ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 2, pp. 285-289

Title:

Arens regularity of bilinear maps and Banach module actions

Author(s):

A. Sahleh and L. Najarpisheh

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 2, pp. 285–289 Online ISSN: 1735-8515

ARENS REGULARITY OF BILINEAR MAPS AND BANACH MODULE ACTIONS

A. SAHLEH* AND L. NAJARPISHEH

(Communicated by Hamid Reza Ebrahimi Vishki)

ABSTRACT. Let X, Y and Z be Banach spaces and let $f: X \times Y \longrightarrow Z$ be a bounded bilinear map. In this paper we study the relation between Arens regularity of f and the reflexivity of Y. We also give some conditions under which the Arens regularity of a Banach algebra A implies the Arens regularity of certain Banach right module action of A.

Keywords: Banach algebra, bilinear map, Arens product, second dual, Banach module action.

MSC(2010): Primary 46H25; Secondary 47A07.

1. Introduction and preliminaries

For a normed space X, we denote by X' and X'' the first and second duals of X, respectively. We usually identify an element of X with its canonical image in X''.

Let X, Y and Z be normed spaces and let $f: X \times Y \longrightarrow Z$ be a bounded bilinear map. In [1], R. Arens showed that f has two natural, but different, extensions f''' and $f^{r'''r}$ from $X'' \times Y''$ to Z''. The adjoint $f': Z' \times X \longrightarrow Y'$ of f is defined by $\langle f'(z', x), y \rangle = \langle z', f(x, y) \rangle$ $(x \in X, y \in Y, z' \in Z')$, which is also a bounded bilinear map. Similarly by setting f'' = (f')' and continuing in this way, the mapping $f'': Y'' \times Z' \longrightarrow X'$, $f''': X'' \times Y'' \longrightarrow Z''$ are also bounded bilinear mappings.

We also denote by f^r the reverse map of f, that is, the bounded bilinear map $f^r: Y \times X \longrightarrow Z$ defined by $f^r(y, x) = f(x, y), (x \in X, y \in Y)$, and it may be extended as above to $f^{r'''r}: X'' \times Y'' \longrightarrow Z''$.

The map f is called Arens regular when the equality $f''' = f^{r''r}$ holds. Two natural extensions π''' and $\pi^{r''r}$, of the multiplication map $\pi : A \times A \longrightarrow A$ of a Banach algebra (A, π) , are the so-called first and second Arens products,

O2017 Iranian Mathematical Society

Article electronically published on 30 April, 2017.

Received: 4 April 2015, Accepted: 13 November 2015.

^{*}Corresponding author.

²⁸⁵

which will be denoted by \Box and \Diamond , respectively. The Banach algebra (A, π) is said to be Arens regular if the multiplication map π is Arens regular. For example, let G be a locally compact topological group, then $L^1(G)$ is Arens regular if and only if G is finite [7].

Let (A, π) be a Banach algebra, and X be a Banach space. Suppose that $\pi_r : X \times A \longrightarrow X$ is a bounded bilinear map. Then the pair (X, π_r) is said to be a right Banach A-module if π_r is associative, i.e. $\pi_r(x, \pi(a, b)) = \pi_r(\pi_r(x, a), b)$, for every $a, b \in A$, $x \in X$. A left A-module (π_l, X) can be defined similarly.

For a bounded linear map $T: X \longrightarrow Y$ we define the adjoint $T^*: Y' \longrightarrow X'$ by $T^*(y') = y' oT$. Then T^* is also a bounded linear map.

2. Arens regularity of bilinear maps and reflexivity

Let X, Y and Z be normed spaces. In this section we study the relation between the Arens regularity of a bilinear map $f : X \times Y \longrightarrow Z$ and the reflexivity of Y. If Y is reflexive, then obviously f is Arens regular, however, the Arens regularity of f does not imply the reflexivity of Y; for example, it is known that the multiplication map of every non-reflexive C^* -algebra is Arens regular. We quote the following result from [5] characterizing the Arens regularity of a bounded bilinear map.

Proposition 2.1 ([5, Theorem 2.1]). For a bounded bilinear map $f : X \times Y \longrightarrow Z$ the following statements are equivalent:

(i) f is Arens regular; (ii) $f''' = f^{r''''r}$; (iii) $f'''(Z', X'') \subseteq Y'$; (iv) the linear map $x \longmapsto f'(z', x) : X \longrightarrow Y'$ is weakly compact for every $z' \in Z'$.

In the following result we show that under certain conditions the Arens regularity of f implies the reflexivity of Y.

Theorem 2.2. Let X be a Banach space and let $f : X \times Y \longrightarrow Z$ be an Arens regular bounded bilinear map. If f'(z', X) = Y' for some $z' \in Z'$, then Y is reflexive.

Proof. We define the map $f_{z'}$ from X to Y' by $f_{z'}(x) = f'(z', x)$. Since $f'(z', X) = Y', f_{z'}$ is onto and this implies that $f_{z'}^{**} : X'' \longrightarrow Y'''$ is onto. Since for every $y'' \in Y'', x \in X$,

$$\begin{aligned} \langle f_{z'}^*(y''), x \rangle &= \langle y'', f_{z'}(x) \rangle &= \langle y'', f'(z', x) \rangle \\ &= \langle f''(y'', z'), x \rangle, \end{aligned}$$

Sahleh and Najarpisheh

we have

Thus, for every $x'' \in X''$, $f_{z'}^{**}(x'') = f'''(z', x'')$. Now by Proposition 2.1, the Arens regularity of f implies that $f'''(Z', X'') \subseteq Y'$. Let $y''' \in Y'''$, so there exists a $x'' \in X''$ such that $y''' = f_{z'}^{**}(x'') = f'''(z', x'') \in Y'$. Hence, Y is reflexive, as claimed.

Example 2.3. Let A and B be two Banach algebras and $\mathcal{B}(A, B)$ the Banach space of all bounded linear operators from A to B. Then, the mapping $f : \mathcal{B}(A, B) \times A \longrightarrow B$ defined by f(T, a) = T(a) is a bounded bilinear map. If B unital, then by the Hahn-Banach theorem there exists a $b' \in B'$ such that $b'(1_B) = 1$. We show that f'(b', B(A, B)) = A'. Let $a' \in A'$. Then for the bounded linear map $T_{a'} : A \longrightarrow B$ defined by $T_{a'}(a) = a'(a)1_B$, we have

$$\langle f'(b', T_{a'}), a \rangle = \langle b', T_{a'}(a) \rangle = \langle b', a'(a) 1_B \rangle = \langle a', a \rangle.$$

Thus by Theorem 2.2, f is Arens regular if and only if A is reflexive.

We use Theorem 2.2 to prove the following result that was proved in [6, Corollary 3.2] by a different method.

Corollary 2.4. For a Banach space X, the bilinear map $f : X' \times X \longrightarrow \mathbb{C}$ defined by $f(x', x) = \langle x', x \rangle$ is Arens regular if and only if X is reflexive.

Proof. Note that for $f' : \mathbb{C} \times X' \longrightarrow X'$ we have f'(1, X') = X'. So, by Theorem 2.2 f is Arens regular if and only if X is reflexive.

As another consequence of Theorem 2.2 we present the following result .

Corollary 2.5. Let A be a Banach algebra with a bounded approximate identity and let π denote the multiplication of A. Then π' is Arens regular if and only if A is reflexive.

Proof. Since A has a bounded approximate identity, there exists an $e'' \in A''$ such that $\pi''(e'', A') = A'$. By Theorem 2.2, π' is Arens regular if and only if A is reflexive.

Applying Corollary 2.5 for the group convolution algebra $L^1(G)$ and also for a C^* - algebra, we arrive at the following corollary which has already proved in [3].

Corollary 2.6. (1) Let π denote the multiplication of the group algebra $L^1(G)$ on a locally compact group G. Then the bilinear map π' is Arens regular if and only if G is finite.

287

(2) Let π denote the multiplication of a C^* -algebra A. Then the bilinear map π' is Arens regular if and only if A is finite dimensional.

Let X and A be normed spaces. Following [4], a bounded bilinear map $g: X \times A \longrightarrow X$ is said to be approximately unital if there exists a bounded net (e_{α}) in A such that $\lim_{\alpha} g(x, e_{\alpha}) = x$, for all $x \in X$. We present the next result as a consequence of Theorem 2.2.

Corollary 2.7 ([4, Theorem 4.1]). Let X and A be normed spaces. Then the adjoint g' of an approximately unital bounded bilinear map $g: X \times A \longrightarrow X$ is Arens regular if and only if X is reflexive.

Proof. Let e'' be a w^* -cluster point of a bounded net (e_α) in A satisfying $\lim_{\alpha} g(x, e_\alpha) = x$, for all $x \in X$. It follows that g''(e'', x') = x' for each $x' \in X'$. Applying Theorem 2.2 for $g' : X' \times X \longrightarrow A'$, we deduce that, g' is Arens regular if and only if X is reflexive. \Box

3. Arens regularity of Banach algebras and module actions

Suppose that A is a Banach algebra. It is worth to mention that, in general, there is no relation between the Arens regularity of A and the Arens regularity of the right Banach A-modules. For example, let A be the C^* -algebra of compact operators on a separable, infinite-dimensional Hilbert space H and let X be the trace-class operators on H. Then, a direct verification reveals that the usual A-module action on X is not Arens regular [2].

On the other hand, an arbitrary Banach algebra A can be viewed as a right Banach A-module under the module action $\pi_r(a, b) = \varphi(a)b$ (for a fixed $\varphi \in A'$ with $\|\varphi\| = 1$), which is trivially Arens regular.

The following results provide an interrelation between the Arens regularity of A and that of certain A-module actions.

Theorem 3.1. Let A be a Banach algebra and let (X, π_r) be a right Banach A-module. If π'_r is onto and π_r is Arens regular, then π is Arens regular.

Proof. By Proposition 2.1, the Arens regularity of π_r implies that $\pi_r'''(X', X'') \subseteq A'$. Let π denote the multiplication of A, $a' \in A'$, $a'' \in A''$ and $b'' \in A''$. Since π_r' is onto, there exist $x' \in X'$, $x \in X$ such that $\pi_r'(x', x) = a'$. Further,

$$\begin{aligned} \langle \pi''''(a',a''),b''\rangle &= \langle \pi''''(\pi'_r(x',x),a''),b''\rangle \\ &= \langle \pi''''(\pi''''(x',x),a''),b''\rangle \\ &= \langle \pi''''(x',x),\pi'''(a'',b'')\rangle \\ &= \langle x',\pi'''(x,\pi'''(a'',b''))\rangle \\ &= \langle x',\pi'''(\pi''(x,a''),b'')\rangle \\ &= \langle \pi''''(x',(\pi'''(x,a''),b'')\rangle \end{aligned}$$

Thus $\pi'''(a', a'') = \pi'''(x', (\pi'''(x, a'')) \in A'$. This implies that π is Arens regular.

Theorem 3.2. Let A be a Banach algebra and let (X, π_r) be a right Banach A-module. If A is Arens regular and $\pi_r(x, A) = X$ for some $x \in X$, then π_r is Arens regular.

Proof. For the Arens regularity of π_r , it is enough to show that $\pi_r'''(X', X'') \subseteq A'$. The map $\pi_x : A \longrightarrow X$ defined by $\pi_x(a) = \pi_r(x, a)$ is onto. Therefore, $\pi_x^{**} : A'' \longrightarrow X''$ is onto. Let $x' \in X', x'' \in X''$ and $b'' \in A''$. Since π_x^{**} is onto, there exists an element $a'' \in A''$ such that $x'' = \pi_x^{**}(a'') = \pi_r''(x, a'')$. Let π denote the multiplication of A. Then

Thus $\pi_r^{\prime\prime\prime\prime}(x',x'') = \pi^{\prime\prime\prime\prime}(\pi_r'(x',x),a'') \in A'$; that is, π_r is Arens regular.

Acknowledgement

The authors thank the anonymous referee for his/her helpful comments.

References

- [1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951) 839–848.
- [2] J. Bunce and W.L. Paschke, Derivations on a C*-algebra and its double dual, J. Funct. Anal. 37 (1980), no. 2, 235–247.
- [3] M. Eshaghi Gordji and M. Filali, Arens regularity of module actions, Studia Math. 181 (2007), no. 3, 237–254.
- [4] A.A. Khadem-Maboudi and H.R.E. Vishki, Strong Arens irregularity of bilinear mappings and reflexivity, Banach J. Math. Anal. 6 (2012), no. 1, 155–160.
- [5] S. Mohammadzadeh and H.R.E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Aust. Math. Soc. 77 (2008), no. 3, 465–476.
- [6] A. Ülger, Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc. 101 (1987), no. 4, 697–704.
- [7] N.J. Young, The irregularity of multiplication in group algebras, Quart J. Math. Oxford Ser. (2) 24 (1973) 59–62.

(Abbas Sahleh) FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF GUILAN, P.O. BOX 1914, RASHT, IRAN.

E-mail address: sahlehj@guilan.ac.ir

(Leila Najarpisheh) FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF GUILAN, P.O. BOX 1914, RASHT, IRAN.

E-mail address: najarpisheh@phd.guilan.ac.ir

289