ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 2, pp. 319-336

Title:

A new result on chromaticity Of K_4 -homeomorphic graphs with girth 9

Author(s):

N.S.A. Karim, R. Hasni and G.C. Lau

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 43 (2017), No. 2, pp. 319–336 Online ISSN: 1735-8515

A NEW RESULT ON CHROMATICITY OF K_4 -HOMEOMORPHIC GRAPHS WITH GIRTH 9

N.S.A. KARIM, R. HASNI* AND G.C. LAU

(Communicated by Ebadollah S. Mahmoodian)

ABSTRACT. For a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent if they share the same chromatic polynomial. A graph G is chromatically unique if any graph chromatically equivalent to G is isomorphic to G. A K_4 homeomorph is a subdivision of the complete graph K_4 . In this paper, we determine a family of chromatically unique K_4 -homeomorphs which have girth 9 and have exactly one path of length 1, and give sufficient and necessary condition for the graphs in this family to be chromatically unique.

Keywords: Chromatic polynomial, chromatically unique, K_4 -homeomorphs.

MSC(2010): 05C15.

1. Introduction

All graphs considered here are simple graphs. For such a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ -equivalent), denoted by $G \sim H$, if P(G, l) = P(H, l). A graph G is chromatically unique (or simply χ -unique) if for any graph H such as $H \sim G$, we have $H \cong G$, i.e., H is isomorphic to G. The search for χ -unique graphs has been the subject of much interest in chromatic graph theory (see [5, 10, 11]).

A K_4 -homeomorph is a subdivision of the complete graph K_4 . Such a homeomorph is denoted by $K_4(a, b, c, d, e, f)$ where the six edges of K_4 are replaced by the six paths of length a, b, c, d, e and f, respectively, as shown in Figure 1. So far, the chromaticity of K_4 -homeomorphs with girth g, where $3 \le g \le 7$ has been studied by many authors (see [4,12–15]). Also the study of the chromaticity of K_4 -homeomorphs with at least 2 paths of length 1 has been completed

O2017 Iranian Mathematical Society

Article electronically published on 30 April, 2017.

Received: 24 March 2015, Accepted: 17 November 2015.

^{*}Corresponding author.

³¹⁹

(see [6,12,16,20]). Recently, Shi et al. [19] studied the chromaticity of one family of K_4 -homeomorphs with girth 8, that is, $K_4(2,3,3,d,e,f)$. In [18], Shi solved completely the chromaticity of K_4 -homeomorphs with girth 8. By Ren [17], the chromaticity of K_4 -homeomorphs with exactly 3 paths of same length has been obtained. Recently, Catada-Ghimire and Hasni [1] investigated the chromaticity of K_4 -homeomorphs with exactly 2 paths of length 2. Hence, to completely determine the chromaticity of K_4 -homeomorph with girth 9, there are only 6 more types to be solved, that is, $K_4(1,2,6,d,e,f)$, $K_4(1,3,5,d,e,f)$, $K_4(1,4,4,d,e,f)$, $K_4(2,3,4,d,e,f)$, $K_4(1,2,c,3,e,3)$ and $K_4(1,3,c,2,e,3)$. The chromaticity of the graphs $K_4(2,3,4,d,e,f)$ and $K_4(1,4,4,d,e,f)$ were solved by Karim et al. [8,9]. In this paper, we investigate the chromaticity of another type $K_4(1,2,6,d,e,f)$.

In [5], the following problem was posed:

Problem A Study the chromaticity of K_4 -homeomorphs with exactly one path of length 1 (Page 123).

The results in this paper give a partial solution to Problem A and leaving the general case undecided as well as to complete the study of the chromaticity of K_4 -homeomorph with girth 9.

FIGURE 1. $K_4(a, b, c, d, e, f)$

2. Preliminary results

In this section, we give some known results used in this paper.

Lemma 2.1. Assume that G and H are χ -equivalent. Then

- (1) |V(G)| = |V(H)|, |E(G)| = |E(H)| ([10]);
- (2) G and H has the same girth and same number of cycles with length equal to their girth ([21]);
- (3) If G is a K_4 -homeomorph, then H must itself be a K_4 -homeomorph ([3]);
- (4) Let $G = K_4(a, b, c, d, e, f)$ and $H = K_4(a', b', c', d', e', f')$. Then

Karim, Hasni and Lau

- (i) min {a,b,c,d,e,f} = min {a',b',c',d',e',f'} and the number of times that this minimum occurs in the list {a,b,c,d,e,f} is equal to the number of times that this minimum occurs in the list {a',b', c',d',e',f'} ([20]);
- (ii) if $\{a, b, c, d, e, f\} = \{a', b', c', d', e', f'\}$ as multisets, then $H \cong G$ ([12]).

Lemma 2.2. (Catada-Ghimire et al. [2]) Let K_4 -homeomorphs $K_4(1, 2, c, d, e, f)$ and $K_4(1, 2, c, d', e', f')$ be non-isomorphic chromatically equivalent. Then $K_4(1, 2, c, i, i + c + 1, i + 1) \sim K_4(1, 2, c, i + 2, i, i + c),$ $K_4(1, 2, c, i, i + 1, i + c + 1) \sim K_4(1, 2, c, i + c, i, i + 2),$ $K_4(1, 2, c, i, i + 1, i + c + 1) \sim K_4(1, 2, c, i + 2, i, i + 2),$ where $i \ge 1$.

Lemma 2.3. (Karim et al. [9]) Let K_4 -homeomorphs $K_4(1, 2, 6, d, e, f)$ and $K_4(1, 4, 4, d', e', f')$ be chromatically equivalent. Then $K_4(1, 2, 6, 4, 4, 4) \sim K_4(1, 4, 4, 2, 3, 7).$

Lemma 2.4. (Hasni [7]) Let K_4 -homeomorphs $K_4(1, 2, 6, d, e, f)$ and $K_4(2, 3, 4, d', e', f')$ be chromatically equivalent. Then

$$\begin{split} &K_4(1,2,6,4,s,4)\sim K_4(2,3,4,1,7,s),\\ &K_4(1,2,6,6,3,4)\sim K_4(2,3,4,7,1,5),\\ &K_4(1,2,6,6,4,4)\sim K_4(2,3,4,1,5,8),\\ &K_4(1,2,6,9,3,5)\sim K_4(2,3,4,10,6,1),\\ &K_4(1,2,6,5,5,5)\sim K_4(2,3,4,6,6,1), \end{split}$$

where $s \geq 4$.

Lemma 2.5. (Ren [17]) Let $G = K_4(a, b, c, d, e, f)$, where exactly three of a, b, c, d, e, f are the same. Then G is not chromatically unique if and only if G is isomorphic to $K_4(s, s, s - 2, 1, 2, s)$ or $K_4(s, s - 2, s, 2s - 2, 1, s)$ or $K_4(t, t, 1, 2t, t + 2, t)$ or $K_4(t, t, 1, 2t, t - 1, t)$ or $K_4(t, t + 1, t, 2t + 1, 1, t)$ or $K_4(1, t, 1, t + 1, 3, 1)$ or $K_4(1, 1, t, 2, t + 2, 1)$, where $s \ge 3, t \ge 2$.

Lemma 2.6. (Catada-Ghimire and Hasni [1]) A K_4 -homeomorphic graph with exactly two paths of length two is χ -unique if and only if it is not isomorphic to $K_4(1,2,2,4,1,1)$ or $K_4(4,1,2,1,2,4)$ or $K_4(1,s+2,2,1,2,s)$ or $K_4(1,2,2,t+2,t+2,t)$ or $K_4(1,2,2,t,t+1,t+3)$ or $K_4(3,2,2,r,1,5)$ or $K_4(1,r,2,4,2,4)$ or $K_4(3,2,2,r,1,r+3)$ or $K_4(r+2,2,2,1,4,r)$ or $K_4(r+3,2,2,r,1,3)$ or $K_4(4,2,2,1,r+2,r)$ or $K_4(3,4,2,4,2,6)$ or $K_4(3,4,2,4,2,8)$ or $K_4(3,4,2,8,2,4)$ or $K_4(7,2,2,3,4,5)$ or $K_4(5,2,2,3,4,7)$ or $K_4(8,2,2,3,4,6)$ or $K_4(5,2,2,9,3,4)$ or $K_4(5,2,2,5,3,4)$, where $r \geq 3$, $s \geq 3$, $t \geq 3$.

3. Main result

In this section, we present our main results. In the following, we only consider graphs of girth 9 with at most one path of length 1.

We now study the chromaticity of $K_4(1, 2, 6, d, e, f)$. First, we prove the following lemma.

Lemma 3.1. Let K_4 -homeomorphs $K_4(1, 2, 6, d, e, f)$ and $K_4(1, 3, 5, d', e', f')$ be chromatically equivalent. Then

$$\begin{split} & K_4(1,2,6,4,5,8) \sim K_4(1,3,5,2,6,9), \\ & K_4(1,2,6,4,7,5) \sim K_4(1,3,5,2,8,6), \\ & K_4(1,2,6,3,4,10) \sim K_4(1,3,5,9,2,6), \\ & K_4(1,2,6,3,4,6) \sim K_4(1,3,5,5,6,2), \\ & K_4(1,2,6,5,3,8) \sim K_4(1,3,5,7,2,7), \\ & K_4(1,2,6,5,9,3) \sim K_4(1,3,5,7,8,2), \\ & K_4(1,2,6,f+2,4,f) \sim K_4(1,3,5,2,f,f+4), \end{split}$$

where $f \geq 4$.

Proof. Let G and H be two graphs such that $G \cong K_4(1, 2, 6, d, e, f)$ and $H \cong K_4(1, 3, 5, d', e', f')$. Let

$$Q(K_4(a, b, c, d, e, f)) = -(s+1)(s^a + s^b + s^c + s^d + s^e + s^f) + s^{a+d} + s^{b+f} + s^{c+e} + s^{a+b+e} + s^{b+d+c} + s^{a+c+f} + s^{d+e+f}.$$

Let $s = 1 - \lambda$ and let x be the number of edges in G. From [20], we have the chromatic polynomial of K_4 -homeomorphs $K_4(a, b, c, d, e, f)$ is as follows:

$$P(K_4(a, b, c, d, e, f) = (-1)^{x-1} \frac{s}{(s-1)^2} \Big[(s^2 + 3s + 2) + Q(K_4(a, b, c, d, e, f)) - s^{x-1}) \Big].$$

Hence P(G) = P(H) if and only if Q(G) = Q(H). We solve the equation Q(G) = Q(H) to get all solutions. Let the lowest remaining power and the highest remaining power to be denoted by l.r.p. and h.r.p., respectively. As $G \cong K_4(1, 2, 6, d, e, f)$ and $H \cong K_4(1, 3, 5, d', e', f')$, we have

$$\begin{array}{lll} Q(G) &=& -(s+1)(s+s^2+s^6+s^d+s^e+s^f)+s^{d+1}+s^{f+2}+\\ && s^{e+6}+s^{e+3}+s^{d+8}+s^{f+7}+s^{d+e+f}.\\ Q(H) &=& -(s+1)(s+s^3+s^5+s^{d'}+s^{e'}+s^{f'})+s^{d'+1}+s^{f'+3}+\\ && s^{e'+5}+s^{e'+4}+s^{d'+8}+s^{f'+6}+s^{d'+e'+f'}. \end{array}$$

From Lemma 2.1 (1),

(3.1)
$$d + e + f = d' + e' + f'$$

Q(G) = Q(H) yields

$$\begin{aligned} Q_1(G) &= -s^2 - s^7 - s^d - s^e - s^{e+1} - s^f - s^{f+1} + \\ s^{d+8} + s^{e+3} + s^{e+6} + s^{f+2} + s^{f+7}. \\ Q_1(H) &= -s^4 - s^5 - s^{d'} - s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + \\ s^{d'+8} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}. \end{aligned}$$

By considering the l.r.p in $Q_1(G)$ and the l.r.p in $Q_1(H)$, we have three cases to consider, that is, d' = 2 or e' = 2 or f' = 2. Note that we consider G with at most one path of length 1, then the l.r.p in $Q_1(G)$ cannot occur when d = 1or e = 1.

Case A d' = 2. By cancelling the equal terms in $Q_1(G)$ and $Q_1(H)$, we obtain the following.

 $\begin{array}{l} Q_2(G)=-s^7-s^d-s^e-s^{e+1}-s^f-s^{f+1}+s^{d+8}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7},\\ Q_2(H)=-s^4-s^5-s^{e'}-s^{e'+1}-s^{f'}-s^{f'+1}+s^{10}+s^{e'+4}+s^{e'+5}+s^{f'+3}+s^{f'+6}.\\ \text{Considering the l.r.p in }Q_2(G) \text{ and the l.r.p in }Q_2(H), \text{ we have } d=4 \text{ or } e=4 \text{ or } f=4 \text{ or } e=3 \text{ or } f=3. \end{array}$

Case 1 d = 4. Since G is of girth 9 and d = 4, then $e \ge 3$ and $e + f \ge 8$, so $f \ge 5$. We obtain the following after simplification.

 $\begin{array}{l} Q_3(G) = -s^7 - s^e - s^{e+1} - s^f - s^{f+1} + s^{12} + s^{e+3} + s^{e+6} + s^{f+2} + s^{f+7}, \\ Q_3(H) = -s^5 - s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{10} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}. \\ \text{Considering the l.r.p in } Q_3(G) \text{ and the l.r.p in } Q_3(H) \text{ and } f \geq 5, \text{ we have } e = 5 \text{ or } f = 5 \text{ or } e = 4. \end{array}$

Case 1.1 e = 5. We obtain the following after simplification.

 $Q_4(G) = -s^6 - s^7 - s^f - s^{f+1} + s^8 + s^{11} + s^{12} + s^{f+2} + s^{f+7},$

 $Q_4(H) = -s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{10} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}.$

Considering the h.r.p in $Q_4(G)$ and the h.r.p in $Q_4(H)$, we have e' + 5 = 12 or f' + 6 = 12 or f + 7 = e' + 5 or f + 7 = f' + 6.

Case 1.1.1 e' + 5 = 12. So e' = 7. By Equation (3.1), f = f'. We obtain the following after simplification.

 $Q_5(G) = -s^6 - s^8 + s^{f+2} + s^{f+7}, Q_5(H) = -s^8 + s^{10} + s^{f'+3} + s^{f'+6}.$

Thus, we obtain $Q_5(G) \neq Q_5(H)$, a contradiction.

Case 1.1.2 f' + 6 = 12. So f' = 6. By Equation (3.1), f + 1 = e'. After simplifying, we obtain $Q_5(G) \neq Q_5(H)$, a contradiction.

Case 1.1.3 f + 7 = e' + 5. So f + 2 = e'. By Equation (3.1), f' = 5. $Q_5(G) \neq Q_5(H)$, a contradiction.

Case 1.1.4 f + 7 = f' + 6. So f + 1 = f'. By Equation (3.1), e' = 6. Simplifying $Q_4(G)$ and $Q_4(H)$, we obtain f = 8. So f' = 9. Therefore, $G \cong K_4(1, 2, 6, 4, 5, 8)$ and $H \cong K_4(1, 3, 5, 2, 6, 9)$. Thus, $K_4(1, 2, 6, 4, 5, 8) \sim K_4(1, 3, 5, 2, 6, 9)$.

Case 1.2 f = 5. We obtain the following after simplification.

$$\begin{array}{l} Q_6(G) = -s^6 - s^e - s^{e+1} + 2s^{12} + s^{e+3} + s^{e+6}, \\ Q_6(H) = -s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{10} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{$$

Consider the h.r.p in $Q_6(G)$ and the h.r.p in $Q_6(H)$. We have e' + 5 = 12or f' + 6 = 12 or e + 6 = e' + 5 or e + 6 = f' + 6.

Case 1.2.1 e' + 5 = 12. So e' = 7. By Equation (3.1), e = f'. We obtain $Q_6(G) \neq Q_6(H)$, a contradiction.

Case 1.2.2 f'+6 = 12. So f' = 6. By Equation (3.1), e+1 = e'. Simplifying $Q_6(G)$ and $Q_6(H)$, we obtain

 $Q_7(G) = -s^e + s^{12} + s^{e+3}, Q_7(H) = -s^7 - s^{e+2} + s^9 + s^{10} + s^{e+5}.$

Then e = 7 and e' = 8. Therefore, $G \cong K_4(1,2,6,4,7,5)$ and $H \cong$ $K_4(1,3,5,2,8,6)$. Hence $K_4(1,2,6,4,7,5) \sim K_4(1,3,5,2,8,6)$.

Case 1.2.3 e + 6 = e' + 5. So e + 1 = e'. By Equation (3.1), f' = 6. Similar to Case 1.2.2, we have $K_4(1, 2, 6, 4, 7, 5) \sim K_4(1, 3, 5, 2, 8, 6)$.

Case 1.2.4 e + 6 = f' + 6. So e = f'. By Equation (3.1), e' = 7. We obtain $Q_6(G) \neq Q_6(H)$, a contradiction.

Case 1.3 e = 4. We obtain the following after simplification.

 $Q_8(G) = -s^4 - s^f - s^{f+1} + s^{12} + s^{f+2} + s^{f+7},$ $Q_8(H) = -s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}.$

Considering the h.r.p in $Q_8(G)$ and the h.r.p in $Q_8(H)$, we have e' + 5 = 12or f' + 6 = 12 or f + 7 = e' + 5 or f + 7 = f' + 6.

Case 1.3.1 e' + 5 = 12. So e' = 7. By Equation (3.1), f = f' + 1. After simplifying, we have $Q_8(G) \neq Q_8(H)$, a contradiction.

Case 1.3.2 f' + 6 = 12. So f' = 6. By Equation (3.1), f = e'. After simplifying, we have $Q_8(G) \neq Q_8(H)$, a contradiction.

Case 1.3.3 f + 7 = e' + 5. So f + 2 = e'. By Equation (3.1), f' = 4. After simplifying, we have $Q_8(G) \neq Q_8(H)$, a contradiction.

Case 1.3.4 f + 7 = f' + 6. So f + 1 = f'. By Equation (3.1), e' = 5. After simplifying, we have $Q_8(G) \neq Q_8(H)$, a contradiction.

Case 1.4 f = 4. We already know that $e \ge 3$. But if e = 3, there is a cycle of girth 8, a contradiction. Thus we assume $e \ge 4$. We obtain the following after simplification.

 $\begin{aligned} Q_9(G) &= -s^4 - s^7 - s^e - s^{e+1} + s^6 + s^{11} + s^{12} + s^{e+3} + s^{e+6}, \\ Q_9(H) &= -s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{10} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}. \end{aligned}$

Comparing the h.r.p in $Q_9(G)$ and the h.r.p in $Q_9(H)$, we have e' + 5 = 12or f' + 6 = 12 or e + 6 = e' + 5 or e + 6 = f' + 6.

Case 1.4.1 e' + 5 = 12. So e' = 7. By Equation (3.1), e = f' + 1. After simplifying, we have $Q_9(G) \neq Q_9(H)$, a contradiction.

Case 1.4.2 f' + 6 = 12. So f' = 6. By Equation (3.1), e = e'. After simplifying, we have $Q_9(G) \neq Q_9(H)$, a contradiction.

Case 1.4.3 e + 6 = e' + 5. So e + 1 = e'. By Equation (3.1), f' = 5. After simplifying, we have $Q_9(G) \neq Q_9(H)$, a contradiction.

 $s^{f'+6}$.

Case 1.4.4 e + 6 = f' + 6. So e = f'. By Equation (3.1), e' = 6. After simplifying, we have $Q_9(G) \neq Q_9(H)$, a contradiction.

Case 2 e = 4. We obtain the following after simplification.

 $Q_{10}(G) = -s^d - s^f - s^{f+1} + s^{d+8} + s^{f+2} + s^{f+7},$

 $Q_{10}(H) = -s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}.$

Considering the h.r.p in $Q_{10}(G)$ and the h.r.p in $Q_{10}(H)$, we have d+8 =e' + 5 or d + 8 = f' + 6 or f + 7 = e' + 5 or f + 7 = f' + 6.

Case 2.1 d + 8 = e' + 5. So d + 3 = e'. By Equation (3.1), f = f' + 1. We obtain the following after simplification.

 $Q_{11}(G) = -s^d - s^{f+1} + s^{f+7}, Q_{11}(H) = -s^{d+3} - s^{d+4} - s^{f-1} + s^{d+7} + s^{f+5}.$ We obtain $Q_{11}(G) \neq Q_{11}(H)$, a contradiction.

Case 2.2 d + 8 = f' + 6. So d + 2 = f'. By Equation (3.1), f = e'. We obtain the following after simplification.

 $Q_{12}(G) = -s^d + s^{f+2} + s^{f+7}, Q_{12}(H) = -s^{d+2} - s^{d+3} + s^{d+5} + s^{f+4} + s^{f+5}.$ Then we obtain d = f + 2 and from d + 2 = f', we have f' = f + 4. Therefore, $G \cong K_4(1,2,6,f+2,4,f)$ and $H \cong K_4(1,3,5,2,f,f+4)$. Thus $K_4(1,2,6,f+2,4,f) \sim K_4(1,3,5,2,f,f+4).$

Case 2.3 f + 7 = e' + 5. So f + 2 = e'. By Equation (3.1), d = f'. We obtain the following after simplification.

 $Q_{13}(G) = -s^f - s^{f+1} + s^{d+8} + s^{f+2}.$

 $Q_{13}(H) = -s^{d+1} - s^{f+2} - s^{f+3} + s^{d+3} + s^{d+6} + s^{f+6}$

Comparing the h.r.p in $Q_{13}(G)$ and the h.r.p in $Q_{13}(H)$, we have d+6 = f+2or d + 8 = f + 6.

Case 2.3.1 d + 6 = f + 2. So d + 4 = f. After simplification, we obtain $Q_{13}(G) \neq Q_{13}(H)$, a contradiction.

Case 2.3.2 d + 8 = f + 6. So d + 2 = f. After simplification, we obtain $Q_{13}(G) \neq Q_{13}(H)$, a contradiction.

Case 2.4 f + 7 = f' + 6. So f + 1 = f'. By Equation (3.1), d + 1 = e'. After simplification, similar to above cases, we obtain a contradiction.

Case 3 f = 4. Note that $e \ge 4$ since G is of girth 9 and $d \ge 2$. We know that $e \geq 5$ when d = 2. We obtain the following after simplification.

 $\begin{array}{l} Q_{14}(G) = -s^7 - s^d - s^e - s^{e+1} + s^6 + s^{11} + s^{d+8} + s^{e+3} + s^{e+6}, \\ Q_{14}(H) = -s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{10} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}. \end{array}$

Comparing the h.r.p in $Q_{14}(G)$ and the h.r.p in $Q_{14}(H)$, we have e' + 5 = 11or f'+6 = 11 or d+8 = e'+5 or d+8 = f'+6 or e+6 = e'+5 or e+6 = f'+6.

Case 3.1 e'+5 = 11. So e' = 6. We obtain the following after simplification. $Q_{15}(G) = -s^d - s^e - s^{e+1} + s^6 + s^{d+8} + s^{e+3} + s^{e+6}$

 $Q_{15}(H) = -s^6 - s^{f'} - s^{f'+1} + 2s^{10} + s^{f'+3} + s^{f'+6}.$

The h.r.p in $Q_{15}(H)$ is 10 or f' + 6.

Case 3.1.1 $10 \ge f' + 6$. Considering the h.r.p in $Q_{15}(G)$, we have d + 8 = 10or e + 6 = 10.

Case 3.1.1.1 d + 8 = 10. So d = 2. By Equation (3.1), e = f' + 2. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$, a contradiction.

Case 3.1.1.2 e + 6 = 10. So e = 4. By Equation (3.1), d = f'. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$, a contradiction.

Case 3.1.2 f' + 6 > 10. Considering the h.r.p in $Q_{15}(G)$, we have d + 8 =f' + 6 or e + 6 = f' + 6.

Case 3.1.2.1 d+8 = f'+6. So d+2 = f'. By Equation (3.1), e = 6. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$.

Case 3.1.2.2 e + 6 = f' + 6. So e = f'. By Equation (3.1), d = 4. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$.

Case 3.2 f' + 6 = 11. So f' = 5. Note that $d \ge 3$. We obtain the following after simplification.

 $Q_{16}(G) = -s^7 - s^d - s^e - s^{e+1} + s^6 + s^{d+8} + s^{e+3} + s^{e+6}$

 $Q_{16}(H) = -s^5 - s^6 - s^{e'} - s^{e'+1} + s^8 + s^{10} + s^{e'+4} + s^{e'+5}$

By comparing the h.r.p in Q_{16} and the h.r.p in Q_{16} , we have d + 8 = e' + 5or e + 6 = 10 or e + 6 = e' + 5.

Case 3.2.1 d + 8 = e' + 5. So d + 3 = e'. By Equation (3.1), e = 6. We

 $Q_{17}(G) = -2s^7 - s^d + s^6 + s^9 + s^{12}, \ Q_{17}(H) = -s^5 - s^{d+3} - s^{d+4} + s^8 + s^{10} + s^{d+7}.$

Note that there exists the term $-2s^7$ in $Q_{17}(G)$ but not in $Q_{17}(H)$, a contradiction.

Case 3.2.2 e + 6 = 10. So e = 4. By Equation (3.1), d + 1 = e'. After simplifying, we have $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case 3.2.3 e + 6 = e' + 5. So e + 1 = e'. By Equation (3.1), d = 4. After simplifying, we have $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case 3.3 d+8 = e'+5. So d+3 = e'. By Equation (3.1), d+3 = e'. After simplifying, we obtain a contradiction.

Case 3.4 d + 8 = f' + 6. So d + 2 = f'. By Equation (3.1), e' = 4. After simplifying, we obtain $G \cong K_4(1, 2, 6, 6, 4, 4)$ and $H \cong K_4(1, 3, 5, 2, 4, 8)$. Hence $K_4(1, 2, 6, 6, 4, 4) \sim K_4(1, 3, 5, 2, 4, 8).$

Case 3.5 e + 6 = e' + 5. So e + 1 = e'. By Equation (3.1), d + 1 = f'. We obtain the following after simplification.

 $\begin{aligned} Q_{18}(G) &= -s^7 - s^d - s^e + s^6 + s^{11} + s^{d+8} + s^{e+3}, \\ Q_{18}(H) &= -s^{e+2} - s^{d+1} - s^{d+2} + s^{10} + s^{d+4} + s^{d+7} + s^{e+5}. \end{aligned}$

Considering the h.r.p in $Q_{18}(G)$ and the h.r.p in $Q_{18}(H)$, we have e+5=11or d + 7 = 11 or d + 8 = e + 5 or d + 7 = e + 3.

Case 3.5.1 e + 5 = 11. So e = 6. After simplification, we obtain $Q_{18}(G) \neq 1$ $Q_{18}(H)$ and hence a contradiction.

Case 3.5.2 d + 7 = 11. So d = 4. After simplification, we obtain $Q_{18}(G) \neq 1$ $Q_{18}(H)$, a contradiction.

Case 3.5.3 d + 8 = e + 5. So d + 3 = e. After simplification, we obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 3.5.4 d + 7 = e + 3. So d + 4 = e. After simplification, we obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 3.6 e + 6 = f' + 6. So e = f'. By Equation (3.1), d + 2 = e'. After simplifying, we obtain a contradiction.

Case 4 e = 3. Note that $d \ge 4$ and $f \ge 5$. We obtain the following after simplification.

 $Q_{19}(G) = -s^3 - s^7 - s^d - s^f - s^{f+1} + s^6 + s^9 + s^{d+8} + s^{f+2} + s^{f+7},$

 $Q_{19}(H) = -s^5 - s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{10} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}.$

Note that $e' \ge 4$ and $f' \ge 3$ since girth of H is 9. By comparing the l.r.p in $Q_{19}(G)$ and the l.r.p in $Q_{17}(H)$, we have f' = 3. We obtain the following after simplification.

$$\begin{split} \bar{Q}_{20}(G) &= -s^7 - s^d - s^f - s^{f+1} + s^{d+8} + s^{f+2} + s^{f+7}, \\ Q_{20}(H) &= -s^4 - s^5 - s^{e'} - s^{e'+1} + s^{10} + s^{e'+4} + s^{e'+5}. \end{split}$$

Since $f \geq 5$, the term s^d in $Q_{20}(G)$ is equal to the term s^4 in $Q_{20}(H)$, that is, d = 4. By Equation (3.1), f + 2 = e'. After simplification, we obtain $Q_{20}(G) \neq Q_{20}(H)$, a contradiction.

Case 5 f = 3. We obtain the following after simplification.

 $\begin{array}{l} Q_{21}(G) = -s^3 - s^7 - s^d - s^e - s^{e+1} + s^5 + s^{d+8} + s^{e+3} + s^{e+6}, \\ Q_{21}(H) = -s^5 - s^{e'} - s^{e'+1} - s^{f'} - s^{f'+1} + s^{e'+4} + s^{e'+5} + s^{f'+3} + s^{f'+6}. \end{array}$

Note that $e' \ge 4$ since girth of H is 9. By comparing the l.r.p in $Q_{21}(G)$ and the l.r.p in $Q_{21}(H)$, we have f' = 3. We obtain the following after simplification.

 $\begin{array}{l} Q_{22}(G) = -s^7 - s^d - s^e - s^{e+1} + s^5 + s^{d+8} + s^{e+3} + s^{e+6}, \\ Q_{22}(H) = -s^4 - s^5 - s^{e'} - s^{e'+1} + s^6 + s^9 + s^{e'+4} + s^{e'+5}. \end{array}$

Since $e \geq 5$, the term s^d in $Q_{22}(G)$ is equal to the term s^4 in $Q_{22}(H)$, that is, d = 4. By Equation (3.1), e + 2 = e'. After simplification, we obtain $Q_{22}(G) \neq Q_{22}(H)$, a contradiction.

Case B e' = 2. We obtain the following after simplification.

 $\begin{array}{l} Q_{23}(G)=-s^7-s^d-s^e-s^{e+1}-s^f-s^{f+1}+s^{d+8}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7},\\ Q_{23}(H)=-s^3-s^4-s^5-s^{d'}-s^{f'}-s^{f'+1}+s^6+s^7+s^{d'+8}+s^{f'+3}+s^{f'+6}.\\ \text{Considering the l.r.p in }Q_{23}(G) \text{ and the l.r.p in }Q_{23}(H), \text{ we have } d=3 \text{ or } e=3 \text{ or } f=3. \end{array}$

Case 1 d = 3. Note that $e \ge 4$ and $f \ge 3$. We obtain the following after simplification.

 $\dot{Q}_{24}(G) = -s^7 - s^e - s^{e+1} - s^f - s^{f+1} + s^{11} + s^{e+3} + s^{e+6} + s^{f+2} + s^{f+7},$ $Q_{24}(H) = -s^4 - s^5 - s^{d'} - s^{f'} - s^{f'+1} + s^6 + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}.$

Comparing the l.r.p in $Q_{24}(G)$ and the l.r.p in $Q_{24}(H)$, we have e = 4 or f = 4 or f = 3.

Case 1.1 e = 4. We obtain the following after simplification. $Q_{25}(G) = -s^7 - s^f - s^{f+1} + s^{10} + s^{11} + s^{f+2} + s^{f+7}$,

 $Q_{25}(H) = -s^{d'} - s^{f'} - s^{f'+1} + s^6 + s^{d'+8} + s^{f'+3} + s^{f'+6}.$

Comparing the h.r.p in $Q_{25}(G)$ and the h.r.p in $Q_{25}(H)$, we have f+7 = d'+8or f + 7 = f' + 6.

Case 1.1.1 f + 7 = d' + 8. So f = d' + 1. By Equation (3.1), f' = 6. After simplification, we have f = 10 and d' = 9. Thus, $G \cong K_4(1, 2, 6, 3, 4, 10)$ and $H \cong K_4(1,3,5,9,2,6)$. Hence $K_4(1,2,6,3,4,10) \sim K_4(1,3,5,9,2,6)$.

Case 1.1.2 f + 7 = f' + 6. So f + 1 = f'. By Equation (3.1), d' = 4. After simplification, we obtain $Q_{25}(G) \neq Q_{25}(H)$, a contradiction.

Case 1.2 f = 4. We obtain the following after simplification.

 $Q_{26}(G) = -s^7 - s^e - s^{e+1} + 2s^{11} + s^{e+3} + s^{e+6},$

$$Q_{26}(H) = -s^{d'} - s^{f'} - s^{f'+1} + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}.$$

Note that the h.r.p. in $Q_{26}(G)$ is 11 or e + 6.

Case 1.2.1 $11 \ge e + 6$. Consider h.r.p. in $Q_{26}(H)$ is d' + 8 or f' + 6. Then, d' + 8 = 11 or f' + 6 = 11.

Case 1.2.1.1 d' + 8 = 11. So d' = 3. But, $d' \ge 4$, a contradiction.

Case 1.2.1.2 f' + 6 = 11. So f' = 5. But $f' \ge 6$, a contradiction.

Case 1.2.2 11 < e + 6. Consider the h.r.p. in $Q_{26}(H)$ is d' + 8 or f' + 6.

Case 1.2.2.1 e + 6 = d' + 8. So e = d' + 2. By Equation (3.1), f' = 7. After

simplification, we obtain $2s^{11}$ is in $Q_{26}(G)$ but not in $Q_{26}(H)$, a contradiction. **Case 1.2.2.2** e + 6 = f' + 6. So e = f'. By Equation (3.1), d' = 5. After simplification, we obtain $Q_{26}(G) \neq Q_{26}(H)$, a contradiction.

Case 1.3 f = 3. We obtain the following after simplification. $Q_{27}(G) = -s^3 - s^7 - s^e - s^{e+1} + s^5 + s^{10} + s^{11} + s^{e+3} + s^{e+6}$

 $Q_{27}(H) = -s^5 - s^{d'} - s^{f'} - s^{f'+1} + s^6 + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}.$

Since $d' \ge 4$ and $f' \ge 6$, by comparing the l.r.p. in $Q_{27}(G)$ and the l.r.p. in $Q_{27}(H)$, we know that the term $-s^3$ is in $Q_{27}(G)$ but not in $Q_{27}(H)$, a contradiction.

Case 2 e = 3. Note that $d \ge 4$ and $f \ge 5$. We obtain the following after simplification.

 $\dot{Q}_{28}(G) = -s^7 - s^d - s^f - s^{f+1} + s^9 + s^{d+8} + s^{f+2} + s^{f+7},$

 $Q_{28}(H) = -s^5 - s^{d'} - s^{f'} - s^{f'+1} + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}$

Comparing the l.r.p. in $Q_{28}(G)$ and the l.r.p. in $Q_{28}(H)$, we have d = 5 or f = 5.

Case 2.1 d = 5. We obtain the following after simplification.

 $Q_{29}(G) = -s^7 - s^f - s^{f+1} + s^9 + s^{13} + s^{f+2} + s^{f+7},$

 $Q_{29}(H) = -s^{d'} - s^{f'} - s^{f'+1} + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}.$

Consider the h.r.p. in $Q_{29}(G)$ and the h.r.p. in $Q_{29}(H)$. Then we have d' + 8 = 13 or f' + 6 = 13 or f + 7 = d' + 8 or f + 7 = f' + 6.

Case 2.1.1 d' + 8 = 13. Then d' = 5. By Equation (3.1), f + 1 = f'. Simplifying $Q_{29}(G)$ and $Q_{29}(H)$, we obtain f = 5 and f' = 6. Therefore, $G \cong K_4(1, 2, 6, 5, 3, 5)$ and $H \cong K_4(1, 3, 5, 5, 2, 6)$. Hence, $G \cong H$.

Case 2.1.2 f' + 6 = 13. Then f' = 7. By Equation (3.1), f = d' + 1. Simplifying $Q_{29}(G)$ and $Q_{29}(H)$, we obtain f = 8 and d' = 7. Therefore, $G \cong K_4(1, 2, 6, 5, 3, 8)$ and $H \cong K_4(1, 3, 5, 7, 2, 7)$. Hence, $K_4(1, 2, 6, 5, 3, 8) \sim K_4(1, 3, 5, 7, 2, 7)$.

Case 2.1.3 f + 7 = d' + 8. Then f = d' + 1. By Equation (3.1), f' = 7. After simplifying, we obtain $K_4(1, 2, 6, 5, 3, 8) \sim K_4(1, 3, 5, 7, 2, 7)$.

Case 2.1.4 f + 7 = f' + 6. Then f + 1 = f'. By Equation (3.1), d' = 5. After simplifying, we obtain $G \cong H$.

Case 2.2 f = 5. We obtain the following after simplification.

 $Q_{30}(G) = -s^6 - s^7 - s^d + s^9 + s^{12} + s^{d+8},$

 $Q_{30}(H) = -s^{d'} - s^{f'} - s^{f'+1} + s^{d'+8} + s^{f'+3} + s^{f'+6}.$

Since $d' \ge 4$ and $f' \ge 6$, by comparing the l.r.p. in $Q_{30}(G)$ and the l.r.p. in $Q_{30}(H)$, we have d' = 6 or f' = 6.

Case 2.2.1 d' = 6. By Equation (3.1), d = f'. Simplifying $Q_{30}(G)$ and $Q_{30}(H)$, we obtain d = 6. Then $G \cong H$.

Case 2.2.2 f' = 6. By Equation (3.1), d = d'. Simplifying $Q_{30}(G)$ and $Q_{30}(H)$, we obtain $G \cong H$.

Case 3 f = 3. Note that $d \ge 3$ and $e \ge 5$. We obtain the following after simplification.

 $Q_{31}(G) = -s^7 - s^d - s^e - s^{e+1} + s^5 + s^{10} + s^{d+8} + s^{e+3} + s^{e+6},$

 $Q_{31}(H) = -s^5 - s^{d'} - s^{f'} - s^{f'+1} + s^6 + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}$

Considering the l.r.p. in $Q_{31}(G)$ and the l.r.p. in $Q_{31}(H)$, we have d = 5 or e = 5.

Case 3.1 d = 5. Cancelling the equal terms in $Q_{31}(G)$ and $Q_{31}(H)$, we obtain the following.

 $Q_{32}(G) = -s^7 - s^e - s^{e+1} + s^5 + s^{10} + s^{13} + s^{e+3} + s^{e+6},$

 $Q_{32}(H) = -s^{d'} - s^{f'} - s^{f'+1} + s^6 + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}.$

Compare the h.r.p. in $Q_{32}(G)$ and the h.r.p. in $Q_{32}(H)$. We have d'+8 = 13 or f'+6 = 13 or e+6 = d'+8 or e+6 = f'+6.

Case 3.1.1 d' + 8 = 13. So d' = 5. By Equation (3.1), e + 1 = f'. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case 3.1.2 f' + 6 = 13. So f' = 7. By Equation (3.1), e = d' + 1. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case 3.1.3 e + 6 = d' + 8. So e = d' + 2. By Equation (3.1), f' = 8. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case 3.1.4 e + 6 = f' + 6. So e = f'. By Equation (3.1), d' = 6. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case 3.2 e = 5. Cancelling the equal terms in $Q_{31}(G)$ and $Q_{31}(H)$, we obtain the following.

obtain the following. $\begin{aligned}
Q_{33}(G) &= -s^6 - s^7 - s^d + s^5 + s^8 + s^{10} + s^{11} + s^{d+8}, \\
Q_{33}(H) &= -s^{d'} - s^{f'} - s^{f'+1} + s^6 + s^7 + s^{d'+8} + s^{f'+3} + s^{f'+6}.
\end{aligned}$

Compare the h.r.p. in $Q_{33}(G)$ and the h.r.p. in $Q_{33}(H)$, we have d+8 = d'+8 or d+8 = f'+6.

Case 3.2.1 d + 8 = d' + 8. So d = d'. By Equation (3.1), f' = 6. Then we obtain $Q_{33}(G) \neq Q_{33}(H)$, a contradiction.

Case 3.2.2 d + 8 = f' + 6. So d + 2 = f'. By Equation (3.1), d' = 4. Then we obtain $Q_{33}(G) \neq Q_{33}(H)$, a contradiction.

Case C f' = 2. We obtain the following after simplification.

 $\begin{array}{l} Q_{34}(G) = -s^7 - s^d - s^e - s^{e+1} - s^f - s^{f+1} + s^{d+8} + s^{e+3} + s^{e+6} + s^{f+2} + s^{f+7}, \\ Q_{34}(H) = -s^3 - s^4 - s^{d'} - s^{e'} - s^{e'+1} + s^8 + s^{d'+8} + s^{e'+4} + s^{e'+5}. \end{array}$

Considering the l.r.p. in $Q_{34}(G)$ and the l.r.p. in $Q_{34}(H)$, we have d = 3 or e = 3 or f = 3.

Case 1 d = 3. We obtain the following after simplification.

 $\begin{array}{l} Q_{35}(G)=-s^7-s^e-s^{e+1}-s^f-s^{f+1}+s^{11}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7},\\ Q_{35}(H)=-s^4-s^{d'}-s^{e'}-s^{e'+1}+s^8+s^{d'+8}+s^{e'+4}+s^{e'+5}. \end{array}$

Since $e \ge 4$ and $f \ge 3$, by comparing the l.r.p. in $Q_{35}(G)$ and the l.r.p. in $Q_{35}(H)$, we have e = 4 or f = 4 or f = 3.

Case 1.1 e = 4. By simplifying $Q_{35}(G)$ and $Q_{35}(H)$, we obtain the following.

 $Q_{36}(G) = -s^5 - s^f - s^{f+1} + s^{10} + s^{11} + s^{f+2} + s^{f+7},$ $Q_{36}(H) = -s^{d'} - s^{e'} - s^{e'+1} + s^8 + s^{d'+8} + s^{e'+4} + s^{e'+5}.$

Since $e' \ge 6$, by considering the l.r.p. in $Q_{36}(G)$ and the l.r.p in $Q_{36}(H)$, we have d' = 5. After simplification, we obtain f = e' = 6. Therefore, $G \cong K_4(1,2,6,3,4,6)$ and $H \cong K_4(1,3,5,5,6,2)$. Hence, $K_4(1,2,6,3,4,6) \sim K_4(1,3,5,5,6,2)$.

Case 1.2 f = 4. By simplifying $Q_{35}(G)$ and $Q_{35}(H)$, we obtain the following.

 $Q_{37}(G) = -s^5 - s^7 - s^e - s^{e+1} + s^6 + 2s^{11} + s^{e+3} + s^{e+6},$ $Q_{37}(H) = -s^{d'} - s^{e'} - s^{e'+1} + s^8 + s^{d'+8} + s^{e'+4} + s^{e'+5}.$

Since $e' \geq 6$, by considering the l.r.p. in $Q_{37}(G)$ and the l.r.p, in $Q_{37}(H)$, we have d' = 5. After simplification, we obtain $2s^{11}$ is in $Q_{37}(G)$ but not in $Q_{37}(H)$, a contradiction.

Case 1.3 f = 3. By simplifying $Q_{35}(G)$ and $Q_{35}(H)$, we obtain the following.

Since $e' \ge 6$, by considering the l.r.p. in $Q_{38}(G)$ and the l.r.p. in $Q_{38}(H)$, we have d' = 3. After simplification, we obtain e = 5 and e' = 6. Therefore, $G \cong K_4(1, 2, 6, 3, 5, 3)$ and $H \cong K_4(1, 3, 5, 3, 6, 2)$. Hence, $G \cong H$.

Case 2 e = 3. We obtain the following after simplification. $Q_{39}(G) = -s^7 - s^d - s^f - s^{f+1} + s^6 + s^9 + s^{d+8} + s^{f+2} + s^{f+7},$ $Q_{39}(H) = -s^{d'} - s^{e'} - s^{e'+1} + s^8 + s^{d'+8} + s^{e'+4} + s^{e'+5}.$ Consider the h.r.p. in $Q_{39}(G)$ and the h.r.p. in $Q_{39}(H)$. We have d + 8 = d' + 8 or d + 8 = e' + 5 or f + 7 = d' + 8 or f + 7 = e' + 5.

Case 2.1 d + 8 = d' + 8. Then d = d'. By Equation (3.1), f = e'. We obtain $Q_{39}(G) \neq Q_{39}(H)$, a contradiction.

Case 2.2 d + 8 = e' + 5. Then d + 3 = e'. By Equation (3.1), f = d' + 2. We obtain $Q_{39}(G) \neq Q_{39}(H)$, a contradiction.

Case 2.3 f + 7 = d' + 8. Then f = d' + 1. By Equation (3.1), d + 2 = e'. We obtain $Q_{39}(G) \neq Q_{39}(H)$, a contradiction.

Case 2.4 f + 7 = e' + 5. Then f + 2 = e'. By Equation (3.1), d = d' + 1. We obtain the following after simplification.

 $\begin{aligned} Q_{40}(G) &= -s^7 - s^d - s^f - s^{f+1} + s^6 + s^9 + s^{d+8} + s^{f+2}, \\ Q_{40}(H) &= -s^{d-1} - s^{f+2} - s^{f+3} + s^8 + s^{d+7} + s^{f+6}. \end{aligned}$

Compare the h.r.p. in $Q_{40}(G)$ and the h.r.p. in $Q_{40}(H)$. We have d + 8 = f + 6 or d + 7 = f + 2.

If d+8 = f+6, then d+2 = f. We obtain $Q_{40}(G) \neq Q_{40}(H)$, a contradiction. If d+7 = f+2, then d+5 = f. We obtain $Q_{40}(G) \neq Q_{40}(H)$, a contradiction. **Case 3** f = 3. We obtain the following after simplification. $Q_{41}(G) = -s^7 - s^d - s^e - s^{e+1} + s^5 + s^{10} + s^{d+8} + s^{e+3} + s^{e+6},$ $Q_{41}(H) = -s^{d'} - s^{e'} - s^{e'+1} + s^8 + s^{d'+8} + s^{e'+4} + s^{e'+5}.$

Comparing the h.r.p. in $Q_{41}(G)$ and the h.r.p. in $Q_{41}(H)$, we have d + 8 = d' + 8 or d + 8 = e' + 5 or e + 6 = d' + 8 or e + 6 = e' + 5.

Case 3.1 d + 8 = d' + 8. Then d = d'. By Equation (3.1), e + 1 = e'. By simplifying $Q_{41}(G)$ and $Q_{41}(H)$, we obtain e = 5 and e' = 6. Therefore, $G \cong K_4(1, 2, 6, d, 5, 3)$ and $H \cong K_4(1, 3, 5, d, 6, 2)$. Thus, $G \cong H$.

Case 3.2 d + 8 = e' + 5. Then d + 3 = e'. By Equation (3.1), e = d' + 2. By simplifying $Q_{41}(G)$ and $Q_{41}(H)$, we obtain d = 5, e = 9, d' = 7 and e' = 8. Therefore, $G \cong K_4(1, 2, 6, 5, 9, 3)$ and $H \cong K_4(1, 3, 5, 7, 8, 2)$. Hence, $K_4(1, 2, 6, 5, 9, 3) \sim K_4(1, 3, 5, 7, 8, 2)$.

Case 3.3 e + 6 = d' + 8. Then e = d' + 2. By Equation (3.1), d + 3 = e'. After simplification, we obtain $K_4(1, 2, 6, 5, 9, 3) \sim K_4(1, 3, 5, 7, 8, 2)$.

Case 3.4 e + 6 = e' + 5. Then e + 1 = e'. By Equation (3.1), d = d'. After simplification, we obtain $G \cong H$.

At this point, from Subcases 1.1.4, 1.2.2, 1.2.3, 2.2 and 3.4 of Case A, Subcases 1.1.1, 2.1.2, and 2.1.3 of Case B and Subcases 1.1, 3.2 and 3.3 of Case C, we obtain the following solutions.

$$\begin{array}{rclcrcrc} K_4(1,2,6,3,4,6) &\sim & K_4(1,3,5,5,6,2), \\ K_4(1,2,6,3,4,10) &\sim & K_4(1,3,5,9,2,6), \\ K_4(1,2,6,4,5,8) &\sim & K_4(1,3,5,2,6,9), \\ K_4(1,2,6,4,7,5) &\sim & K_4(1,3,5,2,8,6), \\ K_4(1,2,6,5,3,8) &\sim & K_4(1,3,5,7,2,7), \\ K_4(1,2,6,5,9,3) &\sim & K_4(1,3,5,7,8,2), \\ K_4(1,2,6,f+2,4,f) &\sim & K_4(1,3,5,2,f,f+4) \end{array}$$

where $f \ge 4$. This completes the proof.

Lemma 3.2. If $K_4(1,2,6,d,e,f)$ and $K_4(1,2,6,d',e',f')$ are chromatically equivalent, then

$$\begin{array}{rcl} K_4(1,2,6,i,i+7,i+1) &\sim & K_4(1,2,6,i+2,i,i+6), \\ K_4(1,2,6,i,i+1,i+7) &\sim & K_4(1,2,6,i+6,i,i+2), \\ K_4(1,2,6,i,i+1,i+3) &\sim & K_4(1,2,6,i+2,i+2,i), \end{array}$$

where $i \geq 1$.

Proof. It follows directly from Lemma 2.2.

Lemma 3.3. $K_4(1, 2, 6, d, e, f)$ and $K_4(2, 2, 5, d', e', f')$ are not chromatically equivalent.

Proof. If H is of type of $K_4(2, 2, 5, d', e', f')$, then from Lemma 2.6, we know that H is chromatically unique. Since $G \sim H$, we have $G \cong H$. But it is obvious that G is not isomorphic to H. This is a contradiction.

It follows that

Lemma 3.4. $K_4(1, 2, 6, d, e, f,)$ and $K_4(1, 2, c', 2, e', 4)$ are not chromatically equivalent.

Lemma 3.5. $K_4(1,2,6,d,e,f)$ and $K_4(1,2,c',4,e',2)$ are not chromatically equivalent.

Lemma 3.6. $K_4(1, 2, 6, d, e, f)$ and $K_4(1, 3, c', 2, e', 3)$ are not chromatically equivalent.

Proof. Let G and H be two graphs such that $G \cong K_4(1, 2, 6, d, e, f)$ and $H \cong K_4(1, 3, c', 2, e', 3)$. Then

$$\begin{array}{lll} Q(G) & = & -(s+1)(s+s^2+s^6+s^d+s^e+s^f)+s^{d+1}+s^{f+2}+\\ & s^{e+6}+s^{e+3}+s^{d+8}+s^{f+7}+s^{d+e+f}.\\ Q(H) & = & -(s+1)(s+s^2+2s^3+s^{c'}+s^{e'})+s^3+s^6+\\ & s^{c'+4}+s^{c'+5}+s^{e'+4}+s^{e'+5}+s^{c'+e'}. \end{array}$$

From Q(G) = Q(H), we have

$$Q_{1}(G) = -s^{6} - s^{7} - s^{d} - s^{e} - s^{f} - s^{e+1} - s^{f+1} + s^{d+8} + s^{e+3} + s^{e+6} + s^{f+2} + s^{f+7}.$$

$$Q_{1}(H) = -s^{3} - 2s^{4} - s^{c'} - s^{c'+1} - s^{e'} - s^{e'+1} + s^{6} + s^{c'+4} + s^{c'+5} + s^{e'+4} + s^{e'+5}.$$

Consider the terms $-s^3$ and $-2s^4$ in $Q_1(H)$. Due to $Q_1(G) = Q_1(H)$, there are terms in $Q_1(G)$ which are equal to $-s^3$ and $-2s^4$, so 1 of d, e, f is equal to 3, and the other two is equal to 4. Thus we have d = 3, e = f = 4 or e = 3, d = f = 4 or f = 3, d = e = 4.

If d = 3, e = f = 4, simplifying $Q_1(G)$ and $Q_1(H)$, we obtain the following. $Q_2(G) = -2s^5 - s^6 + s^{10} + 2s^{11}$, $Q_2(H) = -s^{c'} - s^{c'+1} - s^{e'} - s^{e'+1} + s^{c'+4} + s^{c'+5} + s^{e'+4} + s^{e'+5}$.

Comparing the l.r.p in $Q_2(G)$ and the l.r.p in $Q_2(H)$, we obtain c' = e' = 5. It can be easily checked that $Q_2(G) \neq Q_2(H)$, a contradiction.

If e = 3, d = f = 4, since the girth of G and H is 9, which needs $f + e \ge 8$, we obtain a contradiction.

If f = 3, d = e = 4, since the girth of G and H is 9, which needs $f + e \ge 8$, we obtain a contradiction.

This completes the proof.

Similarly, we can prove the following result.

Lemma 3.7. $K_4(1, 2, 6, d, e, f)$ and $K_4(1, 2, c', 3, e', 3)$ are not chromatically equivalent.

Now, the chromaticity of $K_4(1, 2, 6, d, e, f)$ is given as follows.

Theorem 3.8. K_4 -homeomorphs $K_4(1, 2, 6, d, e, f)$ with girth 9 is not χ -unique if and only if it is isomorphic to $K_4(1, 2, 6, 6, 3, 4)$, $K_4(1, 2, 6, 9, 3, 5)$, $K_4(1, 2, 6, 5, 5, 5)$, $K_4(1, 2, 6, 4, 5, 8)$, $K_4(1, 2, 6, 3, 4, 10)$, $K_4(1, 2, 6, 5, 3, 8)$, $K_4(1, 2, 6, 4, s, 4)$, $K_4(1, 2, 6, f + 2, 4, f)$, $K_4(1, 2, 6, i, i + 7, i + 1)$, $K_4(1, 2, 6, i, i + 2, i, i + 6)$, $K_4(1, 2, 6, i, i + 1, i + 3)$ or $K_4(1, 2, 6, i + 2, i)$, where $i \ge 1$, $s \ge 4$, $f \ge 4$.

Proof. Let G and H be two graphs such that $G \cong K_4(1, 2, 6, d, e, f)$ and $G \sim H$. Since the girth of G is 9, at most one among d, e, f are 1. Moreover, by

Lemma 2.1(2)(3), it follows that H is a K_4 -homeomorph with girth 9. Then H must be one of the following 10 types.

Type 1: $K_4(1, 2, 6, d', e', f')$, where $d' + e' \ge 7, d' + f' \ge 6, e' + f' \ge 8$; Type 2: $K_4(1, 3, 5, d', e', f')$, where $d' + e' \ge 6, d' + f' \ge 5, e' + f' \ge 8$; Type 3: $K_4(1, 4, 4, d', e', f')$, where $d' + e' \ge 5, d' + f' \ge 5, e' + f' \ge 8$; Type 4: $K_4(2, 3, 4, d', e', f')$, where $d' + e' \ge 6, d' + f' \ge 5, e' + f' \ge 7$; Type 5: $K_4(2, 2, 5, d', e', f')$, where $d' + e' \ge 7, d' + f' \ge 5, e' + f' \ge 7$; Type 6: $K_4(1, 2, c', 2, e', 4)$, where $c' \ge 6, e' \ge 5$; Type 7: $K_4(1, 2, c', 3, e', 3)$, where $c' \ge 6, e' \ge 5$; Type 9: $K_4(1, 3, c', 2, e', 3)$, where $c' \ge 5, e' \ge 5$;

Type 10: $K_4(2, 2, c', 2, e', 3)$, where $c' \ge 5$, $e' \ge 5$.

If H has Type 1, then from Lemma 2.2, we know that the solutions of the equation P(G) = P(H) are

$$\begin{array}{rcl} K_4(1,2,6,i,i+7,i+1) &\sim & K_4(1,2,6,i+2,i,i+6), \\ K_4(1,2,6,i,i+1,i+7) &\sim & K_4(1,2,6,i+6,i,i+2), \\ K_4(1,2,6,i,i+1,i+3) &\sim & K_4(1,2,6,i+2,i+2,i), \end{array}$$

where $i \geq 1$.

If H has Type 2, then from Lemma 3.1, we know that the solutions of the equation P(G) = P(H) are

$K_4(1, 2, 6, 3, 4, 6)$	\sim	$K_4(1, 3, 5, 5, 6, 2),$
$K_4(1, 2, 6, 3, 4, 10)$	\sim	$K_4(1, 3, 5, 9, 2, 6),$
$K_4(1, 2, 6, 4, 5, 8)$	\sim	$K_4(1, 3, 5, 2, 6, 9),$
$K_4(1, 2, 6, 4, 7, 5)$	\sim	$K_4(1, 3, 5, 2, 8, 6),$
$K_4(1, 2, 6, 5, 3, 8)$	\sim	$K_4(1, 3, 5, 7, 2, 7),$

Karim, Hasni and Lau

$$K_4(1,2,6,5,9,3) \sim K_4(1,3,5,7,8,2),$$

 $K_4(1,2,6,f+2,4,f) \sim K_4(1,3,5,2,f,f+4),$

where $f \geq 4$.

If H has Type 3, then from Lemma 2.3, we know that the solution of the equation P(G) = P(H) is

$$K_4(1,2,6,4,4,4) \sim K_4(1,4,4,2,3,7).$$

If H has Type 4, then from Lemma 2.4, we know that the solutions of the equation P(G) = P(H) are

$$\begin{array}{rcl} K_4(1,2,6,4,s,4) &\sim & K_4(2,3,4,1,7,s), \\ K_4(1,2,6,6,3,4) &\sim & K_4(2,3,4,7,1,5), \\ K_4(1,2,6,6,4,4) &\sim & K_4(2,3,4,1,5,8), \\ K_4(1,2,6,9,3,5) &\sim & K_4(2,3,4,10,6,1), \\ K_4(1,2,6,5,5,5) &\sim & K_4(2,3,4,6,6,1), \end{array}$$

where $s \geq 4$.

If H has Types 5–9, then from Lemmas 3.3–3.7, we know that there is no solution of the equation P(G) = P(H), i.e., a contradiction.

If H has Type 10, then from Lemma 2.5, we know that H is chromatically unique. Since $G \sim H$, we have $G \cong H$. But it is obvious that G is not isomorphic to H. This is a contradiction.

This completes the proof of Theorem 3.8.

Acknowledgements

The authors would like to thank the referee for his/her valuable and constructive comments.

References

- S. Catada-Ghimire and R. Hasni, New result on chromaticity of K₄-homeomorphic graphs, Int. J. Comput. Math. 91 (2014), no. 5, 834–843.
- [2] S. Catada-Ghimire, R. Hasni and Y.H. Peng, Chromatically equivalent pairs of K₄-homeomorphic graphs, Acta Math. Appl. Sin. Engl. Ser. **2010** (2010) DOI: 10.1007/s10255-010-0034-x, 8 pages.
- [3] C.Y. Chao and L.C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15 (1983) 111–129.
- [4] X.E. Chen and K.Z. Ouyang, Chromatic classes of certain 2-connected (n,n+2)-graphs homeomorphs to K₄, Discrete Math. **172** (1997), no. 1-3, 17–29.
- [5] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing, Hackensack, NJ, 2005.
- [6] Z.Y. Guo and E.G. Whitehead Jr., Chromaticity of a family of K₄-homeomorphs, Discrete Math. 172 (1997), no. 1-3, 53–58.

- [7] R. Hasni, Chromatic equivalence of a family of K₄-homeomorphs with girth 9, Int. J. Pure Appl. Math. 85 (2013), no. 1, 33–43.
- [8] N.S.A. Karim, R. Hasni and G.C. Lau, Chromaticity of a family of K₄-homeomorphs with girth 9, AIP Conf. Proc. 1605 (2014) 563–567.
- [9] N.S.A. Karim, R. Hasni and G.C. Lau, Chromaticity of a family of K₄-homeomorphs with girth 9 II, Malays. J. Math. Sci. 9 (2015), no. 3, 367–396.
- [10] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990), no. 3, 259–285.
- [11] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, II, Discrete Math. 172 (1997), no. 1-3, 59–78.
- [12] W.M. Li, Almost every K₄-homeomorphs is chromatically unique, Ars Combin. 23 (1987) 13–35.
- [13] Y.L. Peng, Some new results on chromatic uniqueness of K₄-homeomorphs, Discrete Math. 228 (2004), no. 1-3, 177–183.
- [14] Y.L. Peng, Chromatic uniqueness of a family of K_4 -homeomorphs, *Discrete Math.* **308** (2008), no. 24, 6132–6140.
- [15] Y.L. Peng, A family of chromatically unique K₄-homeomorphs, Ars Combin. 105 (2012) 491–502.
- [16] Y.L. Peng and R.Y. Liu, Chromaticity of a family of K_4 -homeomorphs, *Discrete Math.* **258** (2002), no. 1-3, 161–177.
- [17] H.Z. Ren, On the chromaticity of K_4 homeomorphs, *Discrete Math.* **252** (2002), no. 1-3, 247–257.
- [18] W. Shi, On the Critical Group and Chromatic Uniqueness of a Graph, Master Thesis, University of Science and Technology of China, P.R. China, 2011.
- [19] W. Shi, Y.I. Pan and Y. Zhao, Chromatic uniqueness of K₄-homeomorphs with girth 8, J. Math. Res. Appl. **32** (2012), no. 3, 269–280.
- [20] E.G. Whitehead Jr. and L.C. Zhao, Chromatic uniqueness and equivalence of K_4 homeomorphs, J. Graph Theory 8 (1984), no. 3, 355–364.
- [21] S. Xu, A lemma in studying chromaticity, Ars Combin. 32 (1991) 315–318.
- [22] S. Xu, Chromaticity of a family of K₄-homeomorphs, *Discrete Math.* **117** (1993), no. 1-3, 293–297.

(Nor Suriya Abd Karim) Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.

E-mail address: yaya_kulaan@yahoo.com

(Roslan Hasni) School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

E-mail address: hroslan@umt.edu.my

(Gee Choon Lau) FACULTY OF COMPUTER AND MATHEMATICAL SCIENCES, UNIVERSITY TEKNOLOGI MARA (SEGAMAT CAMPUS), 85000 SEGAMAT, JOHOR, MALAYSIA.

E-mail address: geeclau@yahoo.com