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Abstract. In this paper we introduce continuous g-Bessel multipliers in
Hilbert spaces and investigate some of their properties. We provide some

conditions under which a continuous g-Bessel multiplier is a compact
operator. Also, we show the continuous dependency of continuous g-
Bessel multipliers on their parameters.
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1. Introduction and preliminaries

In 1952, Duffin and Schaeffer [13] introduced the concept of discrete frames
in Hilbert spaces. G-frame as a natural generalization of frames in Hilbert
space, introduced by Sun in [18]. The concept of g-frame includes several
generalizations of frame.

Definition 1.1. Let H be a Hilbert space and {Ki}i∈I be a sequence of Hilbert
spaces. We call {Λi ∈ B(H,Ki) : i ∈ I} a g-frame for H with respect to
{Ki}i∈I , or simply, a g-frame for H, if there exist two positive constants A and
B such that

A∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ B∥f∥2, f ∈ H.

We call A and B the lower and upper g-frame bounds, respectively.

We can refer to [1, 3, 4, 15] for some properties of g- frames. In 2007, P.
Balazs [7] introduced Bessel and frame multipliers for Hilbert spaces.
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Multipliers of continuous G-frames 292

Definition 1.2. Let H1 and H2 be Hilbert spaces. Let {ϕi}i∈I ⊂ H1 and
{ψi}i∈I ⊂ H2 be Bessel sequences. Fix m = {mi}i∈I ∈ ℓ∞. The operator
Mm,{ϕi},{ψi} : H1 → H2 defined by

(1.1) Mm,{ϕi},{ψi}(f) =
∑
i∈I

mi⟨f, ϕi⟩ψi ,

is called the Bessel multiplier for {ϕi}i∈I and {ψi}i∈I .

Multipliers are not only interesting from a theoretical point of view, but also
used in applications. Multipliers have applications in computational auditory
scene analysis [19], virtual acoustics [14], sound morphing [12] and psychoacous-
tics [9]. In 2009, Rahimi [16] introduced the multipliers of g-Bessel sequences
and investigated some of their properties (see also [17]).

Definition 1.3. Suppose Λ = {Λi ∈ B(H,Ki), i ∈ I} and Φ = {Φi ∈
B(H,Ki), i ∈ I} are g-Bessel sequences. If m = {mi}i∈I ⊆ ℓ∞, then the
operator

Mm,Λ,Φ : H → H, Mm,Λ,Φ(f) =
∑
i∈I

miΛ
∗
iΦi(f)

is called the g-Bessel multiplier of Λ,Φ with respect to m.

Ali, Antoine and Gazeau [5], generalized the concept of frame to a family of
vectors indexed by a measurable space and introduced the continuous frames.

Definition 1.4. Let H be a complex Hilbert space and (Ω, µ) be a measure
space. The mapping F : Ω → H is called a continuous frame with respect to
(Ω, µ), if
(i) F is weakly-measurable, i.e., for all f ∈ H, ω → ⟨f, F (ω)⟩ is a measurable
function on Ω,
(ii) there exist constants A,B > 0 such that

(1.2) A∥f∥2 ≤
∫
Ω

|⟨f, F (ω)⟩|2 dµω ≤ B∥f∥2, f ∈ H.

If in (1.2), the right hand inequality holds for all f ∈ H, then we call the
mapping F : Ω → H a Bessel mapping with respect to (Ω, µ). If F is a Bessel
mapping from Ω to H, then

TF : L2(Ω, µ) → H, ⟨TFφ, h⟩ =
∫
Ω

φ(ω)⟨F (ω), h⟩dµω, h ∈ H

is well-defined linear and bounded operator and its adjoint is given by

T ∗
F : H → L2(Ω, µ), (T ∗

Fh)(ω) = ⟨h, F (ω)⟩, ω ∈ Ω.

The operators TF and T ∗
F are called the synthesis and analysis operator of F.

In [8], Multipliers of continuous frame defined by Balazes, Bayer and Rahimi.
They studied some properties of multiplier of continuous frame and proved some
statements on the compactness of these kinds of multipliers.
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Definition 1.5 ([8]). Let F and G be Bessel mappings for H with respect to
(Ω, µ) and m : Ω → C be a measurable function. The operator Mm,F,G : H →
H defined by

⟨Mm,F,Gf, g⟩ =
∫
Ω

m(ω)⟨f, F (ω)⟩⟨G(ω), g⟩dµω, f, g ∈ H,

is called the continuous Bessel multiplier of F and G with respect to m.

Continuous g-frame in Hilbert spaces as a common generalization of g-frame
and continuous frame defined by Abdollahpour and Faroughi [2].
In the following, suppose (Ω, µ) is a measure space with positive measure µ and
H is a Hilbert space and {Kω}ω∈Ω is a family of Hilbert spaces. We say that
F ∈ Πω∈ΩKω is strongly measurable if F as a mapping of Ω into

⊕
ω∈Ω Kω is

measurable.

Definition 1.6. A family of operators Λ = {Λω ∈ B(H,Kω), ω ∈ Ω} is a
continuous generalized frame, or simply, continuous g-frame with respect to
{Kω}ω∈Ω for H if
(i) for each f ∈ H , {Λωf}ω∈Ω is strongly measurable,
(ii) there are two constants 0 < AΛ ≤ BΛ <∞ such that

(1.3) AΛ||f ||2 ≤
∫
Ω

||Λωf ||2dµω ≤ BΛ||f ||2, f ∈ H.

The family Λ = {Λω ∈ B(H,Kω), ω ∈ Ω} is called a continuous g-Bessel
family with bound BΛ if the right hand inequality in (1.3) holds for all f ∈ H.

It is proved in [2], if Λ = {Λω ∈ B(H,Kω), ω ∈ Ω} is a continuous g-frame,
then there is a unique positive invertible operator SΛ : H → H such that for
each f, g ∈ H,

⟨SΛf, g⟩ =
∫
Ω

⟨f,Λ∗
ωΛωg⟩dµω,

and AΛI ≤ SΛ ≤ BΛI. The operator SΛ is called the continuous g-frame
operator of {Λω}ω∈Ω and we write SΛf =

∫
Ω
Λ∗
ωΛωfdµω.

Definition 1.7. We consider the space

K̂ =

{
F ∈

∏
ω∈Ω

Kω : F is strongly measurable,

∫
Ω

∥F (ω)∥2dµω <∞

}
.

It is clear that K̂ is a Hilbert space with point-wise operations and with inner
product given by

⟨F,G⟩ =
∫
Ω

⟨F (ω), G(ω)⟩dµω.

We state the following proposition, which is used in the rest of this paper
and it is proved in [2].
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Proposition 1.8. Let {Λω}ω∈Ω be a continuous g-Bessel family with respect

to {Kω}ω∈Ω for H with bound B. Then the mapping TΛ : K̂ → H defined by

⟨TΛF, g⟩ =
∫
Ω

⟨Λ∗
ωF (ω), g⟩dµω, F ∈ K̂, g ∈ H

is linear and bounded with ∥TΛ∥ ≤
√
B. Furthermore for each g ∈ H and ω ∈ Ω

T ∗
Λ(g)(ω) = Λωg.

Now, we recall the construction of interpolation spaces, usually called the
complex interpolation method. A compatible couple of Banach spaces is a pair
X = (X0, X1) of Banach spaces X0 and X1 both continuously embedded in a
Hausdorff topological vector space Y. In this case the intersection X0 ∩X1 is a
subspace of Y, and it is a Banach space with the norm

∥x∥X0∩X1 = max{∥x∥X0 , ∥x∥X1}.

Also the subspace

X0 +X1 = {x ∈ X : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}

is a Banach space with the norm

∥x∥X0+X1 = inf{∥x0∥X0 + ∥x1∥X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}.

A Banach space X is said to be an intermediate space with respect to X =
(X0, X1) if

X0 ∩X1 ⊂ X ⊂ X0 +X1

and both inclusions are continuous.
An interpolation space between X0 and X1 is any intermediate space X such
that for every T ∈ B(X0 +X1) whose restriction to X0 belongs to B(X0) and
whose restriction to X1 belongs to B(X1), the restriction of T to X belongs to
B(X).

The complex interpolation method requires the space F(X) of all functions
f from the closed strip S = {z ∈ C : 0 ≤ Rez ≤ 1} into X0 +X1 such that
i) f(z) is bounded and continuous on S.
ii) f(z) is analytic relative to the norm of X0 +X1 on the interior of S.
ii) t → f(j + it) is continuous and bounded from the real line into Xj for
j = 0, 1.
The vector space F(X) is a Banach space with the following norm

∥f∥F(X) = max{supt∈R∥f(it)∥X0 , supt∈R∥f(1 + it)∥X1}.

For 0 ≤ θ ≤ 1, the complex interpolation space [X0, X1]θ consists of all x ∈
X0 + X1 such that x = f(θ) for some f ∈ F(X), equips with the complex
interpolation norm

∥x∥[θ] = inf{∥f∥F(X) : f(θ) = x, f ∈ F(X)}.
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It was proved in Theorem 2.2.4 of [20], [X0, X1]θ is a Banach space and
[X0, X1]θ is an interpolation space between X0 and X1, for 0 < θ < 1. Also, if
X = (X0, X1) and Y = (Y0, Y1) are compatible couples of Banach spaces and

T : X0 +X1 → Y0 + Y1

is a linear bounded operator such T ∈ B(Xj , Yj) for j = 0, 1, then for all
0 < θ < 1, T : [X0, X1]θ → [Y0, Y1]θ is bounded and

∥T∥[X0,X1]θ,[Y0,Y1]θ ≤ ∥T∥1−θX0,Y0
∥T∥θX1,Y1

.

2. Multiplier of continuous frames

The authors of [6] introduced continuous Riesz basis and gave some equiv-
alent conditions for a continuous frame to be a continuous Riesz basis. Here,
we review some definitions and basic properties of continuous Riesz basis.

Suppose (Ω, µ) is a measure space and H is a Hilbert space. We denote
by L2(Ω, µ,H) the set of all mappings F : Ω → H such that for all f ∈ H,
the function ω → ⟨f, F (ω)⟩ is defined almost everywhere on Ω, and belongs to
L2(Ω, µ). A Bessel mapping F : Ω → H is called µ-complete if f ∈ H so that
⟨f, F (ω)⟩ = 0 for almost all ω ∈ Ω, then f = 0.

Definition 2.1. Let (Ω, µ) be a measure space. A mapping F ∈ L2(Ω, µ,H)
is called continuous Riesz basis for H with respect to (Ω, µ), if {F (ω)}ω∈Ω is
µ-complete and there are two positive numbers A and B such that

A

(∫
Ω1

|m(ω)|2dµω
) 1

2

≤
∥∥∥∥∫

Ω1

m(ω)F (ω)dµω

∥∥∥∥ ≤ B

(∫
Ω1

|m(ω)|2dµω
) 1

2

for every m ∈ L2(Ω, µ) and for every measurable subset Ω1 of Ω with µ(Ω1) <
∞. The constant A and B are called Riesz basis bounds.

Definition 2.2. A Bessel mapping F ∈ L2(Ω, µ,H) is said to be L2-independent
if
∫
Ω
m(ω)F (ω)dµω = 0 for m ∈ L2(Ω, µ), implies that m = 0 almost every-

where.

Theorem 2.3 ([6]). Let H be a Hilbert space and (Ω, µ) be a measure space.
A continuous frame F ∈ L2(Ω, µ,H) is a continuous Riesz basis for H if and
only if F is µ-complete and L2-independent.

If (Ω, µ) is a σ-finite measure space and F ∈ L2(Ω, µ,H) is a continuous
Riesz basis for H with respect to (Ω, µ), then

A

(∫
Ω

|m(ω)|2dµω
) 1

2

≤
∥∥∥∥∫

Ω

m(ω)F (ω)dµω

∥∥∥∥ ≤ B

(∫
Ω

|m(ω)|2dµω
) 1

2

.

Since, in this case there is {Ωn}∞n=1 a family of disjoint measurable subsets of
Ω such that Ω =

∪∞
n=1 Ωn, µ(Ωn) < ∞ for all n ∈ N. Then for any n ∈ N we
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have

A

(
n∑
k=1

∫
Ωk

|m(ω)|2dµω

) 1
2

≤

∥∥∥∥∥
n∑
k=1

∫
Ωk

m(ω)F (ω)dµω

∥∥∥∥∥
≤ B

(
n∑
k=1

∫
Ωk

|m(ω)|2dµω

) 1
2

.

Therefore,

A

( ∞∑
k=1

∫
Ωk

|m(ω)|2dµω

) 1
2

≤

∥∥∥∥∥
∞∑
k=1

∫
Ωk

m(ω)F (ω)dµω

∥∥∥∥∥
≤ B

( ∞∑
k=1

∫
Ωk

|m(ω)|2dµω

) 1
2

,

and so

A

(∫
Ω

|m(ω)|2dµω
) 1

2

≤
∥∥∥∥∫

Ω

m(ω)F (ω)dµω

∥∥∥∥ ≤ B

(∫
Ω

|m(ω)|2dµω
) 1

2

.

Now, we give the following propositions as new results on multipliers of con-
tinuous frames.

Proposition 2.4. Let (Ω, µ) be a σ-finite measure space and m ∈ L∞(Ω, µ).
Let G be a continuous Riesz basis and F be a Bessel mapping with non zero
elements. The mapping m→Mm,F,G is injective.

Proof. Let Mm,F,G = 0. Then for any f ∈ H, Mm,F,Gf = 0. So

A

(∫
Ω

|m(ω)⟨f, F (ω)⟩|2dµω
) 1

2

≤
∥∥∥∥∫

Ω

m(ω)⟨f, F (ω)⟩G(ω)dµω
∥∥∥∥ = 0.

Therefore m(ω)⟨f, F (ω)⟩ = 0 a.e. ω ∈ Ω. Then m(ω) = 0 almost everywhere,
and so m→Mm,F,G is injective. □

Proposition 2.5. Let m : Ω → C be a measurable function such that 0 <
infω∈Ω|m(ω)| ≤ supω∈Ω|m(ω)| < ∞. Let G and F be continuous Riesz bases.
Then the multiplier Mm,F,G is invertible.

Proof. We have Mm,F,G = TGDmT
∗
F , where Dm : L2(Ω, µ) → L2(Ω, µ) is de-

fined by (Dmφ)(ω) = m(ω)φ(ω). Since TG, Dm and T ∗
F are invertible, Mm,F,G

is also invertible. □
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3. Multiplier of continuous G-frames

In this section, we intend to define continuous g-Bessel multipliers and in-
vestigate some of their properties. We start with the following elementary
lemma.

Lemma 3.1. Let {Λω}ω∈Ω and {Φω}ω∈Ω be continuous g-Bessel families with
bounds BΛ and BΦ, respectively, with respect to {Kω}ω∈Ω for H and m ∈
L∞(Ω, µ). Then the operator Mm,Λ,Φ : H → H defined by

⟨Mm,Λ,Φf, g⟩ =
∫
Ω

m(ω)⟨Λ∗
ωΦωf, g⟩dµω, (f, g ∈ H)

is a bounded operator.

Proof. For any f, g ∈ H, we have

|⟨Mm,Λ,Φf, g⟩| =
∣∣∣ ∫

Ω

m(ω)⟨Λ∗
ωΦωf, g⟩dµω

∣∣∣
≤
∫
Ω

|m(ω)||⟨Λ∗
ωΦωf, g⟩|dµω

≤ ∥m∥∞
∫
Ω

|⟨Φωf,Λωg⟩|dµω

≤ ∥m∥∞
∫
Ω

∥Φωf∥∥Λωg∥dµω

≤ ∥m∥∞
(∫

Ω

∥Φωf∥2dµω
) 1

2
(∫

Ω

∥Λωg∥2dµω
) 1

2

≤
√
BΛBΦ∥f∥∥g∥∥m∥∞.

This shows that ∥Mm,Λ,Φ∥ ≤ ∥m∥∞
√
BΛBΦ and so Mm,Λ,Φ is a bounded op-

erator. □

Now we are ready to introduce the concept of continuous g-Bessel multipliers.

Definition 3.2. Let {Λω}ω∈Ω and {Φω}ω∈Ω be continuous g-Bessel families
with respect to {Kω}ω∈Ω for H and m ∈ L∞(Ω, µ). The operator Mm,Λ,Φ :
H → H defined by

⟨Mm,Λ,Φf, g⟩ =
∫
Ω

m(ω)⟨Λ∗
ωΦωf, g⟩dµω, f, g ∈ H

is called the continuous g-Bessel multiplier of Λ,Φ with respect to m. For
simply, we write Mm,Λ,Φf =

∫
Ω
m(ω)Λ∗

ωΦωfdµω.

We mention that every continuous Bessel multiplier is a continuous g-Bessel
multiplier. In fact if F and G are Bessel mapping for H with respect to (Ω, µ)
and m ∈ L∞(Ω, µ) and we consider Λω = ⟨·, F (ω)⟩ and Φω = ⟨·, G(ω)⟩ for any
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ω ∈ Ω, then {Λω}ω∈Ω and {Φω}ω∈Ω are g-Bessel families for H respect to C
and

⟨Mm,Λ,Φf, g⟩ =
∫
Ω

m(ω)⟨Λ∗
ωΦωf, g⟩dµω

=

∫
Ω

m(ω)⟨Φωf,Λωg⟩dµω

=

∫
Ω

m(ω)
⟨
⟨f,G(ω)⟩, ⟨g, F (ω)⟩

⟩
dµω

=

∫
Ω

m(ω)⟨f,G(ω)⟩ · ⟨g, F (ω)⟩dµω

=

∫
Ω

m(ω)⟨f,G(ω)⟩ · ⟨F (ω), g⟩dµω

= ⟨Mm,G,F f, g⟩,

for all f, g ∈ H.
In the next proposition we show that under some conditions a continuous

g-Bessel multiplier could be positive (invertible) operator.

Proposition 3.3. Let m ∈ L∞(Ω, µ) and m(ω) > 0 a.e.. Then Mm,Λ,Λ is
a positive operator, for any continuous g-Bessel family Λ = {Λω}ω∈Ω with
respect to {Kω}ω∈Ω for H . If m(ω) ≥ δ > 0 a.e., then for any continuous
g-frame Λ = {Λω}ω∈Ω with respect to {Kω}ω∈Ω for complex Hilbert space H,
the multiplier Mm,Λ,Λ is a positive invertible operator.

Proof. For any f ∈ H and any continuous g-Bessel family Λ = {Λω}ω∈Ω, we
have

⟨Mm,Λ,Λf, f⟩ =
∫
Ω

m(ω)⟨Λ∗
ωΛωf, f⟩dµω =

∫
Ω

m(ω)||Λωf ||2dµω ≥ 0.

If m(ω) ≥ δ for some positive constant δ and ||m||∞ <∞, then we have

δA ∥ f ∥2≤ δ

∫
Ω

∥ Λωf ∥2 dµω ≤
∫
Ω

m(ω) ∥ Λωf ∥2 dµω

≤∥ m ∥∞
∫
Ω

∥ Λωf ∥2 dµω

≤ BΛ ∥ m ∥∞∥ f ∥2 .

So Γ = {
√
m(ω)Λω}ω∈Ω is a continuous g-frame and SΓ =Mm,Λ,Λ. Therefore

the multiplier Mm,Λ,Λ is a positive invertible operator. □

Proposition 3.4. Let {Λω}ω∈Ω and {Φω}ω∈Ω be continuous g-Bessel families
with respect to {Kω}ω∈Ω for H and m ∈ L∞(Ω, µ). Then

M∗
m,Λ,Φ =Mm,Φ,Λ.
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Proof. For any f, g ∈ H, we have

⟨g,M∗
m,Λ,Φf⟩ = ⟨Mm,Λ,Φg, f⟩

=

∫
Ω

m(ω)⟨Λ∗
ωΦωg, f⟩dµω =

∫
Ω

m(ω)⟨g,Φ∗
ωΛωf⟩dµω

=

∫
Ω

⟨g,m(ω)Φ∗
ωΛωf⟩dµω = ⟨g,Mm,Φ,Λf⟩.

□

Proposition 3.5. If m ∈ L∞(Ω, µ), then

Dm : K̂ −→ K̂, Dm({fω}ω∈Ω) = {m(ω)fω}ω∈Ω,

is a bounded linear operator and ∥Dm∥ ≤ ∥m∥∞.

Proof. Let m ∈ L∞(Ω, µ). Then |m(ω)| ≤ ∥m∥∞ a.e. ω ∈ Ω. If {fω}ω∈Ω ∈ K̂,
then ∫

Ω

∥m(ω)fω∥2dµω ≤ ∥m∥∞
∫
Ω

∥fω∥2dµω <∞.

This implies that Dm is bounded and ∥Dm∥ ≤ ∥m∥∞. □

Dm is called the multiplication operator with the symbol m. By using
synthesis and analysis operators, it can be implied

Mm,Λ,Φ = TΛDmT
∗
Φ.

Suppose Λ = {Λω}ω∈Ω is a continuous g-Bessel family with respect to {Kω}ω∈Ω

for H. We say Λ is norm bounded if there is a constant M > 0 such that
∥Λω∥ ≤M for every ω ∈ Ω.

Theorem 3.6. Let dimKω < ∞ for all ω ∈ Ω. Let Λ = {Λω}ω∈Ω and Φ =
{Φω}ω∈Ω be continuous g-Bessel families with respect to {Kω}ω∈Ω for H and
let Λ or Φ be norm bounded with bound M . Let m : Ω → C be a bounded
measurable function with support of a finite measure, i.e., there exists a subset
K ⊆ Ω with µ(K) < ∞ such that m(ω) = 0 for almost every ω ∈ Ω\K. Then
Mm,Λ,Φ is a compact operator.

Proof. At first, suppose that Φ is norm bounded and ∥Φω∥ ≤M for all ω ∈ Ω.

We prove DmT
∗
Φ : H → K̂ is compact. Let fn → 0 weakly. Then Φω(fn) → 0

for every fixed ω ∈ Ω. On the other hand, there is a positive constant C such
that for any n ∈ N, ∥fn∥ ≤ C. Therefore

|m(ω)|2∥Φω(fn)∥2 ≤ ∥m∥2∞∥fn∥2∥Φω∥2 ≤ ∥m∥2∞C2M2, n ∈ N, ω ∈ Ω.

So by Lebesgue’s Dominated Convergence Theorem

∥DmT
∗
Φfn∥2 =

∫
Ω

|m(ω)|2∥Φωfn∥2dµω =

∫
K

|m(ω)|2∥Φωfn∥2dµω → 0.
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Now, By Proposition VI.3.3 of [11], the operator DmT
∗
Φ is compact. Thus

Mm,Λ,Φ = TΛDmT
∗
Φ is compact. If Λ is norm bounded, then by M∗

m,Λ,Φ =
Mm,Φ,Λ = TΦDmT

∗
Λ, we conclude that M∗

m,Λ,Φ is compact and so Mm,Λ,Φ is
compact. □

Let m : Ω → C be a bounded measurable function. We recall that m
vanishes at infinity if for every ε > 0 there exists a measurable subset K ⊆ Ω
such that µ(K) <∞ and m(ω) ≤ ε, a.e. ω ∈ Ω \K.
Corollary 3.7. Let dimKω < ∞ for all ω ∈ Ω and Λ = {Λω}ω∈Ω and Φ =
{Φω}ω∈Ω be continuous g-Bessel families with respect to {Kω}ω∈Ω for H and
let Λ or Φ be norm bounded. Let m : Ω → C be a bounded measurable function
that vanishes at infinity. Then Mm,Λ,Φ is compact.

Proof. For every n ∈ N, choose a set Kn ⊂ Ω such that µ(Kn) < ∞ and
|m(ω)| ≤ 1

n for almost every ω ∈ Ω \Kn. Let us consider

mn(ω) = m(ω)χKn(ω)

where χKn denotes the characteristic function of the set Kn. Then ∥mn −
m∥∞ ≤ 1

n → 0 and by Lemma 3.1, we have

∥Mmn,Λ,Φ −Mm,Λ,Φ∥ = ∥Mmn−m,Λ,Φ∥ ≤ ∥mn −m∥∞
√
BΛBΦ −→ 0.

The functions mn are bounded and of finite support, so Mmn,Λ,Φ is compact
for every n ∈ N and by Theorem 3.6, Mm,Λ,Φ is compact. □

If H and K are Hilbert spaces and T ∈ B(H,K) is a compact operator,
then there exists a unique compact and non-negative operator S such that
S2 = T ∗T . The eigenvalues of S are called singular values of T and they form
a non-increasing sequence of non-negative numbers that either consists of only
finitely many nonzero terms or converges to zero. The space of all compact
operators T on H with its singular value sequence {λn} belonging to ℓp is
called Schatten p-class and denoted by Sp(H) for 1 ≤ p < ∞. S1(H) is also
called the trace-class of H, and S2(H) is usually called the Hilbert-Schmidt
class. The space Sp(H) is a Banach space with the norm

∥T∥Sp =
(∑

n

|λn|p
)1/p

.

We use the following lemma in the proof of Theorem 3.9 and its proof can be
found in the literature.

Lemma 3.8. Let H be a Hilbert space. A bounded operator T : H → H is trace
class if and only if

∑
n |⟨Ten, en⟩| <∞ for every orthonormal basis (en) of H.

Moreover,

∥T∥S1 = sup

{∑
n

|⟨Tenen⟩|, {en} orthonormal basis

}
.
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Theorem 3.9. Let M > 0 be such that dim(Kω) ≤ M , for all ω ∈ Ω and
Λ = {Λω}ω∈Ω and Φ = {Φω}ω∈Ω be norm bounded continuous g-Bessel families
with respect to {Kω}ω∈Ω for H with bounds LΛ and LΦ, respectively. Let m ∈
L1(Ω, µ). Then Mm,Λ,Φ is a bounded trace-class operator with

∥Mm.Λ,Φ∥S1 ≤ ∥m∥1LΛLΦM.

Proof. We have∣∣∣∣∫
Ω

m(ω)⟨Λ∗
ωΦωf, g⟩dµω

∣∣∣∣ ≤ ∫
Ω

|m(ω)|∥Λωg∥∥Φωf∥dµω

≤
∫
Ω

|m(ω)|∥Λω∥∥g∥∥Φω∥∥f∥dµω

≤ ∥f∥∥g∥LΛLΦ

∫
Ω

|m(ω)|dµω

= ∥f∥∥g∥LΛLΦ∥m∥1,
for all f, g ∈ H. Thus Mm.Λ,Φ is a well-defined bounded linear operator. Let
{en} be an orthonormal basis ofH. Then by using Fubini’s theorem and Cauchy
Schwarz’s inequality we have∑

n

|⟨Mm,Λ,Φen, en⟩| =
∑
n

∣∣∣∣∫
Ω

m(ω)⟨Λ∗
ωΦωen, en⟩dµω

∣∣∣∣
≤
∑
n

∫
Ω

|m(ω)||⟨Φωen,Λωen⟩|dµω

≤
∫
Ω

|m(ω)|
∑
n

|⟨Φωen,Λωen⟩|dµω

≤
∫
Ω

|m(ω)|
(∑

n

∥Λωen∥2
) 1

2
(∑

n

∥Φωen∥2
) 1

2

dµω.

Now, let {hωi}i∈Iω be an orthonormal basis for Kω, for all ω ∈ Ω. Then∑
n

∥Λωen∥2 =
∑
n

∑
i∈Iω

|⟨Λωen, hωi⟩|2 =
∑
i∈Iω

∑
n

|⟨en,Λ∗
ωhωi⟩|

2

=
∑
i∈Iω

∥Λ∗
ωhωi∥2 ≤M∥Λ∗

ω∥2 =M∥Λω∥2,

and similarly,
∑
n ∥Φωen∥2 ≤M∥Φω∥2. So∑

n

|⟨Mm,Λ,Φen, en⟩| ≤
∫
Ω

|m(ω)|
(∑

n

∥Λωen∥2
) 1

2
(∑

n

∥Φωen∥2
) 1

2

dµω

≤M

∫
Ω

|m(ω)|∥Λω∥∥Φω∥dµω

≤ ∥m∥1LΛLΦM.
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Hence Mm,Λ,Φ is a trace class operator and by Lemma 3.8,

∥Mm,Λ,Φ∥S1 ≤ ∥m∥1LΛLΦM.

□

Theorem 3.10. Let M > 0 be such that dim(Kω) ≤ M , for all ω ∈ Ω.
Let Λ = {Λω}ω∈Ω and Φ = {Φω}ω∈Ω be norm bounded continuous g-Bessel
families with respect to {Kω}ω∈Ω for H with bounds LΛ and LΦ, respectively.
Let m ∈ Lp(Ω, µ), 1 < p <∞. Then Mm,Λ,Φ is a well-defined bounded operator
that belongs to the Schatten p-class Sp(H), with

∥Mm.Λ,Φ∥Sp ≤ ∥m∥p(LΛLΦM)
1
p (BΛBΦ)

1
2q .

Proof. The function ω → ⟨Λ∗
ωΦωf, g⟩ is bounded for all f, g ∈ H, since

|⟨Λ∗
ωΦωf, g⟩| = |⟨Φωf,Λωg⟩| ≤ ∥Φωf∥∥Λωg∥ ≤ LΦLΛ∥f∥∥g∥.

Furthermore,∫
Ω

|⟨Φωf,Λωg⟩|qdµω ≤ Lq−1
Φ Lq−1

Λ ∥f∥q−1∥g∥q−1

∫
Ω

|⟨Φωf,Λωg⟩|dµω

≤ Lq−1
Φ Lq−1

Λ ∥f∥q−1∥g∥q−1
(∫

Ω

∥Φωf∥2dµω
) 1

2
(∫

Ω

∥Λωg∥2dµω
) 1

2

≤ Lq−1
Φ Lq−1

Λ ∥f∥q∥g∥q
√
BΦBΛ,

for all f, g ∈ H, where 1
p +

1
q = 1. Then,

|⟨Mm,Λ,Φf, g⟩| ≤
∫
Ω

|m(ω)||⟨Φωf,Λωg⟩|dµω

≤
(∫

Ω

|m(ω)|pdµω
) 1

p
(∫

Ω

|⟨Φωf,Λωg⟩|qdµω
) 1

q

≤ ∥m∥p(LΦLΛ)
q−1
q ∥f∥∥g∥(BΦBΛ)

1
2q ,

for all f, g ∈ H. This show that Mm,Λ,Φ is a well-defined bounded operator.
By Lemma 3.1 the mapping

L∞(Ω, µ) → B(H), m→Mm,Λ,Φ,

is a bounded linear operator and by Theorem 3.9,

L1(Ω, µ) → S1(H), m→Mm,Λ,Φ,

is a bounded linear operator. Assume that 0 < θ < 1 and 1
p = 1−θ

1 + θ
∞ . Then

Theorem 5.1.1 of [10] implies that

[L1(Ω, µ), L∞(Ω, µ)]θ = Lp(Ω, µ).

Also, by [20, Theorem 2.2.7], we have

[S1(H), B(H)]θ = Sp(H).
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Now, by [20, Theorem 2.2.4], we conclude that the mapping

Lp(Ω, µ) → Sp(H), m→Mm,Λ,Φ,

is a bounded linear operator and

∥Mm,Λ,Φ∥Sp ≤ ∥m∥p(LΦLΛM)1−θ(
√
BΦBΛ)

θ

= ∥m∥p(LΦLΛM)
1
p (BΦBΛ)

1
2q ,

where θ = 1− 1
p = 1

q . □

In the following results we show the continuous dependency of continuous
g-Bessel multipliers on their parameters.

Corollary 3.11. Let M > 0 be such that dim(Kω) ≤ M , for all ω ∈ Ω. Let
Λ = {Λω}ω∈Ω and Φ = {Φω}ω∈Ω be norm bounded continuous g-Bessel families
with respect to {Kω}ω∈Ω for H and m : Ω → C be a measurable function. Let
m(n) be functions indexed by n ∈ N with m(n) → m in Lp(Ω, µ). Then

∥Mm(n),Λ,Φ −Mm,Λ,Φ∥Sp → 0, n→ ∞.

Theorem 3.12. Let m ∈ L2(Ω, µ) and Λ = {Λω}ω∈Ω and Φ = {Φω}ω∈Ω

be continuous g-Bessel families with respect to {Kω}ω∈Ω for H. Let Λ(n) =

{Λ(n)
ω ∈ B(H,Kω);ω ∈ Ω} be a sequence of continuous g-Bessel families with

respect to {Kω}ω∈Ω for H and for given ε > 0, there exists N such that for all

ω ∈ Ω and n ≥ N , ∥Λ(n)
ω − Λω∥ < ε. Then Mm,Λ(n),Φ converges to Mm,Λ,Φ in

the operator norm.

Proof. We have

|⟨(Mm,Λ(n),Φ−Mm,Λ,Φ)f, g⟩| ≤
∫
Ω

|m(ω)|∥Φωf∥∥(Λ(n)
ω − Λω)g∥dµω

≤
(∫

Ω

|m(ω)|2∥(Λ(n)
ω − Λω)g∥2dµω

) 1
2
(∫

Ω

∥Φωf∥2dµω
) 1

2

≤ ε∥g∥∥m∥2
√
BΦ∥f∥,

for all f, g ∈ H and for all n ≥ N. Thus,

∥Mm,Λ(n),Φ −Mm,Λ,Φ∥ ≤ ε∥m∥2
√
BΦ, n ≥ N.

So Mm,Λ(n),Φ converges to Mm,Λ,Φ in the operator norm. □

Theorem 3.13. Let m ∈ L1(Ω, µ) and Λ = {Λω}ω∈Ω and Φ = {Φω}ω∈Ω be
continuous g-Bessel families with respect to {Kω}ω∈Ω for H, and Φ be norm

bounded with bound LΦ. Let Λ(n) = {Λ(n)
ω ∈ B(H,Kω);ω ∈ Ω} be a sequence

of continuous g-Bessel families with respect to {Kω}ω∈Ω for H and for given

ε > 0, there exists N such that for all ω ∈ Ω and n ≥ N , ∥Λ(n)
ω − Λω∥ < ε.

Then, Mm,Λ(n),Φ converges to Mm,Λ,Φ in the operator norm.
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Proof. We have∣∣∣⟨(Mm,Λ(n),Φ −Mm,Λ,Φ)f, g⟩
∣∣∣ ≤ ∫

Ω

|m(ω)||⟨Φωf, (Λ(n)
ω − Λω)g⟩|dµω

≤
∫
Ω

|m(ω)|∥Φω∥∥f∥∥Λ(n)
ω − Λω∥∥g∥dµω

≤ εLΦ∥g∥∥f∥∥m∥1,
for all n ≥ N and for all f, g ∈ H. Hence,

∥Mm,Λ(n),Φ −Mm,Λ,Φ∥ < εLΦ∥m∥1, n ≥ N.

Thus, Mm,Λ(n),Φ converges to Mm,Λ,Φ in the operator norm. □
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