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Abstract. Let G be an automorphism group of a 2-(v, k, 4) symmet-
ric design D. In this paper, we prove that if G is flag-transitive point-
primitive, then the socle of G cannot be an exceptional group of Lie type.
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1. Introduction

A 2-(v, k, λ) design D is a pair (P,B), where P is a v-set and B is a family
of b k-subsets (blocks) of P such that each element of P is contained in exactly
r blocks, and any 2-subset of P is contained in exactly λ blocks. The numbers
v, b, r, k and λ are parameters of D. A 2-(v, k, λ) design with v = b (or equiva-
lently, r = k) is a symmetric (v, k, λ) design, and is nontrivial if λ < k < v− 1.
An automorphism of a design D is a permutation of the point set that pre-
serves the block set. The group of all automorphisms of D under composition
of automorphisms is the full automorphism group of D, denoted by Aut(D).
Let G ≤ Aut(D). Then D is called point-primitive if G is a primitive permu-
tation group on the point set P . A flag in a symmetric design is an incident
point-block pair, D is called flag-transitive if G is transitive on the set of flags.

Flag-transitive symmetric designs with a small λ have been studied by many
researchers. For the flag-transitive projective planes (i.e. λ = 1), Kantor [9]
proved that either D is a Desarguesian projective plane and PSL3(n) ⊴ G, or
G is a sharply flag-transitive Frobenius group of odd order (n2 +n+1)(n+1),
where n is even and n2 + n + 1 is prime. In [26–29], Regueiro reduced the
classification of flag-transitive biplanes (i.e. λ = 2) to the situation where the
automorphism group is a one-dimensional affine group.
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In 2009, Law, Praeger and Reichard [13] suggested the following problem:

Problem 1.1. Reduce the classification of flag-transitive symmetric (v, k, λ)
designs with λ = 3 or 4 to the case of one-dimensional affine automorphism
groups.

For the case λ = 3, Problem 1.1 has been solved in [33–36]. For the case
λ = 4, Fang and et al. in [7] and Regueiro in [25] obtained independently the
following reduction theorem: If D is a (v, k, 4) symmetric design admitting a
flag-transitive primitive automorphism group G, then G must be an affine or
almost simple type. Furthermore, it was proved in [7] that if G is almost simple
then the socle of G cannot be a sporadic simple group. More recently in [5,37]
the flag-transitive primitive (v, k, 4) symmetric designs when Soc(G) = An,
PSL2(q) were classified. Here we use the following group theoretic notations.
The socle of a finite group is the product of its all minimal normal subgroups; it
is denoted by Soc(G). A finite group is almost simple if its socle is a non-abelian
simple group, and is affine if its socle is elementary abelian.

Here we continue to study Problem 1.1, and consider the case that Soc(G) is
an exceptional group of Lie type. Note that the order of the simple exceptional
group is given in [12, Table 5.1.B]. Our main result is the following theorem.

Theorem 1.2.There is no (v, k, 4) symmetric design admitting a flag-transitive,
point-primitive almost simple automorphism group with exceptional socle of Lie
type.

2. Preliminary results

In this section, we start with a few preliminary results which will be used in
this paper.

Corollary 2.1. Let D be a (v, k, 4) symmetric design. Then

(1) k(k − 1) = 4(v − 1).
(2) k ≡ 0 or 1 (mod 4).

Proof. Part (1) is obvious. Part (2) is follows from [26, Lemma 3]. □

Corollary 2.2. If D is a flag-transitive (v, k, 4) symmetric design, then 4v <
k2, and hence 4|G| < |Gx|3, where x is a point in P .

Proof. The equality k(k − 1) = 4(v − 1) implies k2 = 4v − 4 + k, so clearly
4v < k2. Since v = |G : Gx| and k ≤ |Gx|, the result follows. □

Remark 2.3. From this corollary we have |Gx| > 3
√
|G|, which is called the

cube root bound.

Corollary 2.4 ([26, Corollary 2]). If G is a flag-transitive automorphism group
of a (v, k, 4) symmetric design D, then k | 4(v − 1, |Gx|).
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Corollary 2.5 ([6], [7, Lemma 1.4]). If D is a flag-transitive (v, k, 4) symmetric
design, then k | 4d, where d is any subdegree of G.

Corollary 2.6 (Tits Lemma, [31, 1.6]). If X is a simple group of Lie type in
characteristic p, then any proper subgroup of index prime to p is contained in
a parabolic subgroup of X.

Corollary 2.7.Suppose D is a (v, k, 4) symmetric design with a point-primitive,
flag-transitive automorphism group G with simple socle X of Lie type in char-
acteristic p, and the stabilizer Gx is not a parabolic subgroup of G. If p is odd,
then (p, k) = 1, and if p = 2, then (k, 2) = 1 or 4∥k. Hence |G| < 4|Gx||Gx|2p′ .

Proof. By Corollary 2.2 we have |G| < |Gx|3. Now, by Lemma 2.6, p | v = [G :
Gx], and so (p, v − 1) = 1. Since k | 4(v − 1), if p is odd then (k, p) = 1, and
if p = 2 then (k, 2) = 1 or 4∥k. Hence k | 4|Gx|p′ , and since 4v < k2, we have
|G| < 4|Gx||Gx|2p′ . □

Corollary 2.8. Let D be a (v, k, 4)-symmetric design with a flag-transitive,
point-primitive group G. Suppose p divides v, and Gx contains a normal sub-
group of characteristic p which is quasisimple and p ∤ |Z(H)|. Then k is divis-
ible by [H : P ], for some parabolic subgroup P of H.

Proof. Since λ = 4, this can be proved as Lemma 6 in [29]. □
Corollary 2.9. ([15]) If X is a simple group of Lie type in odd characteristic,
and X is neither PSLd(q) nor E6(q), then the index of any parabolic subgroup
is even.

Corollary 2.10. ([18]) If X is a group of Lie type in characteristic p, acting
on the set of cosets of a maximal parabolic subgroup, and X is not PSLd(q),
PΩ+

2m(q) (with m odd), nor E6(q), then there is a unique subdegree which is a
power of p.

We need the following results concerning the maximal subgroups of excep-
tional groups of Lie type.

Theorem 2.11 ([20, Theorem 2, Table III]). If X is a finite simple exceptional
group of Lie type such that X ≤ G ≤ Aut(X), and Gx is a maximal subgroup
of G such that X0 = Soc(Gx) is not simple, then one of the following holds:

(1) Gx is a parabolic subgroup.
(2) Gx is a subgroup of maximal rank, given by [17].
(3) Gx = NG(E), where E is an elementary abelian group given in [3,

Theorem 1(II)].
(4) Gx is the centralizer of a graph, field, or graph-field automorphism of

X of prime order.
(5) X = E8(q)(p > 5), and X0 is either A5 ×A6 or A5 × L2(q).
(6) X0 is one of the cases listed in Table 1.
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Table 1. The list of X0

X X0

F4(q) L2(q)×G2(q)(p > 2, q > 3)

Eϵ
6(q) L3(q)×G2(q), U3(q)×G2(q)(q > 2)

E7(q) L2(q)× L2(q)(p > 3), L2(q)×G2(q)(p > 2, q > 3),

L2(q)× F4(q)(q > 3), G2(q)× PSp6(q)

E8(q) L2(q)× Lϵ
3(q)(p > 3), L2(q)×G2(q)×G2(q)(p > 2, q > 3),

G2(q)× F4(q), L2(q)×G2(q
2)(p > 2, q > 3)

The notation Eϵ
6(q)(ϵ = ±) denotes E6(q) if ϵ = +, 2E6(q) if ϵ = −; similarly

Lϵ
3(q) is L3(q) or U3(q) respectively if ϵ = + or ϵ = −.

Theorem 2.12. ([19]) Let X be a finite simple exceptional group of Lie type,
with X ≤ G ≤ Aut(X), and Gx is a maximal subgroup of G, and X0 = Soc(Gx)
is a simple group of Lie type over Fq (q = pe > 2) such that 1

2 rank(X) <

rank(X0); assume also that (X,X0) is not (E8,
2A5(5)) or (E8,

2D5(3)). Then
one of the following holds:

(1) X0 is a subgroup of maximal rank.
(2) X0 is a subfield or twisted subgroups.
(3) X = Eϵ

6(q) and X0 = C4(q) (q odd) or F4(q).

Theorem 2.13 ([22, Theorem 1.2]). Let X be a finite exceptional group of Lie
type such that X ≤ G ≤ Aut(X), and Gx is a maximal subgroup of G such
that X0 = Soc(Gx) is a simple group of Lie type over Fq with q = pe such that
rank(X0) ≤ 1

2 rank(X). Then |Gx| < 4eq20, 4eq28, 4eq30 or 12eq56, according

as X = F4(q), E
ϵ
6(q), E7(q) or E8(q), respectively. In all cases, |Gx| < 5e|G| 5

13 .

3. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 by a series of lemmas. Through-
out this paper we assume that the following hypothesis holds:

Hypothesis: Let D be a (v, k, λ) symmetric design, G be a flag-transitive,
point-primitive automorphism group of D with X = Soc(G) be an exceptional
simple group of Lie type.

Corollary 3.1. The group X is not a Suzuki group 2B2(q), with q = 22c+1 > 2.

Proof. Suppose that X = 2B2(q) with q = 22c+1. Then |G| = f |X| = f(q2 +
1)q2(q− 1), where f | 2c+1, and so the order of any point stabilizer Gx is one
of the following ([32]):
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(1) fq2(q − 1)
(2) 4f(q +

√
2qϵ+ 1) with ϵ = ±

(3) f(q20 + 1)q20(q0 − 1), where 8 ≤ qm0 = q with m ≥ 3.
Case (1). By putting v = q2+1, from the basic equation k(k−1) = 4(v−1),

we have k(k − 1) = 4q2 = 24c+4. This is impossible.
Case (2). By Corollary 2.2, 4|G| < |Gx|3, we have 4f(q2 + 1)q2(q − 1) <

43f3(q +
√
2qϵ+ 1)3 and it follows that

4f
(7
8
q5
)
< 43f3(2q + 1)3 ≤ 43f3

(17
8
q
)3

.

So

q2 <
173f2

28
< 176f2 ≤ 176e2,

which implies q ≤ 25.
First assume q = 32. Then v = 198400 and 325376 when ϵ = + and −

respectively. When ϵ = +, (|Gx|, v − 1) = 41, and ϵ = −, (|Gx|, v − 1) = 25
or 125, depending on whether f = 1 or 5. In all cases we see k2 < v, a
contradiction.

Next assume that q = 8. Then v = 560 or 1456, and (|Gx|, v − 1) = 13 or 5
when ϵ = + or − respectively, therefore k is again too small.

Case (3). Here |Gx| = f(q20 + 1)q20(q0 − 1), so (q0, v − 1) = 1. By Corollary
2.7, |G| < 4|Gx||Gx|2p′ and we obtain

(q2m0 + 1)q2m0 (qm0 − 1) < 4f2(q20 + 1)3q20(q0 − 1)3.

Now from q5m−1
0 < (q2m0 + 1)q2m0 (qm0 − 1) and 4f2(q20 + 1)3q20(q0 − 1)3 =

4f2q20(q
3
0 − q20 + q0 − 1)3 < f2q130 , we have that

q5m−1
0 < f2q130 < q13+m

0 ,

which forces m = 3. Then

v = (q40 − q20 + 1)q40(q
2
0 + q0 + 1),

and by Lemma 2.4 we obtain k ≤ 4|Gx|p′ ≤ 4fq30 < 4q
9/2
0 . The inequality

v < k2 forces q0 = 2, 4, 8, so q = 23, 26, 29 respectively.
If q0 = 2, then v = 1456, and |Gx| = 20f with f = 1 or 3. Hence (v −

1, |Gx|) = 5f , and therefore k2 < v, which is a contradiction.
If q0 = 4, then v = 1295616, and |Gx| = 816f with f | 6. Hence (v −

1, |Gx|) = f and then k2 < v.
If q0 = 8, then v = 1205899264, and |Gx| = 29120f with f | 9. Hence

(v − 1, |Gx|) = f and then k2 < v. □
Corollary 3.2. The point stabilizer Gx is not a parabolic subgroup of G.

Proof. Firstly, by Lemma 3.1, X ̸= 2B2(q). Secondly, we assume that X =
2G2(q) with q = 32e+1. The parabolic subgroup of 2G2(q) is isomorphic to
[q3] : Zq−1. Then v = q3 + 1. Since k(k − 1) = 4(v − 1) = 4q3, so q3 | k(k − 1)
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with q = 32e+1. It follows that q3 | k or q3 | k − 1, and then q3 = v − 1 ≤ k or
k − 1, which contradicts the fact that D is non-trivial.

Thirdly, ifX ̸= E6(q), then by Lemma 2.10 there is a unique subdegree which
is a power of p. Therefore, by Lemma 2.5, k divides 4 times a power of p, but it
also divides 4(v − 1), so it is too small to satisfy k2 < v. For example, assume
that X = 3D4(q) with q = pe. If X ∩Gx

∼= Pa, then v = (q8 + q4 + 1)(q + 1)
and v−1 = q(q8+q7+q4+q+1). By Lemma 2.5, k divides 4 times a power of
p, also k divides 4(v−1), therefore k divides 4q, k is too small. If X ∩Gx

∼= Pb,
then v = (q8 + q4 +1)(q3 +1) and v− 1 = q3(q8 + q5 + q4 + q+1). By Lemma
2.10, k divides 4 times a power of p, also k divides 4(v − 1), therefor k divides
4q3, k is too small.

Finally, we assume that X = E6(q). If G contains a graph automorphism
or X ∩Gx = Pi with i = 2 or 4. Then there is a unique subdegree which is a
power of p (cf. [30, p.345]) and again k is too small. If X ∩Gx = P3, the A1A4

type parabolic, then

P3 =
1

d
q36(q − 1)6(q + 1)3(q2 + 1)(q2 + q + 1)(q4 + q3 + q2 + q + 1),

and

v = (q3 + 1)(q4 + 1)(q6 + 1)(q4 + q2 + 1)(q8 + q7 + · · ·+ q + 1).

Clearly, q | v − 1,

v − 1 ≡ −1 (mod q + 1), v − 1 ≡ −1 (mod q2 + 1),

v − 1 ≡ −1 (mod q2 + q + 1), v − 1 ≡ 0 (mod q4 + q3 + q2 + q + 1).

Since k divides 4(|Gx|, v − 1), k divides 4q(q4 + q3 + q2 + q + 1)(q − 1)6 · 2de,
where d = (3, q − 1). Hence k2 < v, which is a contradiction. If X ∩Gx = P1,
then v = (q4 − q2 + 1)(q4 + q2 + 1)(q6 + q3 + 1)(q2 + q + 1) and the nontrivial
subdegrees are (cf. [16]):

q(q3 + 1)(q7 + q6 + · · ·+ q + 1) and q8(q4 + q3 + q2 + q + 1)(q4 + 1).

It follows from Lemma 2.5 that k divides

4
(
q(q3 +1)(q7 + q6 + · · ·+ q+1), q8(q4 + q3 + q2 + q+1)(q4 +1)

)
= 4q(q4 +1),

we see that k2 < v. □
Corollary 3.3. The group X is not a Ree group 2G2(q), where q = 32c+1 > 3.

Proof. Suppose for the contrary that X = 2G2(q) with q = 32c+1 > 3. A
complete list of maximal subgroups of G can be found in [11].

First by Lemma 3.2, X ∩ Gx is not the maximal parabolic subgroup [q3] :
Zq−1.

Now suppose Gx ∩X = 2×L2(q). Then v = q2(q2 − q+ 1), and by Lemma
2.4 we have k divides 4(|Gx|, v − 1). But

(
q(q2 − 1), q4 − q3 + q2 − 2

)
= q − 1,

which is too small.



265 Wang and Zhou

The groups X ∩ Gx = NX(S2) of order 23 · 3 · 7 where S2 ∈ Syl2(X), and
L2(8) are ruled out, since the cube root bound forces q = 3.

If X ∩Gx = 2G2(q0), with qm0 = q and m prime, then

v =q
3(m−1)
0 (q

3(m−1)
0 − q

3(m−2)
0 + · · ·+ (−1)mq30 + (−1)m−1)

× (qm−1
0 + qm−2

0 + · · ·+ q0 + 1).

Now k divides 4|Gx| = 4fq30(q
3
0 +1)(q0 − 1), but since (q0, v− 1) = 1, q0 ∤ k, so

in fact k ≤ 4f(q30 + 1)(q0 − 1), and the inequality v < k2 forces m = 2, which
is impossible.

If X ∩Gx = Zq±
√
3q+1 : Z6, then the cube root bound is not satisfied, since

q ≥ 27.
Finally, if X ∩ Gx = (22 × D(q+1)/2) : 3, then the cube root bound is also

not satisfied. □

Corollary 3.4. The group X is not a Ree group 2F4(q).

Proof. Suppose X = 2F4(q) with q = 22c+1. Then |G| = f |X| = fq12(q6 +
1)(q4 − 1)(q3 + 1)(q − 1), where f | 2c + 1. The complete list of maximal
subgroups of 2F4(q), q = 22c+1 ≥ 8, is given by Malle [24]. Then from [24]
we see that if q ̸= 2, there are no maximal subgroups satisfying the inequality
4|Gx||Gx|2p′ > |G| in Corollary 2.7, except the parabolic subgroups. But the

parabolic subgroups are ruled out by Lemma 3.2. If q = 2, only L3(3).2, 5
2.4A4

or L2(25) can be satisfied 4|Gx||Gx|2p′ > |G|. For the cases 52.4A4 and L2(25),

by Lemma 2.4, k must divide 4(v−1, |Gx|), it is too small. If X∩Gx = L3(3).2,
then |Gx| = 25 ·13 ·33f , and v = 1600. However, there is no integer k satisfying
the basic equation k(k − 1) = 4(v − 1). □

Corollary 3.5. The group X is not 3D4(q).

Proof. Suppose by contradiction that X = 3D4(q) with q = pe. The maximal
subgroups ofG can be found in [10]. By Corollary 2.7, we see that 4|Gx||Gx|2p′ >

|G|, and soX∩Gx must be one of the groups G2(q), (SL2(q
3)◦SL2(q)).(2, q−1)

or 3D4(q
1/2), and its order is q6(q2 − 1)(q6 − 1), q4(q2 − 1)(q6 − 1) or q6(q3 −

1)2(q2 − q + 1), respectively.
Case (1). If X ∩Gx = G2(q), then v = q6(q8+ q4+1) = q6(q4+ q2+1)(q4−

q2 + 1). Since (v − 1, q) = 1 and (v − 1, q4 + q2 + 1) = 1, by Lemma 2.4, k
divides

4(v − 1, |Gx|) = 4
(
v − 1, fq6(q2 − 1)(q6 − 1)

)
= 4

(
v − 1, f(q2 − 1)2

)
,

where f | 3e. It is obvious that k is too small to satisfy 4v < k2.
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Case (2). Here v = q8(q8+q4+1) = q8(q4+q2+1)(q4−q2+1), (v−1, q) = 1
and (v − 1, q4 + q2 + 1) = 1. So

4(v − 1, |Gx|) = 4
(
(q4 + 1)(q12 + q4 − 1), fq4(q2 − 1)2(q4 + q2 + 1)

)
= 4

(
(q4 + 1)(q12 + q4 − 1), f(q2 − 1)2

)
≤ 4f(q2 − 1)2.

Hence k is too small to satisfy 4v < k2.
Case (3). If X∩Gx = 3D4(q

1/2), then v = q6(q+1)2(q2−q+1)(q4−q2+1) >
1
2q

14. Since (v − 1, q) = 1, (v − 1, q2 − q + 1) = 1, and k | 4(v − 1, |Gx|), we get

k ≤ 4f(q3 − 1)2 ≤ 12eq6, which is too small to satisfy k2 > 4v. □

Corollary 3.6. The group X is not a Chevalley group G2(q) with q > 2.

Proof. Suppose that X = G2(q), where q = pe. The maxiaml subgroups of X
can be found in [11] for q odd and in [4] for q even.

First consider the case whereX∩Gx = SLϵ
3(q).2. Then v = q3(q3+ϵ)

2 .We rule
out this case using the method in [26]. From the factorization Ω7(q) = G2(q)N

ϵ
1

(cf. [14]), it follows that the suborbits of Ω7(q) are unions of G2-suborbits, and
so by Lemma 2.5, k divides 4 times each of the Ω7(q)-subdegrees.

If q is odd, as in [28], we assume that Gα = N ϵ
i ∈ C1, the stabilizer of a

nonsingular i-dimensional subspace W of V of sign ϵ. Let i = 1. Then the

Ω7(q)-subdegrees are (q3 − ϵ)(q3 + ϵ), q2(q3−ϵ)
2 and q2(q3−ϵ)(q−3)

2 (cf. [23]). By

Lemma 2.5 and k | 4(v − 1), we have k | 2(q3 − ϵ). Let k = 2(q3−ϵ)
u for some

integer u. Then from the basic equation k(k − 1) = 4(v − 1) we get

1

u

(2(q3 − ϵ)

u
− 1

)
= q3 + 2ϵ.

So

q3 =
u+ 6ϵ

2− u2
− 2ϵ,

which forces u = 1 when ϵ = +, or u = 2 when ϵ = −, and then q3 = 4 or 5
respectively, which is a contradiction.

If q is even, the subdegrees for Sp6(q) are (q3 − ϵ)(q4 + ϵ) and q2(q−1)(q3−ϵ)
2

(see [23] or [2]). So by Lemma 2.5 we have k | 4(q3− ϵ)(q− 1, q4+ ϵ), and since
k | 4(v − 1), it follows that k | 4((q3 − ϵ)(q − 1, q4 + ϵ), v − 1) = 4(q3 − ϵ). Let

k = 4(q3−ϵ)
u for some integer u. Then from the basic equation k(k−1) = 4(v−1)

we get

2

u

(4(q3 − ϵ)

u
− 1

)
= q3 + 2ϵ.

So

q3 =
u+ 24ϵ

8− u2
− 2ϵ,
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which forces u = 2 and q3 = 5 when ϵ = +, or u = 3, 4 and q3 = 20, 4 when
ϵ = −, which is a contradiction.

If X ∩ Gx = G2(q0) < G2(q) or 2G2(q) < G2(q), then (p, k) = 1, so by
Lemma 2.8, k is divisible by the index of a parabolic subgroup of Gx, which

is equal to
q60−1
q0−1 for the former case, or q3 + 1 for the latter case. But this is

impossible, since k also divides 4(v − 1, |Gx|).
If X ∩ Gx = (SL2(q) ◦ SL2(q)) · 2, then |X ∩ Gx| = q2(q2 − 1)2 and v =

q4(q4+ q2+1). Since (q2, v− 1) = 1, v− 1 = (q2− 1)2(q4+3q2+6)+ (9q2− 7)
and 81(q2 − 1)2 = (9q2 − 7)(9q2 − 11) + 4, we have

4(v − 1, |X ∩Gx|) = 4
(
(q2 − 1)2, 9q2 − 7

)
= 4(9q2 − 7, 4).

It follows from Lemma 2.4 that k divides 24f , and is too small.
If X ∩Gx = J2 with q = 4, then v = 25 · 13. So that k | 4(v − 1, |Gx|) = 20,

and is too small.
If X ∩ Gx = G2(2) with q = p ≥ 5, then |X ∩ Gx| = 26 · 33 · 7. The cube

root bound implies q13 < q6(q2 − 1)(q6 − 1) < 218 · 39 · 73f2, and it follows that
q = 5 or 7. In both cases 4(v − 1, |Gx|) is too small.

If X ∩Gx = PGL2(q) or L2(8), then the cube root bound is not satisfied.
If X ∩ Gx = L2(13) with p ̸= 13, then |X ∩ Gx| = 22 · 3 · 7 · 13. The cube

root bound implies q6(q2 − 1)(q6 − 1) < 26 · 33 · 73 · 133f2, and so q = 3, 5. If
q = 3, then (v − 1, |Gx|) = 13, hence k is too small. If q = 5, then v is not an
integer.

If X ∩ Gx = J1 with q = 11, then |X ∩ Gx| = 23 · 3 · 5 · 7 · 11 · 19 and
v = 23 ·32 ·5 ·115 ·37, (v−1, |X ∩Gx|) = 1, hence the inequality v < k2 cannot
be satisfied.

If X ∩Gx = 23.L3(2), then the cube root bound implies q6(q6−1)(q2−1) <
13443f2, and hence q = 3, 5. In both cases, k is too small.

There is no other maximal subgroup Gx satisfying the cube root bound. □

Now we use Theorems 2.11, 2.12, 2.13 to rule out the remaining cases:

X ∈ {F4(q), E
ϵ
6(q), E7(q), E8(q)},

where q = pe and p is a prime (and q > 2 if X = F4(q) or E
ϵ
6(q)). We first give

the following lemma.

Corollary 3.7. Let X,G,Gx and X0 as in Theorem 2.11. Let D be a symmet-
ric (v, k, λ) design and G ≤ Aut(D) be flag-transitive point-primitive. Then
the point stabilizer Gx is not the centralizer of a graph, field, or graph-field
automorphism of X of prime order.

Proof. Suppose that Gx is the centralizer of a graph, field, or graph-field au-
tomorphism of X of prime order. Then the conjugacy classes of such auto-
morphisms are known (see [1, §19], [3, Prop. 2.7] or [8, 9-1]). By checking the
orders of Gx, it implies that they do not satisfy the cube root bound. □
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Corollary 3.8. The group X is not F4(q).

Proof. Suppose by contradiction that X = F4(q). First assume that X0 =
Soc(Gx) is not simple. Then by Theorem 2.11, Lemmas 3.2 and 3.7, one of the
following holds:

(1) Gx is a subgroup of maximal rank;
(2) Gx = 33.SL3(3);
(3) X0 = L2(q)×G2(q).
Case (1). The possibilities for the first case are given in [17, Table 5.1] (the

groups in [17, Table 5.2] are too small). In every case there exists a large power
of q dividing v, so (v− 1, q) = 1. By Lemma 2.4, k | 4(|Gx|, v− 1), and in each
case (|Gx|p′ , v − 1) is too small for k to satisfy k2 > 4v.

Case (2). It can be ruled out by the cube root bound.
Case (3). Assume that X0 = L2(q) × G2(q). Clearly, Gx is not simple.

By [3, Theorem 1] we know that Gx is not local. Then Gx must be a maximal
rank subgroup (also see [30, p.346]) which has been ruled out in Case (1).

Hence X0 is simple. First assume X0 ̸∈ Lie(p). Then by [21, Table 1] the
possibilities of X0 are the following:

A7−10, L2(17), L2(25), L2(27), L3(3), U4(2), Sp6(2), Ω+
8 (2),

3D4(2), J2,
A11(p = 11), L3(4)(p = 3), L4(3)(p = 2), 2B2(8)(p = 5), M11(p = 11).

The only possibilities for X0 that could satisfy the cube root bound are A9,
A10(q = 2), Sp6(2)(p = 2), Ω+

8 (2)(p = 2, 3), 3D4(2)(p = 2, 3), J2(q = 2),
L4(3)(q = 2). However, by Lemma 2.4, k | 4(|Gx|, v − 1), in all these cases
k2 < v.

Now assume X0 = X0(r) ∈ Lie(p). If rank(X0) > 1
2rank(G), then if

r > 2 by Theorem 2.12, X ∩Gx is a subfield subgroup. The only possibilities
that satisfy the cube root bound are F4(q

1
2 ) and F4(q

1
3 ). For the former case,

v = q12(q6 + 1)(q4 + 1)(q3 + 1)(q + 1) > q26. Now k | |F4(q
1
2 )|, and (k, v) | 4.

Since (q, k) ≤ 4, then k divides

4(f(q6 − 1)(q4 − 1)(q3 − 1)(q − 1), v − 1) < q13,

and so k2 < v, a contradiction.

For the latter case, v = q16(q12−1)(q4+1)(q6−1)

(q
8
3 −1)(q

2
3 −1)

. But k < 4q7q
10
3 , and then

k2 < v.
If r = 2, then the subgroups X0(2) with rank(X0) >

1
2 rank(G) that satisfy

the cube root bound are B3(2), B4(2), C3(2), C4(2), D
ϵ
4(2). However, in all

cases k | 4(|Gx|, v − 1) forces k2 < v.
If rank(X0) ≤ 1

2 rank(G), then Theorem 2.13 implies |Gx| < 4eq20. By

checking the order of groups of Lie type, we see that if |Gx| < 4eq20, then
|Gx|p′ < 4e, and so 4|Gx||Gx|2p′ < |G|, contradicting Corollary 2.7. □

Corollary 3.9. The group X is not Eϵ
6(q).
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Proof. Suppose by contradiction that X = Eϵ
6(q). First assume X0 is not

simple. Then by Theorem 2.11, Lemmas 3.2 and 3.7, one of the following
holds:

(1) Gx is a subgroup of maximal rank;
(2) Gx = 33+3.SL3(3);
(3) X0 = L3(q)×G2(q), U3(q)×G2(q)(q > 2).
Case (1). The possibilities for the case are given in [17, Table 5.1]. Some

cases can be ruled out by the cube root bound, and in each the remaining cases,
calculating 4(|Gx|, v − 1) we get k2 < v.

Case (2). It can be ruled out by the cube root bound.
Case (3). Assume that Case (3) holds. We have known that Gx is not local,

and it is also not simple. Then Gx must be a maximal rank subgroup (also
see [30, p.346]), a case already considered.

Hence X0 is simple. First consider the case X0 ̸∈ Lie(p). Then we find the
possibilities of X0 in [21, Table 1]. The cases which satisfy Corollary 2.2 are
A11, U4(3),

2F4(2)
′, A12, Ω7(3), J3, Fi22 , Ω

+
8 (2),

3D4(2), L4(3)(p = 2). In the
cases of A11, A12, Ω7(3), J3, Fi22 have orders that does not divide |E6(2)|. In
other cases which k is too small to satisfy v < k2.

Now assume X0 = X0(r) ∈ Lie(p). If rank(X0) >
1
2 rank(G), then if r > 2

by Theorem 2.12 the only possibilities are Eϵ
6(q

1
s ) with s = 2 or 3, C4(q) and

F4(q). In all cases k is too small. If r = 2, then the possibilities satisfying the
cube root bound with order dividing |Eϵ

6(2)| are Aϵ
5(2), B4(2), C4(2), D

ϵ
4(2)

and D5(2). However, in all cases k | 4(|Gx|, v − 1) forces k2 < v, which is a
contradiction.

If rank(X0) ≤ 1
2 rank(G), then Theorem 2.13 implies |Gx| < 4eq28. By

checking the p-part and p′-part of the order of the possible subgroups, we see
that the p′-part is always less than 4e and so |Gx|p′ < 4e, so 4|Gx||Gx|2p′ < |G|,
contradicting Corollary 2.7. □

Corollary 3.10. The group X is not E7(q).

Proof. Suppose by contradiction that X = E7(q) with q = pe. First assume X0

is not simple. Then by Theorem 2.11, Lemmas 3.2 and 3.7, one of the following
holds:

(1) Gx is a subgroup of maximal rank;
(2)X0 = L2(q)×L2(q)(p > 3), L2(q)×G2(q)(p > 2, q > 3), L2(q)×F4(q)(q >

3), G2(q)× PSp6(q).
Case (1). From [17, Table 5.1] the only subgroups of maximal rank satisfy

the cube root bound are d.(L2(q) × PΩ+
12(q)).d, h.(Lϵ

8(q).g.(2 × (2/h)) and
c.(Eϵ

6(q)×(q−ϵ/c)).c.2, where d = (2, q−1), ϵ = ±, h = (4, q−ϵ)/d, c = (3, q−ϵ)
and g = (8, q − ϵ)/d.
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If Gx = d.(L2(q)× PΩ+
12(q)).d, then

|Gx| =
1

d
q31(q2 − 1)2(q4 − 1)(q6 − 1)2(q8 − 1)(q10 − 1),

v = q32(q4 − q2 + 1)(q12 + q10 + q8 + q6 + q4 + q2 + 1)

×(q16 + q14 + q12 + q10 + q8 + q6 + q4 + q2 + 1).

Clearly, from vp = q32 and q4 − q2 +1 | v we have (k, q4 − q2 +1) = 1. Since
(k, v) | 4 and

v − 1 ≡ 2× 31 (mod q ± 1), v − 1 ≡ 2 (mod q2 + 1),

v − 1 ≡ 0 (mod q4 + 1), v − 1 ≡ −1 (mod q4 + q2 + 1),

by combining these with the fact k divides 4(v − 1, |Gx|) (Lemma 2.4), we
obtain

k ≤ 216 · 3114e(q4 + 1)(q8 + q6 + q4 + q2 + 1),

where f | de. From 4v < k2 we get the pairs of (p, e) are (2, 1), (2, 2), (2, 3),
(2, 4), (3, 1), (3, 2), (5, 1), (7, 1), (11, 1), (13, 1), (17, 1) with q = pe. By comput-
ing the value of k when q = pe we known that k is too small to satisfy k2 > 4v,
a contradiction. Similarly, Gx ̸∼= h.(Lϵ

8(q).g.(2×(2/h)), c.(Eϵ
6(q)×(q−ϵ/c)).c.2.

Case (2). Assume that X0 is one of the groups listed in (2). Then it follows
from [3, Theorem 1] that Gx is not local, and it is also not simple, so Gx must
be a maximal subgroup, which has been ruled out in Case (1). Hence X0 is
simple.

Assume that X0 ̸∈ Lie(p). Then by [21, Table 1], the only group satisfying
|Gx|3 > 4|G| is Fi22(p = 2), but simple calculation implies k is too small. Now
assume X0 = X0(r) ∈ Lie(p). If rank(X0) ≤ 1

2 rank(G), then by Theorem 2.13

we have |Gx|3 ≤ |G|, which contradicts the cube root bound. So rank(X0) >
1
2 rank(G). If r > 2, then by Theorem 2.12, Gx ∩X = E7(q

1
s ) with s = 2 or 3.

However in both cases (v, k) | 4 forces k2 < v. If r = 2, then rank(X0) ≥ 5. The
groups satisfying the cube root bound and having order dividing |E7(2)| are
Aϵ

6(2), A
ϵ
7(2), B5(2), C5(2), D

ϵ
5(2), andD6(2). However, in all cases k2 < v. □

Corollary 3.11. The group X is not E8(q).

Proof. Suppose by contradiction that X = E8(q). First assume X0 is not
simple. Then by Theorem 2.11, Lemmas 3.2 and 3.7, one of the following
holds:

(1) Gx is a subgroup of maximal rank;
(2) (X,X∩Gx) = (E8(p), 2

5+10.SL5(2)) or (E8(p
a), 53.SL3(5)), where p ̸=

2, 5, a = 1 if 5 | q2 − 1 and a = 2 if 5 | q2 + 1;
(3) X ∩Gx = (A5 ×A6).2

2;
(4) X0 = L2(q) × Lϵ

3(q)(p > 3), G2(q) × F4(q), L2(q) × G2(q) × G2(q)
(p > 2, q > 3), or L2(q)×G2(q

2)(p > 2, q > 3).
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Case (1). By [17, Table 5.1] and Corollary 2.7, the only subgroups of maximal
rank such that 4|Gx||Gx|2p′ > |G| are d.PΩ+

16(q).d, d.(L2(q) × E7(q)).d, where

d = (2, q − 1), ϵ = ±1. If Gx = d.PΩ+
16(q).d, then

|Gx| =q56(q2 − 1)6(q2 + 1)4(q4 + 1)2(q4 + q2 + 1)

× (q8 + q6 + q4 + q2 + 1)(q8 + q4 + 1)(q14 − 1),

v =q64(q8 + q6 + q4 + q2 + 1)(q20 + q10 + 1)(q8 − q4 + 1)

× (q8 + q4 + 1)(q8 − q6 + q4 − q2 + 1)(q12 + q6 + 1).

On the one hand, since q8 + q4 + 1, q8 + q6 + q4 + q2 + 1 and q can divide
(v, |X ∩Gx|), by Lemma 2.4, k | 4(v− 1, |Gx|) and we get k ≤ 4f(q2− 1)6(q2+
1)4(q4 + 1)2(q14 − 1) < 4fq42. On the other hand, v > q128, and so k2 < v, a
contradiction. Similarly, Gx ̸∼= d.(L2(q)× E7(q)).d.

Case (2)-(3). These cases can be ruled out by the cube root bound.
Case (4). This case can be ruled out as Case (2) in Lemma 3.10.
Hence X0 is simple. First suppose that X0 ̸∈ Lie(p). Then by [21, Table 1]

the possibilities X0 in every case the cube root bound is not satisfied.
Now suppose that X0 ∈ Lie(p). If rank(X0) ≤ 1

2 rank(G), then by Theo-

rem 2.13 we have |Gx|3 < |G|, which contradicts the cube root bound. So
rank(X0) > 1

2 rank(G). If r > 2, then by Theorem 2.12, Gx ∩ X is a sub-
field subgroup. The only cases in which the cube root bound can be satisfied
are when q = q20 or q = q30 , but in all cases we have k2 < 4v. If r = 2,
then rank(X0) ≥ 5. The groups satisfy the cube root bound are Aϵ

8(2), B7(2),
C7(2), D8(2), and Dϵ

7(2). However, in all cases, it is easy to know that k is too
small. □
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