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Abstract. There are many long-standing conjectures related with some
labellings of trees. It is important to connect labellings that are related
with conjectures. We find some connections between known labellings of
simple graphs.
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1. Introduction and concepts

As known, the cycle C5 of length 5 has no graceful, odd-graceful and (k, d)-
graceful labellings, but C5 admits edge-magic total labellings; the complete
graph K4 does not admit odd-graceful and edge-magic total labellings, however
it has a graceful labelling. On the other hands, there are many long-standing
conjectures related with some labellings of trees. In this paper, we will show a
couple of connections among known labellings of trees. Standard terminology
and notation of graph theory are used here. Graphs mentioned have no multiple
edges, and are loopless, undirected and finite. A (p, q)-graph has p vertices and
q edges. The cardinality of elements of a set S is denoted as |S|. The shorthand
symbol [m,n] stands for an integer set {m,m + 1, . . . , n}, where m and n are
integers with 0 ≤ m < n. In Definition 1.1 we restate several known labellings,
that can be found in [2] and [4].

Definition 1.1. Suppose that a connected (p, q)-graph G admits a mapping θ :
V (G) → {0, 1, 2, . . . }. For edges xy ∈ E(G) the induced edge labels are defined
by θ(xy) = |θ(x) − θ(y)|. Write θ(V (G)) = {θ(u) : u ∈ V (G)}, θ(E(G)) =
{θ(xy) : xy ∈ E(G)}. There are the following constraints:

(a) |θ(V (G))| = p.
(b) |θ(E(G))| = q.
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(c) θ(V (G)) ⊆ [0, q], min θ(V (G)) = 0.
(d) θ(V (G)) ⊂ [0, 2q − 1], min θ(V (G)) = 0.
(e) θ(E(G)) = {θ(xy) : xy ∈ E(G)} = [1, q].
(f) θ(E(G)) = {θ(xy) : xy ∈ E(G)} = {1, 3, 5, . . . , 2q − 1}.
(g) G is a bipartite graph with the bipartition (X,Y ) such that max{θ(x) :

x ∈ X} < min{θ(y) : y ∈ Y } (θ(X) < θ(Y ) for short).
(h) G is a tree containing a perfect matching M such that θ(x) + θ(y) = q for

each edge xy ∈M .
(i) G is a tree having a perfect matching M such that θ(x)+ θ(y) = 2q− 1 for

each edge xy ∈M .

Then θ is a graceful labelling if it holds (a), (c) and (e); θ is a set-ordered
graceful labelling if it holds (a), (c), (e) and (g); θ is a strongly graceful labelling
if it holds (a), (c), (e) and (h); θ is a strongly set-ordered graceful labelling if
it holds (a), (c), (e), (g) and (h). Also θ is an odd-graceful labelling if it holds
(a), (d) and (f); θ set-ordered odd-graceful labelling if it holds (a), (d), (f) and
(g); θ is a strongly odd-graceful labelling if it holds (a), (d), (f) and (i); θ is a
strongly set-ordered odd-graceful labelling if it holds (a), (d), (f), (g) and (i).□

In [6], the authors showed that a connected bipartite graph H admits a
(strongly) set-ordered graceful labelling if and only if H admits a (strongly)
set-ordered odd-graceful labelling. Definition 1.2 presents the graph labellings
that will be used in this article.

Definition 1.2. Let G be a (p, q)-graph having p vertices and q edges, and let
Sk,d = {k, k + d, . . . , k + (q − 1)d} for integers k ≥ 1, d ≥ 1.

(1) [2] A felicitous labelling f of G hold f(V (G)) ⊆ [0, q], f(x) ̸= f(y) for
distinct x, y ∈ V (G) and f(E(G)) = {f(uv) = f(u) + f(v) (mod q) : uv ∈
E(G)} = [0, q − 1]; and furthermore, f is super if f(V (G)) = [0, p− 1].

(2) [3] A (k, d)-graceful labelling f of G hold f(V (G)) ⊆ [0, k + (q − 1)d],
f(x) ̸= f(y) for distinct x, y ∈ V (G) and π(E(G)) = {|π(u) − π(v)|; uv ∈
E(G)} = Sk,d. Especially, a (k, 1)-graceful labelling is also a k-graceful la-
belling.

(3) [2] An edge-magic total labelling f of G hold f(V (G)∪E(G)) = [1, p+ q]
such that for any edge uv ∈ E(G), f(u) + f(v) + f(uv) = c, where the magic
constant c is a fixed integer; and furthermore f is super if f(V (G)) = [1, p].

(4) [2] A (k, d)-edge antimagic total labelling f of G hold f(V (G)∪E(G)) =
[1, p+ q] and {f(u) + f(v) + f(uv) : uv ∈ E(G)} = Sk,d, and furthermore f is
super if f(V (G)) = [1, p].

(5) [5] An odd-elegant labelling f of G hold f(V (G)) ⊂ [0, 2q−1], f(u) ̸= f(v)
for distinct u, v ∈ V (G), and f(E(G)) = {f(uv) = f(u)+f(v)(mod 2q) : uv ∈
E(G)} = {1, 3, 5, . . . , 2q − 1}.

(6) [1] A labeling f of G is said to be (k, d)-arithmetic if f(V (G)) ⊆ [0, k +
(q−1)d], f(x) ̸= f(y) for distinct x, y ∈ V (G) and {f(u)+f(v) : uv ∈ E(G)} =
Sk,d.
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(7) [2] A harmonious labelling f ofG hold f(V (G)) ⊆ [0, q−1], min f(V (G)) =
0 and f(E(G)) = {f(uv) = f(u) + f(v) (mod q) : uv ∈ E(G)} = [0, q − 1]
such that (i) if G is not a tree, f(x) ̸= f(y) for distinct x, y ∈ V (G); (ii) if G is
a tree, f(x) ̸= f(y) for distinct x, y ∈ V (G) \ {w}, and f(w) = f(x0) for some
x0 ∈ V (G) \ {w}.

2. Main results

Theorem 2.1. Let T be a tree on p vertices, and let (X,Y ) be its bipartition.
For all values of integers k ≥ 1 and d ≥ 1, the following assertions are mutually
equivalent:

(1) T admits a set-ordered graceful labelling f with f(X) < f(Y ).
(2) T admits a super felicitous labelling α with α(X) < α(Y ).
(3) T admits a (k, d)-graceful labelling β with β(x) < β(y) − k + d for all

x ∈ X and y ∈ Y .
(4) T admits a super edge-magic total labelling γ with γ(X) < γ(Y ) and a

magic constant |X|+ 2p+ 1.
(5) T admits a super (|X| + p + 3, 2)-edge antimagic total labelling θ with

θ(X) < θ(Y ).
(6) T has an odd-elegant labelling η with η(x)+ η(y) ≤ 2p− 3 for every edge

xy ∈ E(T ).
(7) T has a (k, d)-arithmetic labelling ψ with ψ(x) < ψ(y) − k + d · |X| for

all x ∈ X and y ∈ Y .
(8) T has a harmonious labelling φ with φ(X) < φ(Y \{y0}) and φ(y0) = 0.

Proof. Let T be a tree having p vertices and the bipartition (X,Y ), where
X = {ui : i ∈ [1, s]} and Y = {vj : j ∈ [1, t]} with s + t = p. Suppose that
T has a set-ordered graceful labelling f with f(ui) = i − 1 for i ∈ [1, s] and
f(vj) = s− 1 + j for j ∈ [1, t], and f(uivj) = f(vj)− f(ui) = s+ j − i− 2 for
each edge uivj ∈ E(T ). Clearly, f(vj) + f(vt−j+1) = 2s+ t− 1 = s+ p− 1 for
j ∈ [1, t]. Notice that |E(T )| = p− 1.

(1) ⇒ (2) T has a labelling g1 defined as: g1(ui) = f(ui) for i ∈ [1, s],
g1(vj) = f(vt−j+1) for j ∈ [1, t]. For each edge uivj ∈ E(T ),

(2.1)

g1(ui) + g1(vj) = f(ui) + f(vt−j+1)

= f(ui) + s+ p− 1− f(vj)

= s+ p− 1−
[
f(vj)− f(ui)

]
= s+ p− 1− f(uivj),

we obtain U1 = {s+p−1−1, s+p−1−2, . . . , s+p−1− (s−1), s+p−1− s}
and U2 = {p−2, p−3, . . . , s}. Under modulo (p−1), U1 distributes a set U ′

1 =
[0, s− 1] from (2.1). Therefore, f(E(T )) = {f(uivj) = f(ui)+ f(vj) (mod p−
1) : uivj ∈ E(T )} = U ′

1 ∪ U2 = [0, p − 2]. Clearly, f is a super felicitous
labelling, as desired.
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(2) ⇒ (1) Let T have a super felicitous labelling α with α(X) < α(Y ), which
induces that α(ui) = i− 1 for i ∈ [1, s] and α(vj) = s− 1+ j for j ∈ [1, t]. It is
easy to deduce α(vj)+α(vt−j+1) = (s−1+j)+(s−1+t−j+1) = s+p−1, for
j ∈ [1, t]. We define a labelling h1 of T as: h1(ui) = α(ui) = i−1, for i ∈ [1, s],
h1(vj) = α(vt−j+1) = p − j for j ∈ [1, t]. Clearly, h1(X) < h1(Y ). We have
h1(uivj) = |h1(ui)−h1(vj)| = α(vt−j+1)−α(ui) = s+p−1−

[
α(vj)+α(ui)

]
=

s+ p− 1−
[
s− 1+ j+ i− 1

]
= p+1− (i+ j) for each edge uivj ∈ E(T ), which

produces h1(V (T )) = [1, p− 1]. So, h1 is a set-ordered graceful labelling.
(1) ⇒ (3) Necessity. We extend the set-ordered graceful labelling f to

another labelling g2 of T as follows. Define g2(ui) = d · f(ui) for i ∈ [1, s],
g2(vj) = k+d·

[
f(vj)−1

]
for j ∈ [1, t]. Therefore, g2(uivj) = |g2(ui)−g2(vj)| =

k + d ·
[
f(vj) − f(ui) − 1

]
for each edge uivj ∈ E(T ), which yields the set

g2(E(T )) = Sk,d defined in Definition 1.2. So g2 is a (k, d)-graceful labelling g2
with g2(x) < g2(y)− k + d for all x ∈ X and y ∈ Y .

(3) ⇒ (1) Suppose that T has a (k, d)-graceful labelling β with β(X) <
β(Y ) for all values of integers k, d ≥ 1. In a path ui1vj2ui3 of T , if β(ui1) = d·a,
then we have β(vj2) = k+d·c and β(ui3) = d·b, since β(ui1vj2), β(vj2ui3) ∈ Sk,d;
if β(ui1) = k + d · a, it must be that β(vj2) = d · c and β(ui3) = k + d · b.
Notice that β(X) = {d · ai : i ∈ [1, s]}, β(Y ) = {k + d · bj : j ∈ [1, t]},
and {ai, bj : i ∈ [1, s], j ∈ [1, t]} = [0, s + t − 1] = [0, p − 1]. Therefore,
β(ui) = d · (i − 1) for i ∈ [1, s], β(vj) = k + d · (s − 1 + j) for i ∈ [1, t],
since β(ui) < β(vj) − k + d for all ui ∈ X and vj ∈ Y . We extend the
labelling β to a labelling h2 of T by setting h2(ui) =

1
dβ(ui) for i ∈ [1, s] and

h2(vj) =
1
d

[
β(vj) − k

]
+ 1 for i ∈ [1, t]. Notice that h2(X) < h2(Y ), and for

each edge uivj ∈ E(T )
(2.2)

h2(uivj) = |h2(ui)− h2(vj)| =
1

d

[
β(vj)− β(ui)− k

]
+ 1 =

1

d

[
β(uivj)− k

]
+ 1.

Since every β(uivj) ∈ Sk,d, the form (2.2) distributes h2(E(T )) = [1, p − 1].
Therefore, h2 is a set-ordered graceful labelling.

(1) ⇒ (4) To show that T has a super edge-magic labelling g3, we define
g3(ui) = f(ui) + 1 for i ∈ [1, s], g3(vj) = f(vt−j+1) + 1 for j ∈ [1, t], and
g3(uivj) = p+ f(uivj) for each edge uivj ∈ E(T ). We compute

g3(ui) + g3(uivj) + g3(vj) = f(ui) + p+ f(uivj) + f(vt−j+1) + 2

= f(ui) + p+ f(uivj) + s+ p− f(vj) + 1

= s+ 2p+ 1,

which implies that g3 is a super edge-magic total labelling having g3(X) <
g3(Y ) and a magic constant s+ 2p+ 1.

(4) ⇒ (1) Suppose that T admits a super edge-magic total labelling γ with
γ(X) < γ(Y ) and a magic constant |X|+ 2p+ 1. Notice that γ(V (T )) = [1, p]
and γ(E(T )) = [p + 1, p + p − 1]. So, γ(ui) = i for i ∈ [1, s], γ(vj) = s + j
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for j ∈ [1, t], and γ(ui) + γ(uivj) + γ(vj) = |X| + 2p + 1 = s + 2p + 1 for
each edge uivj ∈ E(T ). We can define a labelling h3 of T in the way that
h3(ui) = γ(ui) − 1 for i ∈ [1, s], and h3(vj) = γ(vt−j+1) − 1 for j ∈ [1, t]. For
each edge uivj ∈ E(T ) we have

h3(uivj) = h3(vj)− h3(ui)

= γ(vt−j+1)− γ(ui)

= s+ p+ 1− γ(vj)− γ(ui)

= s+ p+ 1− [s+ 2p+ 1− γ(uivj)]

= γ(uivj)− p,

which distributes h3(E(T )) = [1, p−1], since γ(uivj) ∈ [p+1, p+p−1]. Hence,
h3 is a set-ordered graceful labelling.

(1) ⇒ (5) We define a labelling g4 in the way that g4(ui) = f(ui) + 1 for
i ∈ [1, s], g4(vj) = f(vt−j+1) + 1 = s + p − f(vj) for j ∈ [1, t], and g4(uivj) =
2p − f(uivj) for each edge uivj ∈ E(T ). Notice that g4(V (T )) = [1, p]. We
have g4(ui) + g4(uivj) + g4(vj) = s + 3p + 1 − 2f(uivj), which induces a set
{p+ s+ 3, p+ s+ 3+ 2, p+ s+ 3+ 4, . . . , p+ s+ 3+ 2(p− 2)}. Therefore, g4
is a super (s+ p+ 3, 2)-edge antimagic total labelling.

(5) ⇒ (1) Suppose that T admits a super (|X| + p + 3, 2)-edge antimagic
total labelling θ with θ(X) < θ(Y ). Notice that θ(ui) = i for i ∈ [1, s],
θ(vj) = s + j for j ∈ [1, t]. Since θ(uivj) ∈ [p + 1, p + p − 1] for each edge
uivj ∈ E(T ), we can write θ(uivj) = p + λi,j for λi,j ∈ [1, p − 1]. For each
edge uivj ∈ E(T ), the form θ(ui) + θ(uivj) + θ(vj) = s+ p+ i+ j + λi,j ∈W ,
where W = {p + s + 3, p + s + 3 + 2, p + s + 3 + 4, . . . , p + s + 3 + 2(p − 2)},
induces i + j + λi,j ∈ {3, 5, 7, . . . , 3 + 2(p − 2)}. Hence i + j ∈ [2, p]. Next,
we define a labelling h4 of T as: h4(ui) = θ(ui) − 1 = i − 1 for i ∈ [1, s],
h4(vj) = θ(vt−j+1) − 1 = s + p − θ(vj) = p − j for j ∈ [1, t]. Furthermore, all
edges uivj ∈ E(T ) hold h4(uivj) = h4(vj)−h4(ui) = p+1−(i+j), which yields
h4(E(T )) = [1, p− 1]. So, h4 is a set-ordered graceful labelling, as desired.

(1) ⇒ (6) We define a labelling g5 of T by setting g5(ui) = 2f(ui) for
i ∈ [1, s], g5(vj) = 2p − 1 − 2f(vj) for j ∈ [1, t]. Hence, g5(ui) + g5(vj) =
2p− 1− 2[f(vj)− f(ui)] = 2p− 1− 2f(uivj) for each edge uivj ∈ E(T ), which
implies g5(E(T )) = {1, 3, 5, . . . , 2p− 3}. So, g5 is an odd-elegant labelling with
g5(ui) + g5(vj) ≤ 2p− 3 for each edge uivj ∈ E(T ).

(6) ⇒ (1) Suppose that T admits an odd-elegant labelling η with η(ui) +
η(vj) ≤ 2p − 3 for every edge uivj ∈ E(T ). Since η(E(T )) = {η(uivj) =
η(ui)+η(vj)(mod 2p−2) : uivj ∈ E(T )} = {1, 3, 5, . . . , 2p−3}, so the vertices
of X have the same parity, so do the vertices of Y . Without loss of generality,
we may assume that each vertex ui ∈ X is even, and each vertex vj ∈ Y is odd.

It is straightforward to define a labelling h5 of T as: h5(ui) = 1
2η(ui) for

i ∈ [1, s], and h5(vj) =
1
2

[
2p−1−η(vj)

]
for j ∈ [1, t]. Notice that 2p−1−η(vj) >
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η(ui) by the assumption of η(ui) + η(vj) ≤ 2p − 3 for each edge uivj ∈ E(T ).
Since h5(uivj) = |h5(ui)− h5(vj)| = 1

2

[
2p− 1− η(vj)− η(ui)

]
, we can confirm

h5(E(T )) = [1, p− 1]. Hence, h5 is a graceful labelling with h5(X) < h5(Y ).
(1) ⇒ (7) We extend the set-ordered graceful labelling f to another la-

belling g6 of T by setting g6(ui) = d · f(ui) for i ∈ [1, s], and g6(vj) =
k + d ·

[
f(vt−j+1) − s

]
= k + d ·

[
p − 1 − f(vj)

]
for j ∈ [1, t]. Hence,

g6(uivj) = g6(ui) + g6(vj) = k + d · (p − 1) − d ·
[
f(vj) − f(ui)

]
for each

edge uivj ∈ E(T ), which yields the set g6(E(T )) = Sk,d. It follows that g6 is a
(k, d)-arithmetic labelling g6 with g6(x) < g6(y) − k + d · s for all x ∈ X and
y ∈ Y .

(7) ⇒ (1) Suppose that T has a (k, d)-arithmetic labelling ψ with ψ(x) <
ψ(y)− k+ d · s for all x ∈ X and y ∈ Y , and all values of integers k, d ≥ 1. For
every path xyz of T , if ψ(x) = d ·ax, we have ψ(y) = k+d ·cy and ψ(z) = d ·bz,
since ψ(xy), ψ(yz) ∈ Sk,d (resp. on the other hands, if ψ(x) = k+d ·ax, it must
be that ψ(y) = d·cy and ψ(z) = k+d·bz). Therefore, ψ(X) = {d·ai : i ∈ [1, s]},
ψ(Y ) = {k+d · bj : j ∈ [1, t]}, and {ai, bj : i ∈ [1, s], j ∈ [1, t]} = [0, s+ t−1] =
[0, p − 1]. So, we have ψ(ui) = d · (i − 1) for i ∈ [1, s], ψ(vj) = k + d · (t − j)
for j ∈ [1, t] since ψ(ui) < ψ(vj) − k + d · s for all ui ∈ X and vj ∈ Y .
Notice that ψ(vj) + ψ(vt−j+1) = 2k + d · (t − 1) for j ∈ [1, t]. We extend the
labelling ψ to a labelling h6 of T by setting h6(ui) =

1
dψ(ui) for i ∈ [1, s] and

h6(vj) =
1
d

[
ψ(vt−j+1)− k

]
+ s for i ∈ [1, t]. Clearly, h6(X) < h6(Y ). For each

edge uivj ∈ E(T ), we have h6(ui) < h6(vj) and

(2.3)

h6(uivj) = |h6(ui)− h6(vj)|

=
1

d

[
ψ(vj)− ψ(ui)− k

]
+ s

=
1

d

[
2k + d · (t− 1)− ψ(vj)− ψ(ui)− k

]
+ s

=
1

d

[
k + d · (p− 1)− ψ(uivj)

]
.

Since ψ(E(T )) = Sk,d, the form (2.3) distributes h6(E(T )) = [1, p − 1]. We
conclude that h6 is a set-ordered graceful labelling.

(1) ⇔ (8) To show the proof of “if”, we define a labelling g7 of T in the
way that g7(ui) = f(ui) for i ∈ [1, s], g7(vj) = f(vt−j+1) for j ∈ [1, t− 1], and
g7(vt) = 0. For each edge uivj ∈ E(T ), We have (2.1) if j ̸= t. For each edge
ukvt ∈ E(T ), we have

(2.4)

g7(uk) + g7(vt) = g7(uk) + 0 = g7(uk) + (p− 1) (mod p− 1)

= f(uk) + f(vt) (mod p− 1)

= f(uk) + s+ p− 1− f(v1) (mod p− 1)

= s+ p− 1−
[
f(v1)− f(uk)

]
(mod p− 1)

= s− f(ukv1).
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Two forms (2.1) and (2.4) give us two sets {s+ p− 1− 1, s+ p− 1− 2, . . . , s+
p− 1− (s− 1), s+ p− 1− s} and {p− 2, p− 3, . . . , s}. Under modulo (p− 1),
g7(E(T )) = {g7(uivj) = g7(ui)+g7(vj) ( mod p−1) : uivj ∈ E(T )} = [0, p−2].
Therefore, g7 is a harmonious labelling.

To show the proof of “only if”, we take a harmonious labelling φ of T
with φ(X) < φ(Y {vt}) and φ(vt) = 0, which induces that φ(ui) = i − 1 for
i ∈ [1, s] and φ(vj) = s − 1 + j for j ∈ [1, t − 1]. We define a new labelling
φ ′ by setting φ ′(x) = φ(x) for x ∈ V (T ) \ {vt} and φ ′(vt) = p − 1. Clearly,
φ ′(vj)+φ

′(vt−j+1) = (s−1+j)+(s−1+t−j+1) = s+p−1 for j ∈ [1, t] for j ̸= t.
We define a labelling h7 of T as: h7(ui) = φ ′(ui) = i− 1 for i ∈ [1, s], h7(vj) =
φ ′(vt−j+1) = s + p − 1 − φ ′(vj) = p − j for j ∈ [1, t]. So, h7(X) < h7(Y ).
Furthermore, we have h7(uivj) = |h7(ui) − h7(vj)| = φ ′(vt−j+1) − φ ′(ui) =
s+p−1−

[
φ ′(vj)+φ

′(ui)
]
= s+p−1−

[
s−1+ j+ i−1

]
= p+1− (i+ j) for

each edge uivj ∈ E(T ), which induces h7(E(T )) = [1, p−1]. As a result, h7 is a
set-ordered graceful labelling. Now the proof of Theorem 2.1 is completed. □

Based on the proof of Theorem 2.1 we can prove the following results.

Corollary 2.2. Let T be a tree having p vertices and a perfect matching M ,
and let (X,Y ) be its bipartition. For all values of integers k ≥ 1 and d ≥ 1,
the following assertions are mutually equivalent:

(1) T admits a strongly set-ordered graceful labelling f , with f(X) < f(Y ).
(2) T admits a super felicitous labelling α such that α(X) < α(Y ) and

α(y)− α(x) = |X| for xy ∈M , with x ∈ X and y ∈ Y .
(3) T admits a (k, d)-graceful labelling β such that β(x) < β(y) − k + d for

all x ∈ X and y ∈ Y and β(u) + β(v) = k + (p− 2)d for uv ∈M .
(4) T admits a super edge-magic total labelling γ such that γ(X) < γ(Y )

and a magic constant |X| + 2p + 1 as well as γ(v) − γ(u) = |X| for uv ∈ M ,
with u ∈ X and v ∈ Y .

(5) T admits a super (|X| + p + 3, 2)-edge antimagic total labelling θ such
that θ(X) < θ(Y ) and, θ(v)− θ(u) = |X| for uv ∈M , with u ∈ X and v ∈ Y .

(6) T has an odd-elegant labelling η such that η(x)+ η(y) ≤ 2p− 3 for every
edge xy ∈ E(T ) and, 2η(v)− η(u) = 2p for uv ∈M , with u ∈ X and v ∈ Y .

(7) T has a (k, d)-arithmetic labelling ψ such that ψ(x) < ψ(y)− k+ d · |X|
for all x ∈ X and y ∈ Y as well as ψ(v)−ψ(u) = |X| for uv ∈M , with u ∈ X
and v ∈ Y .

(8) T has a harmonious labelling φ such that φ(X) < φ(Y \ {y0}) and
φ(y0) = 0, and φ(v)− φ(u) = |X| for uv ∈M , with u ∈ X and v ∈ Y \ {y0}.

Corollary 2.3. Let G be a bipartite graph with the bipartition (X,Y ), and
let f be a mapping V (G) → {0, 1, 2, . . . } such that f(u) ̸= f(v) for all distinct
u, v ∈ V (G), and f(xy) = f(y)−f(x) ≥ 1 for each edge xy ∈ E(G), with x ∈ X
and y ∈ Y . Write f(V (G)) = {f(w) : w ∈ V (G)}, and M = max f(V (G)) +
min f(V (G)). Then we have
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(i) G has a labelling g1 induced by f such that g1(u) ̸= g1(v) for all distinct
u, v ∈ V (G), and g1(x) + g1(y) = M − f(xy) for each edge xy ∈ E(G), with
x ∈ X and y ∈ Y .

(ii) for all values of positive integers d and k, G has a labelling g2 such that
g2(u) ̸= g2(v) for all distinct u, v ∈ V (G), and g2(y)− g2(y) = k+ d · f(xy) for
each edge xy ∈ E(G), with x ∈ X and y ∈ Y .

(iii) there are a labelling g3 and a constant λ > 0 such that g3(u) ̸= g3(v)
for all distinct u, v ∈ V (G), and g3(x) + g3(xy) + g3(y) = λ for each edge
xy ∈ E(G).

(iv) G has a labelling g4 such that g4(u) ̸= g4(v) for all distinct u, v ∈ V (G),
and g4(x) + g4(y) = k + d ·

[
M − f(xy)

]
for each edge xy ∈ E(G), with x ∈ X

and y ∈ Y .

3. Further works

We do not know the nature of trees having no set-ordered graceful labellings,
and have not methods to construct such trees. We can provide a kind of trees
that have no set-ordered graceful labellings. A 2-star S(m) has its own vertex
set V (S(m)) = {u0, xi, yi : i ∈ [1,m]} and edge set E(S(m)) = {u0yi, xiyi : i ∈
[1,m]}. Clearly, a 2-star S(m) is a tree.

Theorem 3.1. Every 2-star S(m) has no set-ordered graceful labellings.

Proof. Let (X,Y ) be the bipartition of a 2-star S(m), where X = {u0, xi : i ∈
[1,m]} and Y = {yi : i ∈ [1,m]}. Suppose that S(m) admits a set-ordered
graceful labelling f with f(X) < f(Y ). Notice that f(V (S(m))) = [0, 2m] and
f(E(S(m))) = [1, 2m]. Furthermore, f(X) = [0,m] and f(Y ) = [m + 1, 2m],
by the definition of a set-ordered graceful labelliing. Let f(u0) = a ∈ f(X).

If a = 0, we have an edge label set U1 = {f(u0yi) : i ∈ [1,m]} = [m+1, 2m]
such that f(E(S(m))) \ U1 = {f(yixi) : i ∈ [1,m]} = [1,m]. For the purpose
of convenience, we assume that f(xij+1) = 1 + f(xij ) for j ∈ [1,m − 1] with
f(xi1) = 1. Hence, it must be that f(xikyk) = k for k ∈ [1,m]; it is impossible.

If a ≥ 1, we may assume another edge label set U2 = {f(u0yi) : i ∈ [1,m]} =
[m+1−a, 2m−a] such that f(E(S(m)))\U2 = {f(yixi) : i ∈ [1,m]} = [1,m−
a]∪ [2m−a+1, 2m]. Without loss of generality, we have that f(xij ) = j−1 for
j ∈ [1, a], and f(xij ) = j for j ∈ [a+ 1,m]. But, f(xi1ym) = f(ym)− f(xi1) =
2m− 0 = 2m, and f(xi2ym−1) = f(ym−1)− f(xi2) = 2m− 1− 1 = 2m− 2, we
have no edge xijyk such that f(xijyk) = 2m− 1. □

Our researching works will focus on the following problem: Let G be a tree
having vertices u1, u2, . . . , up. Suppose G admits a labelling θ, determine all
possible groups of trees T1, T2, . . . , Tp having the labellings that are as the same
as θ such that for each i ∈ [1, p] identifying arbitrarily a vertex of Ti with the
vertex ui of G produces a tree having the labelling θ.
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