6, 7, 13℄ for more information ondynamial systems.



�-Derivations in Banah Algebras 672. �-dynamisThroughout the paper A denotes a Banah algebra, � is the identityoperator on A, D denotes a subalgebra of A, and �; d : D ! A arelinear mappings.De�nition 2.1. d is alled a �-derivation if d(ab) = d(a)�(b)+�(a)d(b)for all a; b 2 D.Example 2.2. Let � be an arbitrary linear mapping on D and supposethat u is an element of A satisfying u(�(ab) � �(a)�(b)) = (�(ab) ��(a)�(b))u for all a; b 2 D. Then the mapping d : D ! A de�ned byd(a) = u�(a)� �(a)u is a �-derivation.The above �-derivation is alled inner. Note that if � is an endomor-phism then u an be an arbitrary element of A.Example 2.3. Let d be an endomorphism on A. Then d is ad2 -derivation.Example 2.4. Let d; � : C([0; 1℄) ! C([0; 1℄) be de�ned by �(f) = f2and d(f) = fh0, respetively. Here h0 is an arbitrary �xed element inC([0; 1℄). Then easy observations show that �(1) 6= 1, d(1) 6= 0, thelinear mapping � is not endomorphism, and d is a �-derivation.Example 2.5. Suppose that d; � : C([0; 1℄)! C([0; 1℄) are de�ned by�(f)(t) = ( 12f(2t) 0 � t � 1212f(1) 12 � t � 1and d(f)(t) = ( f(2t)h0(t) 0 � t � 12f(1)h0(12 ) 12 � t � 1 ;respetively, where h0 is an arbitrary �xed element of C([0; 1℄). Then astraightforward veri�ation shows that d is a �-derivation and that nosalar multiple of � is an endomorphism.De�nition 2.6. A linear mapping � : A ! A is alled �-endomorphismif (� + � � �)(ab) � (� + � � �)(a)(� + � � �)(b) = �(ab) � �(a)�(b) for



68 Mirzavaziri and Moslehianall a; b 2 A.Note that if � = � then a �-endomorphism is nothing more than anendomorphism on A in the usual sense.Lemma 2.7. Let � be a linear mapping on A. Then � is a�-endomorphism if and only if�(ab) � �(a)�(b) = (�(a) � a)(�(b) � b) + (�(a) � a)(�(b) � b):Proof. Straightforward. �De�nition 2.8. A mapping t 2 R 7! �t 2 B(A) denoted by f�tgt2Ris a one-parameter group of bounded operators on A if it satis�es thefollowing onditions:(i) �t�s = �t+s, for all t; s 2 R,(ii) �0 = �.In the ase that �t's are bounded �-endomorphisms, f�tgt2R is alleda one-parameter group of �-endomorphisms on A. It is said to be uni-formly ontinuous if the map t 7! �t is ontinuous in the uniform topol-ogy, i.e. k�t��k ! 0 as t! 0. In this ase fA; �g is alled a �-dynamis.Let fA; �g be a �-dynamis. Then for eah a 2 A, if the limit oft�1(�t(a) � �(a)) as t tends to 0 exists, we an de�ne d(a) to be thislimit. This provides a mapping d : D ! A, where D is the set of allelements a in A for whih the limit exists. The mapping d is alled the�-in�nitesimal generator of the �-dynamis f�tgt2R.Proposition 2.9. Let fA; �g be a �-dynamis. Then d =limt!0t�1(�t(a)� a) is an everywhere de�ned �-derivation.Proof. We haved(ab) = limt!0 t�1(�t(ab)� �(ab))= limt!0 t�1((�t + � � �)(ab) � �(ab))= limt!0 t�1((�t + � � �)(a)(�t + � � �)(b) � �(a)�(b))= limt!0(t�1((�t + � � �)(a)� �(a))�(b)+(�t + � � �)(a)t�1((�t + � � �)(b)� �(b)))= d(a)�(b) + �(a)d(b):



�-Derivations in Banah Algebras 69It follows from Proposition 3.1.1 of [6℄ that d is everywhere de�ned. �De�nition 2.10. A linear mapping � is alled an inner �-endomorphismif there is an element u 2 A suh that (�+�� �)(a) = eu�(a)e�u; a 2 Aand u(�(ab)� �(a)�(b)) = (�(ab)� �(a)�(b))u; a; b 2 A.Lemma 2.11. Eah inner �-endomorphism is indeed a �-endomorphism.Proof. We have(�+ � � �)(ab)� (�+ � � �)(a)(� + � � �)(b)= eu(�(ab)� �(a)�(b))e�u= eue�u(�(ab)� �(a)�(b))= �(ab)� �(a)�(b): �Theorem 2.12. Let f�tgt2R be a one-parameter group of inner �-endomorphisms. Then the �-in�nitesimal generator d of �-dynamis(A; �) is an inner �-derivation.Proof. We havelimt!0 t�1(�t(a)� a) = limt!0 t�1((�t + � � �)(a)� �(a))= limt!0 t�1(etu�(a)e�tu � �(a))= limt!0(uetu�(a)e�tu � etu�(a)ue�tu)= u�(a) + �(a)u:Note that we use L'Hospital's rule to get the third equality. �Lemma 2.13. Let d : A ! A be the inner �-derivation d(a) = u�(a)��(a)u. If �2 = � and �(au) = �(a)u; �(ua) = u�(a) for all a 2 A. ThenrXk=0(�1)k rk!uk�(a)ur�k = (�1)rdr(a) (2:1)for all a 2 A; 0 � k � r;where r � 1.



70 Mirzavaziri and MoslehianProof. We use indution on r. For r = 1 there is nothing to do. Assumethat (2.1) holds for r. We have(�1)r+1dr+1(a) = (�1)r+1d(dr(a))= �u�((�1)rdr(a)) + �((�1)rdr(a))u= � rXk=0(�1)k rk!uk+1�(a)ur�k+ rXk=0(�1)k rk!uk�(a)ur�k+1= � rXk=0(�1)k rk!uk+1�(a)ur�k� r�1Xk=�1(�1)k+1 rk + 1!uk+1�(a)ur�k= (�1)r+1ur+1�(a) + �(a)ur+1� r�1Xk=0(�1)k( rk!+  rk + 1!)uk+1�(a)ur�k= (�1)r+1ur+1�(a) + �(a)ur+1� r�1Xk=0(�1)k r + 1k + 1!uk+1�(a)ur�k= (�1)r+1ur+1�(a) + �(a)ur+1 +rXk=1(�1)k r + 1k !uk�(a)ur+1�k= r+1Xk=0(�1)k r + 1k !uk�(a)ur+1�k: �Theorem 2.14. Let d : A ! A be the inner �-derivation d(a) =u�(a) � �(a)u. If �2 = � and �(au) = �(a)u; �(ua) = u�(a) for alla 2 A, then there exists a one-parameter group of operators f�tgt2Rsuh that d is its �-in�nitesimal generator and �t � � + � is an inner�-homomorphism for all t 2 R.



�-Derivations in Banah Algebras 71Proof. Put �t(a) = 1Xn=0 tndn(a)n! . Using Lemma 2.13 we haveetu�(a)e�tu = ( 1Xn=0 tnunn! )�(a)( 1Xm=0 (�t)mumm! )= 1Xn=0 1Xm=0 tn(�t)mn!m! un�(a)um= 1Xr=0 rXk=0 tk(�t)r�kk!(r � k)!uk�(a)ur�k= 1Xr=0 (�t)rr! rXk=0(�1)k rk!uk�(a)ur�k= 1Xr=0 trr!dr(a)= �t(a):Sine ((�t � � + �) + � � �)(a) = �t(a) = etu�(a)e�tu, we dedue that�t � � + � is an inner �-endomorphism. Obviously �t�s = �t+s and�0 = �. In addition, limt!0�t(a)� at = limt!0 1Xn=1 tndn(a)n! = d(a). �De�nition 2.15. Let d be a �-derivation. We say d multiplizes � if�(ab) � �(a)�(b) � ker(d). In this ase d is alled a multiplizing �-derivation.Example 2.16. Eah inner �-derivation d is multiplizing. Let d(a) =u�(a)��(a)u for some u 2 A. Then we have d(ab) = d(a)�(b)+�(a)d(b),and so u�(ab) � �(ab)u = (u�(a) � �(a)u)�(b) + �(a)(u�(b) � �(b)u),whih implies that u(�(ab) � �(a)�(b)) � (�(ab) � �(a)�(b))u = 0 ord(�(ab) � �(a)�(b)) = 0. Thus d is a multiplizing �-derivation.Proposition 2.17. Let A be an algebra with no zero divisor. Then dis a multiplizing �-derivation if and only if �(b�(ab)) = �(b)�2(ab) forall a; b 2 A.Proof. For eah a; b;  2 D we have



72 Mirzavaziri and Moslehiand(ab) = d(ab)�() + �(ab)d()= (d(a)�(b) + �(a)d(b))�() + �(ab)d()= d(a)�(b)�() + �(a)d(b)�() + �(ab)d():On the other hand,d(ab) = d(a)�(b) + �(a)d(b)= d(a)�(b) + �(a)(d(b)�() + �(b)d())= d(a)�(b) + �(a)d(b)�() + �(a)�(b)d():Therefore, d(a)(�(b) � �(b)�()) = (�(ab) � �(a)�(b))d();for eah a; b;  2 D. Putting  = �(ab) � �(a)�(b), we have �(ab) ��(a)�(b) 2 ker(d) if and only if �(b(�(ab) � �(a)�(b))) � �(b)�(�(ab) ��(a)�(b)) = 0, whih implies the result. �3. Generalized Leibniz ruleIn the rest of the paper we need a family of mappings f'n;kgn2N;0�k�2n�1to simplify the notations. We introdue these mappings by representingthe natural numbers in base 2.Let n be a natural number and 0 � k � 2n � 1. Note that 2n � 1 =(1 : : : 1| {z }n times)2 and eah 0 � k � 2n � 1 has at most n digits in base 2. Nowassume that 'n;k is the mapping derived from writing k in base 2 withexatly n digits and put d for 1's and � for 0's.To illustrate the mappings 'n;k's, let us give an example. Let n = 5and k = 11. Then we an write k = (01011)2 and so '5;11 = �d�dd =�d�d2.Lemma 3.1 Let n be a natural number and 0 � k � 2n � 1. Then(i) d'n;k = 'n+1;2n+k,(ii) d'n;2n�1�k = 'n+1;2n+1�1�k,(iii) �'n;k = 'n+1;k,(iv) �'n;2n�1�k = 'n+1;2n+1�1�(2n+k).Proof. Assume that k = (n : : : 1)2.



�-Derivations in Banah Algebras 73(i) d'n;k = 'n+1;(1n:::1)2 = 'n+1;2n+k.(ii) 2n � 1 � k = ( �n : : : �1)2, where �i + i = 1, sine (2n � 1 � k) +k = 2n = (1 : : : 1)2. Thus we infer that d'n;2n�1�k = d'n;( �n::: �1)2 ='n+1;(1 �n::: �1)2 = 'n+1;2n+(2n�1�k) = 'n+1;2n+1�1�k.(iii) �'n;k = 'n+1;(0n:::1)2 = 'n+1;k.(iv) �'n;2n�1�k = 'n+1;(0 �n::: �1)2 = 'n+1;2n�1�k = 'n+1;2n+1�1�(2n+k).�Theorem 3.2. For eah a; b 2 D,dn(ab) = 2n�1Xk=0 'n;k(a)'n;2n�1�k(b): (3:1)Proof. We prove the assertion by indution on n. For n = 1 we haved(ab) = d(a)�(b) + �(a)d(b) = '1;1(a)'1;0(b) + '1;0(a)'1;1(b):Now suppose (3.1) is true for n. By Lemma 3.1 we obtaindn+1(ab) = d(dn(ab)) = d(2n�1Xk=0 'n;k(a)'n;2n�1�k(b))= 2n�1Xk=0 d('n;k(a)'n;2n�1�k(b))= 2n�1Xk=0 d('n;k(a))�('n;2n�1�k(b)) + �('n;k(a))d('n;2n�1�k(b))= 2n�1Xk=0 'n+1;2n+k(a)'n+1;2n+1�1�(2n+k)(b)+ 2n�1Xk=0 'n+1;k(a)'n+1;2n+1�1�k(b)= 2n+1�1Xl=2n 'n+1;l(a)'n+1;2n+1�1�l(b)+ 2n�1Xl=0 'n+1;l(a)'n+1;2n+1�1�l(b)= 2n+1�1Xl=0 'n+1;l(a)'n+1;2n+1�1�l(b): �



74 Mirzavaziri and MoslehianExample 3.3. As an illustration, onsider the ase n = 3. We haved3(ab) = '3;0(a)'3;7(b) + '3;1(a)'3;6(b)+'3;2(a)'3;5(b) + '3;3(a)'3;4(b)+'3;4(a)'3;3(b) + '3;5(a)'3;2(b)+'3;6(a)'3;1(b) + '3;7(a)'3;0(b)= �3(a)d3(b) + �2d(a)d2�(b)+�d�(a)d�d(b) + �d2(a)d�2(b)+d�2(a)�d2(b) + d�d(a)�d�(b)+d2�(a)�2d(b) + d3(a)�3(b):Corollary 3.4. If d� = �d = d, thendn(ab) = nXr=0 nr!dr(a)dn�r(b);for eah a; b 2 D.Proof. If the representation of k to base 2 has r 1's, then 'n;k = dr.But we have �nr� terms in the summand with exatly r 1's in the repre-sentation of k. �Note that by putting � = �, we get the known results onerningordinary derivations.Our next result generalizes Theorem 3.2. As before, let k be repre-sented as (n : : : 1)2 to base 2. If the number of 1's in this representationis rk, we an onstrut 2rk numbers t with the property that 1 ours int only if the orresponding position at the representation of k is 1. Morepreisely, we an writeTk = ft = (dn : : : d1)2 : di = 1 implies i = 1 for eah 1 � i � ng:To illustrate Tk's, let k = 19 = (10011)2. ThenT19 = f(00000)2 ; (00001)2 ; (00010)2 ; (00011)2 ;(10000)2 ; (10001)2 ; (10010)2 ; (10011)2g= f0; 1; 2; 3; 16; 17; 18; 19g:Here Tk has 23 = 8 elements.



�-Derivations in Banah Algebras 75Lemma 3.5 Suppose n; k are two natural numbers. Then(i) T0 = f0g; T2n = f0; 2ng and T2n�1 = f0; 1; 2; : : : ; 2n � 1g,(ii) Tk = Tk�2n [ (2n + Tk�2n) = Tk�2n [ f2n + t : t 2 Tk�2ng,provided that 2n � k � 2n+1 � 1.Proof. (i) This is lear.(ii) Let k = (n : : : 1)2. We have n = 1, sine k � 2n. Let(dn : : : d1)2 2 Tk. If dn = 0 then (dn : : : d1)2 = (dn�1 : : : d1)2 2 Tk�2n ,and if dn = 1 then (dn : : : d1)2 = 2n+(dn�1 : : : d1)2, where (dn�1 : : : d1)2 2Tk�2n . �De�nition 3.6. A linear mapping � is alled a semi-endomorphism if�(a�(b)) = �(a)�2(b); �(ad(b)) = �(a)�(d(b))for all a; b 2 D. Obviously any endomorphism is semi-endomorphism.Theorem 3.7. Let � be an endomorphism. Then for eah n; k 2 N with0 � k � 2n � 1 and a; b 2 D we have(3) 'n;k(ab) = X`2Tk 'n;`(a)'n;k�`(b):Proof. We use indution on n. For n = 1, if k = 0 then (3) is lear andif k = 1 then T1 = f0; 1g and'1;1(ab) = d(ab) = d(a)�(b)+�(a)d(b) = '1;1(a)'1;0(b)+'1;0(a)'1;1(b):Now suppose that (3) is true for n. For 0 � k = (n+1n : : : 1)2 � 2n+1,two ases our.Case1. 1 � k < 2n.In this ase, n+1 = 0 and 'n+1;k = �'n;k. Hene'n+1;k(ab) = �'n;k(ab)= �(X`2Tk 'n;`(a)'n;k�`(b))= X`2Tk �'n;`(a)�'n;k�`(b)= X`2Tk 'n+1;`(a)'n+1;k�`(b):Case2. 2n � k < 2n+1 � 1.



76 Mirzavaziri and MoslehianIn this ase, n+1 = 1 and so 'n+1;k = d'n;k�2n . Thus'n+1;k(ab) = d'n;k�2n(ab)= d( X`2Tk�2n 'n;`(a)'n;k�2n�`(b))= X`2Tk�2n [d'n;`(a)�'n;k�2n�`(b)+�'n;`(a)d'n;k�2n�`(b)℄= X`2Tk�2n ['n+1;2n+`(a)'n+1;k�2n�`(b)+'n+1;`(a)'n+1;k�`(b)℄= X2n�m2Tk 'n+1;m(a)'n+1;k�m(b)+ X2n>m2Tk 'n+1;m(a)'n+1;k�m(b)= Xm2Tk 'n+1;m(a)'n+1;k�m(b): �Remark 3.8. Putting k = 2n�1 in the above theorem we get Theorem3.2.The following theorem with � = � is a generalization of Wielandt{Wintner theorem (f. Theorem 2.2.1 of [13℄).Theorem 3.9. Let � be a bounded endomorphism on a Banah algebraA, d be a bounded �-derivation suh that d� = �d = d and d2(a) = 0.Then d(a) is a quasinilpotent, i.e. r(d(a)) = 0.Proof. Using indution on n we an establish that dn(an) = n!d(a)nholds for all positive integer n. Indeed if dn�1(an�1) = (n� 1)!d(a)n�1,then we infer from Corollary 3.4 thatdn(an) = dn(an�1a) = nXr=0 nr!dr(an�1)dn�r(a)= ndn�1(an�1)d(a) + dn(an�1)= n(n� 1)!d(a)n�1d(a) + d(dn�1(an�1))= n!d(a)n + d((n� 1)!d(a)n�1) = n!d(a)n + 0:



�-Derivations in Banah Algebras 77Hene r(d(a)) = limn!1kd(a)nk1=n = limn!1kdn(an)k=n!) 1n � kdkkak(n!)1=n =0. �We are ready to extend the Wielandt{Wintner theorem whih statesthat there are no two elements a and b in a Banah algebra suh thatab� ba = 1 (see Corollary 2.2.2 of [13℄).Theorem 3.10. Suppose that � is a bounded endomorphism on a Ba-nah algebra A. Then there are no three elements a; b;  2 A satisfyinga�(b)� �(b)a =  provided that(i) �(a)�2(b)� �2(b)�(a) = a�(b)� �(b)a,(ii) (�2(b)� �(b))a = a(�2(b)� �(b)),(iii) a�()� �()a = 0,(iv)  is not quasinilpotent.Proof. Use the previous theorem with the inner �-derivation da(u) =a�(u)��(u)a; u 2 A. In fat, the onditions implies that d2a(b) = 0 andso da(b) =  would be quasinilpotent whih is a ontradition. �Referenes[1℄ Gh. Abbaspour, M. S. Moslehian and A. Niknam, Dynamial systems on HilbertC�-modules, Bull. Iranian Math. So. 31(1) (2005), 25{35.[2℄ M. Ashraf and N. Rehman, On (� � � )-derivations in prime rings, Arh. Math.38 (2002), 259{264.[3℄ C. Baak and M. S. Moslehian, On the stability of �-derivations on JB�-triples,Bull. Braz. Math. So. (to appear)[4℄ C. J. K. Batty, Derivations on ompat spaes, Pro. London Math. So. (3) 42,no. 2 (1981), 299{330.[5℄ H. G. Dales, Banah Algebras and Automati Continuity, London MathematialSoiety Monographs, 24, Clarendon Press, Oxford, 2000.[6℄ O. Bratteli and D. R. Robinson, Operator Algebras and Quantum StatistialMehanis, Vol. I, Springer-Verlag, New York, 1987.[7℄ O. Bratteli and D. R. Robinson, Operator Algebras and Quantum StatistialMehanis, Vol. II, Springer-Verlag, New York, 1997.[8℄ M. Hongan and H. Komatsu, (�; �)-derivations with invertible values, Bull. Inst.Math. Aad. Sinia 15 (4) (1987), 411-415.[9℄ H. Komatsu, On inner (�; � )-derivations, Math. J. Okayama Univ. 23 (1) (1981),33-36.[10℄ M. Mirzavaziri and M. S. Moslehian, Automati ontinuity of �-derivations inC�-algebras, Pro. Amer. Math. So. 134, no. 11 (2006), 3319{3327.
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