Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 2, pp. 319-336

Title:
A new result on chromaticity Of K_{4}-homeomorphic graphs with girth 9
Author(s):
N.S.A. Karim, R. Hasni and G.C. Lau

Published by Iranian Mathematical Society
http://bims.ims.ir

A NEW RESULT ON CHROMATICITY OF K_{4}-HOMEOMORPHIC GRAPHS WITH GIRTH 9

N.S.A. KARIM, R. HASNI* AND G.C. LAU
(Communicated by Ebadollah S. Mahmoodian)

Abstract

For a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent if they share the same chromatic polynomial. A graph G is chromatically unique if any graph chromatically equivalent to G is isomorphic to G. A $K_{4^{-}}$ homeomorph is a subdivision of the complete graph K_{4}. In this paper, we determine a family of chromatically unique K_{4}-homeomorphs which have girth 9 and have exactly one path of length 1 , and give sufficient and necessary condition for the graphs in this family to be chromatically unique. Keywords: Chromatic polynomial, chromatically unique, K_{4}-homeomorphs. MSC(2010): 05C15.

1. Introduction

All graphs considered here are simple graphs. For such a graph G, let $P(G, \lambda)$ denote the chromatic polynomial of G. Two graphs G and H are chromatically equivalent (or simply χ-equivalent), denoted by $G \sim H$, if $P(G, l)=P(H, l)$. A graph G is chromatically unique (or simply χ-unique) if for any graph H such as $H \sim G$, we have $H \cong G$, i.e, H is isomorphic to G. The search for χ-unique graphs has been the subject of much interest in chromatic graph theory (see $[5,10,11]$).

A K_{4}-homeomorph is a subdivision of the complete graph K_{4}. Such a homeomorph is denoted by $K_{4}(a, b, c, d, e, f)$ where the six edges of K_{4} are replaced by the six paths of length a, b, c, d, e and f, respectively, as shown in Figure 1. So far, the chromaticity of K_{4}-homeomorphs with girth g, where $3 \leq g \leq 7$ has been studied by many authors (see [4,12-15]). Also the study of the chromaticity of K_{4}-homeomorphs with at least 2 paths of length 1 has been completed

[^0](see [6,12,16,20]). Recently, Shi et al. [19] studied the chromaticity of one family of K_{4}-homeomorphs with girth 8 , that is, $K_{4}(2,3,3, d, e, f)$. In [18], Shi solved completely the chromaticity of K_{4}-homeomorphs with girth 8. By Ren [17], the chromaticity of K_{4}-homeomorphs with exactly 3 paths of same length has been obtained. Recently, Catada-Ghimire and Hasni [1] investigated the chromaticity of K_{4}-homeomorphs with exactly 2 paths of length 2. Hence, to completely determine the chromaticity of K_{4}-homeomorph with girth 9 , there are only 6 more types to be solved, that is, $K_{4}(1,2,6, d, e, f), K_{4}(1,3,5, d, e, f)$, $K_{4}(1,4,4, d, e, f), K_{4}(2,3,4, d, e, f), K_{4}(1,2, c, 3, e, 3)$ and $K_{4}(1,3, c, 2, e, 3)$. The chromaticity of the graphs $K_{4}(2,3,4, d, e, f)$ and $K_{4}(1,4,4, d, e, f)$ were solved by Karim et al. [8,9]. In this paper, we investigate the chromaticity of another type $K_{4}(1,2,6, d, e, f)$.

In [5], the following problem was posed:
Problem A Study the chromaticity of K_{4}-homeomorphs with exactly one path of length 1 (Page 123).

The results in this paper give a partial solution to Problem A and leaving the general case undecided as well as to complete the study of the chromaticity of K_{4}-homeomorph with girth 9 .

Figure 1. $K_{4}(a, b, c, d, e, f)$

2. Preliminary results

In this section, we give some known results used in this paper.
Lemma 2.1. Assume that G and H are χ-equivalent. Then
(1) $|V(G)|=|V(H)|,|E(G)|=|E(H)|$ ([10]);
(2) G and H has the same girth and same number of cycles with length equal to their girth ([21]);
(3) If G is a K_{4}-homeomorph, then H must itself be a K_{4}-homeomorph ([3]);
(4) Let $G=K_{4}(a, b, c, d, e, f)$ and $H=K_{4}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Then
(i) $\min \{a, b, c, d, e, f\}=\min \left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ and the number of times that this minimum occurs in the list $\{a, b, c, d, e, f\}$ is equal to the number of times that this minimum occurs in the list $\left\{a^{\prime}, b^{\prime}\right.$, $\left.c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}([20])$;
(ii) if $\{a, b, c, d, e, f\}=\left\{a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}\right\}$ as multisets, then $H \cong G$ ([12]).
Lemma 2.2. (Catada-Ghimire et al. [2]) Let K_{4}-homeomorphs $K_{4}(1,2, c, d$, $e, f)$ and $K_{4}\left(1,2, c, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be non-isomorphic chromatically equivalent. Then

$$
\begin{aligned}
& K_{4}(1,2, c, i, i+c+1, i+1) \sim K_{4}(1,2, c, i+2, i, i+c), \\
& K_{4}(1,2, c, i, i+1, i+c+1) \sim K_{4}(1,2, c, i+c, i, i+2) \\
& K_{4}(1,2, c, i, i+1, i+3) \sim K_{4}(1,2, c, i+2, i+2, i)
\end{aligned}
$$

where $i \geq 1$.
Lemma 2.3. (Karim et al. [9]) Let K_{4}-homeomorphs $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(1,4,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent. Then

$$
K_{4}(1,2,6,4,4,4) \sim K_{4}(1,4,4,2,3,7)
$$

Lemma 2.4. (Hasni [7]) Let K_{4}-homeomorphs $K_{4}(1,2,6, d, e, f)$ and $K_{4}(2,3$, $\left.4, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent. Then

$$
\begin{aligned}
K_{4}(1,2,6,4, s, 4) & \sim K_{4}(2,3,4,1,7, s), \\
K_{4}(1,2,6,6,3,4) & \sim K_{4}(2,3,4,7,1,5) \\
K_{4}(1,2,6,6,4,4) & \sim K_{4}(2,3,4,1,5,8) \\
K_{4}(1,2,6,9,3,5) & \sim K_{4}(2,3,4,10,6,1) \\
K_{4}(1,2,6,5,5,5) & \sim K_{4}(2,3,4,6,6,1)
\end{aligned}
$$

where $s \geq 4$.
Lemma 2.5. (Ren [17]) Let $G=K_{4}(a, b, c, d, e, f)$, where exactly three of a, b, c, d, e, f are the same. Then G is not chromatically unique if and only if G is isomorphic to $K_{4}(s, s, s-2,1,2, s)$ or $K_{4}(s, s-2, s, 2 s-2,1, s)$ or $K_{4}(t, t, 1,2 t, t+2, t)$ or $K_{4}(t, t, 1,2 t, t-1, t)$ or $K_{4}(t, t+1, t, 2 t+1,1, t)$ or $K_{4}(1, t, 1, t+1,3,1)$ or $K_{4}(1,1, t, 2, t+2,1)$, where $s \geq 3, t \geq 2$.

Lemma 2.6. (Catada-Ghimire and Hasni [1]) A K_{4}-homeomorphic graph with exactly two paths of length two is χ-unique if and only if it is not isomorphic to $K_{4}(1,2,2,4,1,1)$ or $K_{4}(4,1,2,1,2,4)$ or $K_{4}(1, s+2,2,1,2, s)$ or $K_{4}(1,2,2, t+$ $2, t+2, t)$ or $K_{4}(1,2,2, t, t+1, t+3)$ or $K_{4}(3,2,2, r, 1,5)$ or $K_{4}(1, r, 2,4,2,4)$ or $K_{4}(3,2,2, r, 1, r+3)$ or $K_{4}(r+2,2,2,1,4, r)$ or $K_{4}(r+3,2,2, r, 1,3)$ or $K_{4}(4,2,2,1, r+2, r)$ or $K_{4}(3,4,2,4,2,6)$ or $K_{4}(3,4,2,4,2,8)$ or $K_{4}(3,4,2,8,2$, 4) or $K_{4}(7,2,2,3,4,5)$ or $K_{4}(5,2,2,3,4,7)$ or $K_{4}(8,2,2,3,4,6)$ or $K_{4}(5,2,2,9$ $, 3,4)$ or $K_{4}(5,2,2,5,3,4)$, where $r \geq 3, s \geq 3, t \geq 3$.

3. Main result

In this section, we present our main results. In the following, we only consider graphs of girth 9 with at most one path of length 1.

We now study the chromaticity of $K_{4}(1,2,6, d, e, f)$. First, we prove the following lemma.

Lemma 3.1. Let K_{4}-homeomorphs $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$ be chromatically equivalent. Then

$$
\begin{aligned}
& K_{4}(1,2,6,4,5,8) \sim K_{4}(1,3,5,2,6,9) \\
& K_{4}(1,2,6,4,7,5) \sim K_{4}(1,3,5,2,8,6) \\
& K_{4}(1,2,6,3,4,10) \sim K_{4}(1,3,5,9,2,6) \\
& K_{4}(1,2,6,3,4,6) \sim K_{4}(1,3,5,5,6,2) \\
& K_{4}(1,2,6,5,3,8) \sim K_{4}(1,3,5,7,2,7) \\
& K_{4}(1,2,6,5,9,3) \sim K_{4}(1,3,5,7,8,2) \\
& K_{4}(1,2,6, f+2,4, f) \sim K_{4}(1,3,5,2, f, f+4)
\end{aligned}
$$

where $f \geq 4$.
Proof. Let G and H be two graphs such that $G \cong K_{4}(1,2,6, d, e, f)$ and $H \cong$ $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$. Let

$$
\begin{aligned}
Q\left(K_{4}(a, b, c, d, e, f)\right)= & -(s+1)\left(s^{a}+s^{b}+s^{c}+s^{d}+s^{e}+s^{f}\right)+s^{a+d}+ \\
& s^{b+f}+s^{c+e}+s^{a+b+e}+s^{b+d+c}+s^{a+c+f}+s^{d+e+f}
\end{aligned}
$$

Let $s=1-\lambda$ and let x be the number of edges in G. From [20], we have the chromatic polynomial of K_{4}-homeomorphs $K_{4}(a, b, c, d, e, f)$ is as follows:

$$
\begin{aligned}
P\left(K_{4}(a, b, c, d, e, f)=\right. & (-1)^{x-1} \frac{s}{(s-1)^{2}}\left[\left(s^{2}+3 s+2\right)+\right. \\
& \left.\left.Q\left(K_{4}(a, b, c, d, e, f)\right)-s^{x-1}\right)\right]
\end{aligned}
$$

Hence $P(G)=P(H)$ if and only if $Q(G)=Q(H)$. We solve the equation $Q(G)=Q(H)$ to get all solutions. Let the lowest remaining power and the highest remaining power to be denoted by l.r.p. and h.r.p., respectively.

As $G \cong K_{4}(1,2,6, d, e, f)$ and $H \cong K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, we have

$$
\begin{aligned}
Q(G)= & -(s+1)\left(s+s^{2}+s^{6}+s^{d}+s^{e}+s^{f}\right)+s^{d+1}+s^{f+2}+ \\
& s^{e+6}+s^{e+3}+s^{d+8}+s^{f+7}+s^{d+e+f} \\
Q(H)= & -(s+1)\left(s+s^{3}+s^{5}+s^{d^{\prime}}+s^{e^{\prime}}+s^{f^{\prime}}\right)+s^{d^{\prime}+1}+s^{f^{\prime}+3}+ \\
& s^{e^{\prime}+5}+s^{e^{\prime}+4}+s^{d^{\prime}+8}+s^{f^{\prime}+6}+s^{d^{\prime}+e^{\prime}+f^{\prime}} .
\end{aligned}
$$

From Lemma 2.1 (1),

$$
\begin{equation*}
d+e+f=d^{\prime}+e^{\prime}+f^{\prime} \tag{3.1}
\end{equation*}
$$

$Q(G)=Q(H)$ yields

$$
\begin{aligned}
Q_{1}(G)= & -s^{2}-s^{7}-s^{d}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+ \\
& s^{d+8}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7} \\
Q_{1}(H)= & -s^{4}-s^{5}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+ \\
& s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6} .
\end{aligned}
$$

By considering the l.r.p in $Q_{1}(G)$ and the l.r.p in $Q_{1}(H)$, we have three cases to consider, that is, $d^{\prime}=2$ or $e^{\prime}=2$ or $f^{\prime}=2$. Note that we consider G with at most one path of length 1 , then the l.r.p in $Q_{1}(G)$ cannot occur when $d=1$ or $e=1$.

Case A $d^{\prime}=2$. By cancelling the equal terms in $Q_{1}(G)$ and $Q_{1}(H)$, we obtain the following.
$Q_{2}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{d+8}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7}$,
$Q_{2}(H)=-s^{4}-s^{5}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Considering the l.r.p in $Q_{2}(G)$ and the l.r.p in $Q_{2}(H)$, we have $d=4$ or $e=4$ or $f=4$ or $e=3$ or $f=3$.

Case $1 d=4$. Since G is of girth 9 and $d=4$, then $e \geq 3$ and $e+f \geq 8$, so $f \geq 5$. We obtain the following after simplification.
$Q_{3}(G)=-s^{7}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{12}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7}$,
$Q_{3}(H)=-s^{5}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Considering the l.r.p in $Q_{3}(G)$ and the l.r.p in $Q_{3}(H)$ and $f \geq 5$, we have $e=5$ or $f=5$ or $e=4$.

Case 1.1 $e=5$. We obtain the following after simplification.
$Q_{4}(G)=-s^{6}-s^{7}-s^{f}-s^{f+1}+s^{8}+s^{11}+s^{12}+s^{f+2}+s^{f+7}$,
$Q_{4}(H)=-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Considering the h.r.p in $Q_{4}(G)$ and the h.r.p in $Q_{4}(H)$, we have $e^{\prime}+5=12$ or $f^{\prime}+6=12$ or $f+7=e^{\prime}+5$ or $f+7=f^{\prime}+6$.

Case 1.1.1 $e^{\prime}+5=12$. So $e^{\prime}=7$. By Equation (3.1), $f=f^{\prime}$. We obtain the following after simplification.
$Q_{5}(G)=-s^{6}-s^{8}+s^{f+2}+s^{f+7}, Q_{5}(H)=-s^{8}+s^{10}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Thus, we obtain $Q_{5}(G) \neq Q_{5}(H)$, a contradiction.
Case 1.1.2 $f^{\prime}+6=12$. So $f^{\prime}=6$. By Equation (3.1), $f+1=e^{\prime}$. After simplifying, we obtain $Q_{5}(G) \neq Q_{5}(H)$, a contradiction.

Case 1.1.3 $f+7=e^{\prime}+5$. So $f+2=e^{\prime}$. By Equation (3.1), $f^{\prime}=5$. $Q_{5}(G) \neq Q_{5}(H)$, a contradiction.

Case 1.1.4 $f+7=f^{\prime}+6$. So $f+1=f^{\prime}$. By Equation (3.1), $e^{\prime}=6$. Simplifying $Q_{4}(G)$ and $Q_{4}(H)$, we obtain $f=8$. So $f^{\prime}=9$. Therefore, $G \cong K_{4}(1,2,6,4,5,8)$ and $H \cong K_{4}(1,3,5,2,6,9)$. Thus, $K_{4}(1,2,6,4,5,8) \sim$ $K_{4}(1,3,5,2,6,9)$.

Case $1.2 f=5$. We obtain the following after simplification.
$Q_{6}(G)=-s^{6}-s^{e}-s^{e+1}+2 s^{12}+s^{e+3}+s^{e+6}$,
$Q_{6}(H)=-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Consider the h.r.p in $Q_{6}(G)$ and the h.r.p in $Q_{6}(H)$. We have $e^{\prime}+5=12$ or $f^{\prime}+6=12$ or $e+6=e^{\prime}+5$ or $e+6=f^{\prime}+6$.

Case 1.2.1 $e^{\prime}+5=12$. So $e^{\prime}=7$. By Equation (3.1), $e=f^{\prime}$. We obtain $Q_{6}(G) \neq Q_{6}(H)$, a contradiction.

Case 1.2.2 $f^{\prime}+6=12$. So $f^{\prime}=6$. By Equation (3.1), $e+1=e^{\prime}$. Simplifying $Q_{6}(G)$ and $Q_{6}(H)$, we obtain
$Q_{7}(G)=-s^{e}+s^{12}+s^{e+3}, Q_{7}(H)=-s^{7}-s^{e+2}+s^{9}+s^{10}+s^{e+5}$.
Then $e=7$ and $e^{\prime}=8$. Therefore, $G \cong K_{4}(1,2,6,4,7,5)$ and $H \cong$ $K_{4}(1,3,5,2,8,6)$. Hence $K_{4}(1,2,6,4,7,5) \sim K_{4}(1,3,5,2,8,6)$.

Case 1.2.3 $e+6=e^{\prime}+5$. So $e+1=e^{\prime}$. By Equation (3.1), $f^{\prime}=6$. Similar to Case 1.2.2, we have $K_{4}(1,2,6,4,7,5) \sim K_{4}(1,3,5,2,8,6)$.

Case 1.2.4 $e+6=f^{\prime}+6$. So $e=f^{\prime}$. By Equation (3.1), $e^{\prime}=7$. We obtain $Q_{6}(G) \neq Q_{6}(H)$, a contradiction.

Case $1.3 e=4$. We obtain the following after simplification.
$Q_{8}(G)=-s^{4}-s^{f}-s^{f+1}+s^{12}+s^{f+2}+s^{f+7}$,
$Q_{8}(H)=-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Considering the h.r.p in $Q_{8}(G)$ and the h.r.p in $Q_{8}(H)$, we have $e^{\prime}+5=12$ or $f^{\prime}+6=12$ or $f+7=e^{\prime}+5$ or $f+7=f^{\prime}+6$.

Case 1.3.1 $e^{\prime}+5=12$. So $e^{\prime}=7$. By Equation (3.1), $f=f^{\prime}+1$. After simplifying, we have $Q_{8}(G) \neq Q_{8}(H)$, a contradiction.

Case 1.3.2 $f^{\prime}+6=12$. So $f^{\prime}=6$. By Equation (3.1), $f=e^{\prime}$. After simplifying, we have $Q_{8}(G) \neq Q_{8}(H)$, a contradiction.

Case 1.3.3 $f+7=e^{\prime}+5$. So $f+2=e^{\prime}$. By Equation (3.1), $f^{\prime}=4$. After simplifying, we have $Q_{8}(G) \neq Q_{8}(H)$, a contradiction.

Case 1.3.4 $f+7=f^{\prime}+6$. So $f+1=f^{\prime}$. By Equation (3.1), $e^{\prime}=5$. After simplifying, we have $Q_{8}(G) \neq Q_{8}(H)$, a contradiction.

Case $1.4 f=4$. We already know that $e \geq 3$. But if $e=3$, there is a cycle of girth 8 , a contradiction. Thus we assume $e \geq 4$. We obtain the following after simplification.
$Q_{9}(G)=-s^{4}-s^{7}-s^{e}-s^{e+1}+s^{6}+s^{11}+s^{12}+s^{e+3}+s^{e+6}$,
$Q_{9}(H)=-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Comparing the h.r.p in $Q_{9}(G)$ and the h.r.p in $Q_{9}(H)$, we have $e^{\prime}+5=12$ or $f^{\prime}+6=12$ or $e+6=e^{\prime}+5$ or $e+6=f^{\prime}+6$.

Case 1.4.1 $e^{\prime}+5=12$. So $e^{\prime}=7$. By Equation (3.1), $e=f^{\prime}+1$. After simplifying, we have $Q_{9}(G) \neq Q_{9}(H)$, a contradiction.

Case 1.4.2 $f^{\prime}+6=12$. So $f^{\prime}=6$. By Equation (3.1), $e=e^{\prime}$. After simplifying, we have $Q_{9}(G) \neq Q_{9}(H)$, a contradiction.

Case 1.4.3 $e+6=e^{\prime}+5$. So $e+1=e^{\prime}$. By Equation (3.1), $f^{\prime}=5$. After simplifying, we have $Q_{9}(G) \neq Q_{9}(H)$, a contradiction.

Case 1.4.4 $e+6=f^{\prime}+6$. So $e=f^{\prime}$. By Equation (3.1), $e^{\prime}=6$. After simplifying, we have $Q_{9}(G) \neq Q_{9}(H)$, a contradiction.

Case $2 e=4$. We obtain the following after simplification.
$Q_{10}(G)=-s^{d}-s^{f}-s^{f+1}+s^{d+8}+s^{f+2}+s^{f+7}$,
$Q_{10}(H)=-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Considering the h.r.p in $Q_{10}(G)$ and the h.r.p in $Q_{10}(H)$, we have $d+8=$ $e^{\prime}+5$ or $d+8=f^{\prime}+6$ or $f+7=e^{\prime}+5$ or $f+7=f^{\prime}+6$.

Case $2.1 d+8=e^{\prime}+5$. So $d+3=e^{\prime}$. By Equation (3.1), $f=f^{\prime}+1$. We obtain the following after simplification.
$Q_{11}(G)=-s^{d}-s^{f+1}+s^{f+7}, Q_{11}(H)=-s^{d+3}-s^{d+4}-s^{f-1}+s^{d+7}+s^{f+5}$.
We obtain $Q_{11}(G) \neq Q_{11}(H)$, a contradiction.
Case $2.2 d+8=f^{\prime}+6$. So $d+2=f^{\prime}$. By Equation (3.1), $f=e^{\prime}$. We obtain the following after simplification.
$Q_{12}(G)=-s^{d}+s^{f+2}+s^{f+7}, Q_{12}(H)=-s^{d+2}-s^{d+3}+s^{d+5}+s^{f+4}+s^{f+5}$.
Then we obtain $d=f+2$ and from $d+2=f^{\prime}$, we have $f^{\prime}=f+4$. Therefore, $G \cong K_{4}(1,2,6, f+2,4, f)$ and $H \cong K_{4}(1,3,5,2, f, f+4)$. Thus $K_{4}(1,2,6, f+2,4, f) \sim K_{4}(1,3,5,2, f, f+4)$.

Case $2.3 f+7=e^{\prime}+5$. So $f+2=e^{\prime}$. By Equation (3.1), $d=f^{\prime}$. We obtain the following after simplification.
$Q_{13}(G)=-s^{f}-s^{f+1}+s^{d+8}+s^{f+2}$,
$Q_{13}(H)=-s^{d+1}-s^{f+2}-s^{f+3}+s^{d+3}+s^{d+6}+s^{f+6}$.
Comparing the h.r.p in $Q_{13}(G)$ and the h.r.p in $Q_{13}(H)$, we have $d+6=f+2$ or $d+8=f+6$.

Case 2.3.1 $d+6=f+2$. So $d+4=f$. After simplification, we obtain $Q_{13}(G) \neq Q_{13}(H)$, a contradiction.

Case 2.3.2 $d+8=f+6$. So $d+2=f$. After simplification, we obtain $Q_{13}(G) \neq Q_{13}(H)$, a contradiction.

Case 2.4 $f+7=f^{\prime}+6$. So $f+1=f^{\prime}$. By Equation (3.1), $d+1=e^{\prime}$. After simplification, similar to above cases, we obtain a contradiction.

Case $3 f=4$. Note that $e \geq 4$ since G is of girth 9 and $d \geq 2$. We know that $e \geq 5$ when $d=2$. We obtain the following after simplification.
$Q_{14}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}+s^{6}+s^{11}+s^{d+8}+s^{e+3}+s^{e+6}$,
$Q_{14}(H)=-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Comparing the h.r.p in $Q_{14}(G)$ and the h.r.p in $Q_{14}(H)$, we have $e^{\prime}+5=11$ or $f^{\prime}+6=11$ or $d+8=e^{\prime}+5$ or $d+8=f^{\prime}+6$ or $e+6=e^{\prime}+5$ or $e+6=f^{\prime}+6$.

Case 3.1 $e^{\prime}+5=11$. So $e^{\prime}=6$. We obtain the following after simplification.
$Q_{15}(G)=-s^{d}-s^{e}-s^{e+1}+s^{6}+s^{d+8}+s^{e+3}+s^{e+6}$,
$Q_{15}(H)=-s^{6}-s^{f^{\prime}}-s^{f^{\prime}+1}+2 s^{10}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
The h.r.p in $Q_{15}(H)$ is 10 or $f^{\prime}+6$.
Case 3.1.1 $10 \geq f^{\prime}+6$. Considering the h.r.p in $Q_{15}(G)$, we have $d+8=10$ or $e+6=10$.

Case 3.1.1.1 $d+8=10$. So $d=2$. By Equation (3.1), $e=f^{\prime}+2$. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$, a contradiction.

Case 3.1.1.2 $e+6=10$. So $e=4$. By Equation (3.1), $d=f^{\prime}$. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$, a contradiction.

Case 3.1.2 $f^{\prime}+6>10$. Considering the h.r.p in $Q_{15}(G)$, we have $d+8=$ $f^{\prime}+6$ or $e+6=f^{\prime}+6$.

Case 3.1.2.1 $d+8=f^{\prime}+6$. So $d+2=f^{\prime}$. By Equation (3.1), $e=6$. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$.

Case 3.1.2.2 $e+6=f^{\prime}+6$. So $e=f^{\prime}$. By Equation (3.1), $d=4$. After simplification, we obtain $Q_{15}(G) \neq Q_{15}(H)$.

Case 3.2 $f^{\prime}+6=11$. So $f^{\prime}=5$. Note that $d \geq 3$. We obtain the following after simplification.
$Q_{16}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}+s^{6}+s^{d+8}+s^{e+3}+s^{e+6}$,
$Q_{16}(H)=-s^{5}-s^{6}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
By comparing the h.r.p in Q_{16} and the h.r.p in Q_{16}, we have $d+8=e^{\prime}+5$ or $e+6=10$ or $e+6=e^{\prime}+5$.

Case 3.2.1 $d+8=e^{\prime}+5$. So $d+3=e^{\prime}$. By Equation (3.1), $e=6$. We obtain the following after simplification.
$Q_{17}(G)=-2 s^{7}-s^{d}+s^{6}+s^{9}+s^{12}, Q_{17}(H)=-s^{5}-s^{d+3}-s^{d+4}+s^{8}+$ $s^{10}+s^{d+7}$.

Note that there exists the term $-2 s^{7}$ in $Q_{17}(G)$ but not in $Q_{17}(H)$, a contradiction.

Case 3.2.2 $e+6=10$. So $e=4$. By Equation (3.1), $d+1=e^{\prime}$. After simplifying, we have $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case 3.2.3 $e+6=e^{\prime}+5$. So $e+1=e^{\prime}$. By Equation (3.1), $d=4$. After simplifying, we have $Q_{16}(G) \neq Q_{16}(H)$, a contradiction.

Case $3.3 d+8=e^{\prime}+5$. So $d+3=e^{\prime}$. By Equation (3.1), $d+3=e^{\prime}$. After simplifying, we obtain a contradiction.

Case 3.4 $d+8=f^{\prime}+6$. So $d+2=f^{\prime}$. By Equation (3.1), $e^{\prime}=4$. After simplifying, we obtain $G \cong K_{4}(1,2,6,6,4,4)$ and $H \cong K_{4}(1,3,5,2,4,8)$. Hence $K_{4}(1,2,6,6,4,4) \sim K_{4}(1,3,5,2,4,8)$.

Case $3.5 e+6=e^{\prime}+5$. So $e+1=e^{\prime}$. By Equation (3.1), $d+1=f^{\prime}$. We obtain the following after simplification.
$Q_{18}(G)=-s^{7}-s^{d}-s^{e}+s^{6}+s^{11}+s^{d+8}+s^{e+3}$,
$Q_{18}(H)=-s^{e+2}-s^{d+1}-s^{d+2}+s^{10}+s^{d+4}+s^{d+7}+s^{e+5}$.
Considering the h.r.p in $Q_{18}(G)$ and the h.r.p in $Q_{18}(H)$, we have $e+5=11$ or $d+7=11$ or $d+8=e+5$ or $d+7=e+3$.

Case 3.5.1 $e+5=11$. So $e=6$. After simplification, we obtain $Q_{18}(G) \neq$ $Q_{18}(H)$ and hence a contradiction.

Case 3.5.2 $d+7=11$. So $d=4$. After simplification, we obtain $Q_{18}(G) \neq$ $Q_{18}(H)$, a contradiction.

Case 3.5.3 $d+8=e+5$. So $d+3=e$. After simplification, we obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 3.5.4 $d+7=e+3$. So $d+4=e$. After simplification, we obtain $Q_{18}(G) \neq Q_{18}(H)$, a contradiction.

Case 3.6 $e+6=f^{\prime}+6$. So $e=f^{\prime}$. By Equation (3.1), $d+2=e^{\prime}$. After simplifying, we obtain a contradiction.

Case $4 e=3$. Note that $d \geq 4$ and $f \geq 5$. We obtain the following after simplification.
$Q_{19}(G)=-s^{3}-s^{7}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{9}+s^{d+8}+s^{f+2}+s^{f+7}$,
$Q_{19}(H)=-s^{5}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{e^{\prime}+5}}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Note that $e^{\prime} \geq 4$ and $f^{\prime} \geq 3$ since girth of H is 9 . By comparing the l.r.p in $Q_{19}(G)$ and the l.r.p in $Q_{17}(H)$, we have $f^{\prime}=3$. We obtain the following after simplification.
$Q_{20}(G)=-s^{7}-s^{d}-s^{f}-s^{f+1}+s^{d+8}+s^{f+2}+s^{f+7}$,
$Q_{20}(H)=-s^{4}-s^{5}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{10}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
Since $f \geq 5$, the term s^{d} in $Q_{20}(G)$ is equal to the term s^{4} in $Q_{20}(H)$, that is, $d=4$. By Equation (3.1), $f+2=e^{\prime}$. After simplification, we obtain $Q_{20}(G) \neq Q_{20}(H)$, a contradiction.

Case $5 f=3$. We obtain the following after simplification.
$Q_{21}(G)=-s^{3}-s^{7}-s^{d}-s^{e}-s^{e+1}+s^{5}+s^{d+8}+s^{e+3}+s^{e+6}$,
$Q_{21}(H)=-s^{5}-s^{e^{\prime}}-s^{e^{\prime}+1}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Note that $e^{\prime} \geq 4$ since girth of H is 9 . By comparing the l.r.p in $Q_{21}(G)$ and the l.r.p in $Q_{21}(H)$, we have $f^{\prime}=3$. We obtain the following after simplification.
$Q_{22}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}+s^{5}+s^{d+8}+s^{e+3}+s^{e+6}$,
$Q_{22}(H)=-s^{4}-s^{5}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{6}+s^{9}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
Since $e \geq 5$, the term s^{d} in $Q_{22}(G)$ is equal to the term s^{4} in $Q_{22}(H)$, that is, $d=4$. By Equation (3.1), $e+2=e^{\prime}$. After simplification, we obtain $Q_{22}(G) \neq Q_{22}(H)$, a contradiction.

Case $\mathbf{B} e^{\prime}=2$. We obtain the following after simplification.
$Q_{23}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{d+8}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7}$,
$Q_{23}(H)=-s^{3}-s^{4}-s^{5}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{6}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Considering the l.r.p in $Q_{23}(G)$ and the l.r.p in $Q_{23}(H)$, we have $d=3$ or $e=3$ or $f=3$.

Case $1 d=3$. Note that $e \geq 4$ and $f \geq 3$. We obtain the following after simplification.
$Q_{24}(G)=-s^{7}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{11}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7}$,
$Q_{24}(H)=-s^{4}-s^{5}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{6}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Comparing the l.r.p in $Q_{24}(G)$ and the l.r.p in $Q_{24}(H)$, we have $e=4$ or $f=4$ or $f=3$.

Case 1.1 $e=4$. We obtain the following after simplification.
$Q_{25}(G)=-s^{7}-s^{f}-s^{f+1}+s^{10}+s^{11}+s^{f+2}+s^{f+7}$,
$Q_{25}(H)=-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{6}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Comparing the h.r.p in $Q_{25}(G)$ and the h.r.p in $Q_{25}(H)$, we have $f+7=d^{\prime}+8$ or $f+7=f^{\prime}+6$.

Case 1.1.1 $f+7=d^{\prime}+8$. So $f=d^{\prime}+1$. By Equation (3.1), $f^{\prime}=6$. After simplification, we have $f=10$ and $d^{\prime}=9$. Thus, $G \cong K_{4}(1,2,6,3,4,10)$ and $H \cong K_{4}(1,3,5,9,2,6)$. Hence $K_{4}(1,2,6,3,4,10) \sim K_{4}(1,3,5,9,2,6)$.

Case 1.1.2 $f+7=f^{\prime}+6$. So $f+1=f^{\prime}$. By Equation (3.1), $d^{\prime}=4$. After simplification, we obtain $Q_{25}(G) \neq Q_{25}(H)$, a contradiction.

Case $1.2 f=4$. We obtain the following after simplification.
$Q_{26}(G)=-s^{7}-s^{e}-s^{e+1}+2 s^{11}+s^{e+3}+s^{e+6}$,
$Q_{26}(H)=-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Note that the h.r.p. in $Q_{26}(G)$ is 11 or $e+6$.
Case 1.2.1 $11 \geq e+6$. Consider h.r.p. in $Q_{26}(H)$ is $d^{\prime}+8$ or $f^{\prime}+6$. Then, $d^{\prime}+8=11$ or $f^{\prime}+6=11$.

Case 1.2.1.1 $d^{\prime}+8=11$. So $d^{\prime}=3$. But, $d^{\prime} \geq 4$, a contradiction.
Case 1.2.1.2 $f^{\prime}+6=11$. So $f^{\prime}=5$. But $f^{\prime} \geq 6$, a contradiction.
Case 1.2.2 $11<e+6$. Consider the h.r.p. in $Q_{26}(H)$ is $d^{\prime}+8$ or $f^{\prime}+6$.
Case 1.2.2.1 $e+6=d^{\prime}+8$. So $e=d^{\prime}+2$. By Equation (3.1), $f^{\prime}=7$. After simplification, we obtain $2 s^{11}$ is in $Q_{26}(G)$ but not in $Q_{26}(H)$, a contradiction.

Case 1.2.2.2 $e+6=f^{\prime}+6$. So $e=f^{\prime}$. By Equation (3.1), $d^{\prime}=5$. After simplification, we obtain $Q_{26}(G) \neq Q_{26}(H)$, a contradiction.

Case $1.3 f=3$. We obtain the following after simplification.
$Q_{27}(G)=-s^{3}-s^{7}-s^{e}-s^{e+1}+s^{5}+s^{10}+s^{11}+s^{e+3}+s^{e+6}$,
$Q_{27}(H)=-s^{5}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{6}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Since $d^{\prime} \geq 4$ and $f^{\prime} \geq 6$, by comparing the l.r.p. in $Q_{27}(G)$ and the l.r.p. in $Q_{27}(H)$, we know that the term $-s^{3}$ is in $Q_{27}(G)$ but not in $Q_{27}(H)$, a contradiction.

Case $2 e=3$. Note that $d \geq 4$ and $f \geq 5$. We obtain the following after simplification.
$Q_{28}(G)=-s^{7}-s^{d}-s^{f}-s^{f+1}+s^{9}+s^{d+8}+s^{f+2}+s^{f+7}$,
$Q_{28}(H)=-s^{5}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Comparing the l.r.p. in $Q_{28}(G)$ and the l.r.p. in $Q_{28}(H)$, we have $d=5$ or $f=5$.

Case 2.1 $d=5$. We obtain the following after simplification.
$Q_{29}(G)=-s^{7}-s^{f}-s^{f+1}+s^{9}+s^{13}+s^{f+2}+s^{f+7}$,
$Q_{29}(H)=-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Consider the h.r.p. in $Q_{29}(G)$ and the h.r.p. in $Q_{29}(H)$. Then we have $d^{\prime}+8=13$ or $f^{\prime}+6=13$ or $f+7=d^{\prime}+8$ or $f+7=f^{\prime}+6$.

Case 2.1.1 $d^{\prime}+8=13$. Then $d^{\prime}=5$. By Equation (3.1), $f+1=f^{\prime}$. Simplifying $Q_{29}(G)$ and $Q_{29}(H)$, we obtain $f=5$ and $f^{\prime}=6$. Therefore, $G \cong K_{4}(1,2,6,5,3,5)$ and $H \cong K_{4}(1,3,5,5,2,6)$. Hence, $G \cong H$.

Case 2.1.2 $f^{\prime}+6=13$. Then $f^{\prime}=7$. By Equation (3.1), $f=d^{\prime}+1$. Simplifying $Q_{29}(G)$ and $Q_{29}(H)$, we obtain $f=8$ and $d^{\prime}=7$. Therefore, $G \cong K_{4}(1,2,6,5,3,8)$ and $H \cong K_{4}(1,3,5,7,2,7)$. Hence, $K_{4}(1,2,6,5,3,8) \sim$ $K_{4}(1,3,5,7,2,7)$.

Case 2.1.3 $f+7=d^{\prime}+8$. Then $f=d^{\prime}+1$. By Equation (3.1), $f^{\prime}=7$. After simplifying, we obtain $K_{4}(1,2,6,5,3,8) \sim K_{4}(1,3,5,7,2,7)$.

Case 2.1.4 $f+7=f^{\prime}+6$. Then $f+1=f^{\prime}$. By Equation (3.1), $d^{\prime}=5$. After simplifying, we obtain $G \cong H$.

Case 2.2 $f=5$. We obtain the following after simplification.
$Q_{30}(G)=-s^{6}-s^{7}-s^{d}+s^{9}+s^{12}+s^{d+8}$,
$Q_{30}(H)=-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Since $d^{\prime} \geq 4$ and $f^{\prime} \geq 6$, by comparing the l.r.p. in $Q_{30}(G)$ and the l.r.p. in $Q_{30}(H)$, we have $d^{\prime}=6$ or $f^{\prime}=6$.

Case 2.2.1 $d^{\prime}=6$. By Equation (3.1), $d=f^{\prime}$. Simplifying $Q_{30}(G)$ and $Q_{30}(H)$, we obtain $d=6$. Then $G \cong H$.

Case 2.2.2 $f^{\prime}=6$. By Equation (3.1), $d=d^{\prime}$. Simplifying $Q_{30}(G)$ and $Q_{30}(H)$, we obtain $G \cong H$.

Case $3 f=3$. Note that $d \geq 3$ and $e \geq 5$. We obtain the following after simplification.
$Q_{31}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}+s^{5}+s^{10}+s^{d+8}+s^{e+3}+s^{e+6}$,
$Q_{31}(H)=-s^{5}-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{6}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Considering the l.r.p. in $Q_{31}(G)$ and the l.r.p. in $Q_{31}(H)$, we have $d=5$ or $e=5$.

Case $3.1 d=5$. Cancelling the equal terms in $Q_{31}(G)$ and $Q_{31}(H)$, we obtain the following.
$Q_{32}(G)=-s^{7}-s^{e}-s^{e+1}+s^{5}+s^{10}+s^{13}+s^{e+3}+s^{e+6}$,
$Q_{32}(H)=-s^{d^{\prime}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{6}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}$.
Compare the h.r.p. in $Q_{32}(G)$ and the h.r.p. in $Q_{32}(H)$. We have $d^{\prime}+8=13$ or $f^{\prime}+6=13$ or $e+6=d^{\prime}+8$ or $e+6=f^{\prime}+6$.

Case 3.1.1 $d^{\prime}+8=13$. So $d^{\prime}=5$. By Equation (3.1), $e+1=f^{\prime}$. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case 3.1.2 $f^{\prime}+6=13$. So $f^{\prime}=7$. By Equation (3.1), $e=d^{\prime}+1$. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case 3.1.3 $e+6=d^{\prime}+8$. So $e=d^{\prime}+2$. By Equation (3.1), $f^{\prime}=8$. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case 3.1.4 $e+6=f^{\prime}+6$. So $e=f^{\prime}$. By Equation (3.1), $d^{\prime}=6$. Then we obtain $Q_{32}(G) \neq Q_{32}(H)$, a contradiction.

Case $3.2 e=5$. Cancelling the equal terms in $Q_{31}(G)$ and $Q_{31}(H)$, we obtain the following.

$$
\begin{aligned}
& Q_{33}(G)=-s^{6}-s^{7}-s^{d}+s^{5}+s^{8}+s^{10}+s^{11}+s^{d+8} \\
& Q_{33}(H)=-s^{d^{d^{\prime}}}-s^{f^{\prime}}-s^{f^{\prime}+1}+s^{6}+s^{7}+s^{d^{\prime}+8}+s^{f^{\prime}+3}+s^{f^{\prime}+6}
\end{aligned}
$$

Compare the h.r.p. in $Q_{33}(G)$ and the h.r.p. in $Q_{33}(H)$, we have $d+8=d^{\prime}+8$ or $d+8=f^{\prime}+6$.

Case 3.2.1 $d+8=d^{\prime}+8$. So $d=d^{\prime}$. By Equation (3.1), $f^{\prime}=6$. Then we obtain $Q_{33}(G) \neq Q_{33}(H)$, a contradiction.

Case 3.2.2 $d+8=f^{\prime}+6$. So $d+2=f^{\prime}$. By Equation (3.1), $d^{\prime}=4$. Then we obtain $Q_{33}(G) \neq Q_{33}(H)$, a contradiction.

Case $\mathbf{C} f^{\prime}=2$. We obtain the following after simplification.
$Q_{34}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{d+8}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7}$, $Q_{34}(H)=-s^{3}-s^{4}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
Considering the l.r.p. in $Q_{34}(G)$ and the l.r.p. in $Q_{34}(H)$, we have $d=3$ or $e=3$ or $f=3$.

Case $1 d=3$. We obtain the following after simplification.
$Q_{35}(G)=-s^{7}-s^{e}-s^{e+1}-s^{f}-s^{f+1}+s^{11}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7}$,
$Q_{35}(H)=-s^{4}-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
Since $e \geq 4$ and $f \geq 3$, by comparing the l.r.p. in $Q_{35}(G)$ and the l.r.p. in $Q_{35}(H)$, we have $e=4$ or $f=4$ or $f=3$.

Case $1.1 e=4$. By simplifying $Q_{35}(G)$ and $Q_{35}(H)$, we obtain the following.
$Q_{36}(G)=-s^{5}-s^{f}-s^{f+1}+s^{10}+s^{11}+s^{f+2}+s^{f+7}$,
$Q_{36}(H)=-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
Since $e^{\prime} \geq 6$, by considering the l.r.p. in $Q_{36}(G)$ and the l.r.p in $Q_{36}(H)$, we have $d^{\prime}=5$. After simplification, we obtain $f=e^{\prime}=6$. Therefore, $G \cong K_{4}(1,2,6,3,4,6)$ and $H \cong K_{4}(1,3,5,5,6,2)$. Hence, $K_{4}(1,2,6,3,4,6) \sim$ $K_{4}(1,3,5,5,6,2)$.

Case $1.2 f=4$. By simplifying $Q_{35}(G)$ and $Q_{35}(H)$, we obtain the following.
$Q_{37}(G)=-s^{5}-s^{7}-s^{e}-s^{e+1}+s^{6}+2 s^{11}+s^{e+3}+s^{e+6}$,
$Q_{37}(H)=-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{e^{\prime}+5}}$.
Since $e^{\prime} \geq 6$, by considering the l.r.p. in $Q_{37}(G)$ and the l.r.p, in $Q_{37}(H)$, we have $d^{\prime}=5$. After simplification, we obtain $2 s^{11}$ is in $Q_{37}(G)$ but not in $Q_{37}(H)$, a contradiction.

Case $1.3 f=3$. By simplifying $Q_{35}(G)$ and $Q_{35}(H)$, we obtain the following.
$Q_{38}(G)=-s^{3}-s^{7}-s^{e}-s^{e+1}+s^{5}+s^{10}+s^{11}+s^{e+3}+s^{e+6}$,
$Q_{38}(H)=-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
Since $e^{\prime} \geq 6$, by considering the l.r.p. in $Q_{38}(G)$ and the l.r.p. in $Q_{38}(H)$, we have $d^{\prime}=3$. After simplification, we obtain $e=5$ and $e^{\prime}=6$. Therefore, $G \cong K_{4}(1,2,6,3,5,3)$ and $H \cong K_{4}(1,3,5,3,6,2)$. Hence, $G \cong H$.

Case $2 e=3$. We obtain the following after simplification.
$Q_{39}(G)=-s^{7}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{9}+s^{d+8}+s^{f+2}+s^{f+7}$,
$Q_{39}(H)=-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.

Consider the h.r.p. in $Q_{39}(G)$ and the h.r.p. in $Q_{39}(H)$. We have $d+8=$ $d^{\prime}+8$ or $d+8=e^{\prime}+5$ or $f+7=d^{\prime}+8$ or $f+7=e^{\prime}+5$.

Case $2.1 d+8=d^{\prime}+8$. Then $d=d^{\prime}$. By Equation (3.1), $f=e^{\prime}$. We obtain $Q_{39}(G) \neq Q_{39}(H)$, a contradiction.

Case $2.2 d+8=e^{\prime}+5$. Then $d+3=e^{\prime}$. By Equation (3.1), $f=d^{\prime}+2$. We obtain $Q_{39}(G) \neq Q_{39}(H)$, a contradiction.

Case $2.3 f+7=d^{\prime}+8$. Then $f=d^{\prime}+1$. By Equation (3.1), $d+2=e^{\prime}$. We obtain $Q_{39}(G) \neq Q_{39}(H)$, a contradiction.

Case $2.4 f+7=e^{\prime}+5$. Then $f+2=e^{\prime}$. By Equation (3.1), $d=d^{\prime}+1$. We obtain the following after simplification.
$Q_{40}(G)=-s^{7}-s^{d}-s^{f}-s^{f+1}+s^{6}+s^{9}+s^{d+8}+s^{f+2}$,
$Q_{40}(H)=-s^{d-1}-s^{f+2}-s^{f+3}+s^{8}+s^{d+7}+s^{f+6}$.
Compare the h.r.p. in $Q_{40}(G)$ and the h.r.p. in $Q_{40}(H)$. We have $d+8=$ $f+6$ or $d+7=f+2$.

If $d+8=f+6$, then $d+2=f$. We obtain $Q_{40}(G) \neq Q_{40}(H)$, a contradiction.
If $d+7=f+2$, then $d+5=f$. We obtain $Q_{40}(G) \neq Q_{40}(H)$, a contradiction.
Case $3 f=3$. We obtain the following after simplification.
$Q_{41}(G)=-s^{7}-s^{d}-s^{e}-s^{e+1}+s^{5}+s^{10}+s^{d+8}+s^{e+3}+s^{e+6}$,
$Q_{41}(H)=-s^{d^{\prime}}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{8}+s^{d^{\prime}+8}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.
Comparing the h.r.p. in $Q_{41}(G)$ and the h.r.p. in $Q_{41}(H)$, we have $d+8=$ $d^{\prime}+8$ or $d+8=e^{\prime}+5$ or $e+6=d^{\prime}+8$ or $e+6=e^{\prime}+5$.

Case $3.1 d+8=d^{\prime}+8$. Then $d=d^{\prime}$. By Equation (3.1), $e+1=e^{\prime}$. By simplifying $Q_{41}(G)$ and $Q_{41}(H)$, we obtain $e=5$ and $e^{\prime}=6$. Therefore, $G \cong K_{4}(1,2,6, d, 5,3)$ and $H \cong K_{4}(1,3,5, d, 6,2)$. Thus, $G \cong H$.

Case $3.2 d+8=e^{\prime}+5$. Then $d+3=e^{\prime}$. By Equation (3.1), $e=d^{\prime}+2$. By simplifying $Q_{41}(G)$ and $Q_{41}(H)$, we obtain $d=5, e=9, d^{\prime}=7$ and $e^{\prime}=8$. Therefore, $G \cong K_{4}(1,2,6,5,9,3)$ and $H \cong K_{4}(1,3,5,7,8,2)$. Hence, $K_{4}(1,2,6,5,9,3) \sim K_{4}(1,3,5,7,8,2)$.

Case $3.3 e+6=d^{\prime}+8$. Then $e=d^{\prime}+2$. By Equation (3.1), $d+3=e^{\prime}$. After simplification, we obtain $K_{4}(1,2,6,5,9,3) \sim K_{4}(1,3,5,7,8,2)$.

Case $3.4 e+6=e^{\prime}+5$. Then $e+1=e^{\prime}$. By Equation (3.1), $d=d^{\prime}$. After simplification, we obtain $G \cong H$.

At this point, from Subcases 1.1.4, 1.2.2, 1.2.3, 2.2 and 3.4 of Case A, Subcases 1.1.1, 2.1.2, and 2.1.3 of Case B and Subcases 1.1, 3.2 and 3.3 of Case C, we obtain the following solutions.

$$
\begin{aligned}
K_{4}(1,2,6,3,4,6) & \sim K_{4}(1,3,5,5,6,2), \\
K_{4}(1,2,6,3,4,10) & \sim K_{4}(1,3,5,9,2,6), \\
K_{4}(1,2,6,4,5,8) & \sim K_{4}(1,3,5,2,6,9), \\
K_{4}(1,2,6,4,7,5) & \sim K_{4}(1,3,5,2,8,6), \\
K_{4}(1,2,6,5,3,8) & \sim K_{4}(1,3,5,7,2,7), \\
K_{4}(1,2,6,5,9,3) & \sim K_{4}(1,3,5,7,8,2), \\
K_{4}(1,2,6, f+2,4, f) & \sim K_{4}(1,3,5,2, f, f+4),
\end{aligned}
$$

where $f \geq 4$.
This completes the proof.

Lemma 3.2. If $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$ are chromatically equivalent, then

$$
\begin{aligned}
& K_{4}(1,2,6, i, i+7, i+1) \sim K_{4}(1,2,6, i+2, i, i+6), \\
& K_{4}(1,2,6, i, i+1, i+7) \sim K_{4}(1,2,6, i+6, i, i+2), \\
& K_{4}(1,2,6, i, i+1, i+3) \sim K_{4}(1,2,6, i+2, i+2, i),
\end{aligned}
$$

where $i \geq 1$.
Proof. It follows directly from Lemma 2.2.
Lemma 3.3. $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$ are not chromatically equivalent.

Proof. If H is of type of $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, then from Lemma 2.6, we know that H is chromatically unique. Since $G \sim H$, we have $G \cong H$. But it is obvious that G is not isomorphic to H. This is a contradiction.

It follows that
Lemma 3.4. $K_{4}(1,2,6, d, e, f$,$) and K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 4\right)$ are not chromatically equivalent.

Lemma 3.5. $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(1,2, c^{\prime}, 4, e^{\prime}, 2\right)$ are not chromatically equivalent.

Lemma 3.6. $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$ are not chromatically equivalent.

Proof. Let G and H be two graphs such that $G \cong K_{4}(1,2,6, d, e, f)$ and $H \cong$ $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$. Then

$$
\begin{aligned}
Q(G)= & -(s+1)\left(s+s^{2}+s^{6}+s^{d}+s^{e}+s^{f}\right)+s^{d+1}+s^{f+2}+ \\
& s^{e+6}+s^{e+3}+s^{d+8}+s^{f+7}+s^{d+e+f} \\
Q(H)= & -(s+1)\left(s+s^{2}+2 s^{3}+s^{c^{\prime}}+s^{e^{\prime}}\right)+s^{3}+s^{6}+ \\
& s^{c^{\prime}+4}+s^{c^{\prime}+5}+s^{e^{\prime}+4}+s^{e^{\prime}+5}+s^{c^{\prime}+e^{\prime}}
\end{aligned}
$$

From $Q(G)=Q(H)$, we have

$$
\begin{aligned}
Q_{1}(G)= & -s^{6}-s^{7}-s^{d}-s^{e}-s^{f}-s^{e+1}-s^{f+1}+ \\
& s^{d+8}+s^{e+3}+s^{e+6}+s^{f+2}+s^{f+7} \\
Q_{1}(H)= & -s^{3}-2 s^{4}-s^{c^{\prime}}-s^{c^{\prime}+1}-s^{e^{\prime}}-s^{e^{\prime}+1}+ \\
& s^{6}+s^{c^{\prime}+4}+s^{c^{\prime}+5}+s^{e^{\prime}+4}+s^{e^{\prime}+5}
\end{aligned}
$$

Consider the terms $-s^{3}$ and $-2 s^{4}$ in $Q_{1}(H)$. Due to $Q_{1}(G)=Q_{1}(H)$, there are terms in $Q_{1}(G)$ which are equal to $-s^{3}$ and $-2 s^{4}$, so 1 of d, e, f is equal to 3 , and the other two is equal to 4 . Thus we have $d=3, e=f=4$ or $e=3$, $d=f=4$ or $f=3, d=e=4$.

If $d=3$, $e=f=4$, simplifying $Q_{1}(G)$ and $Q_{1}(H)$, we obtain the following.
$Q_{2}(G)=-2 s^{5}-s^{6}+s^{10}+2 s^{11}, Q_{2}(H)=-s^{c^{\prime}}-s^{c^{\prime}+1}-s^{e^{\prime}}-s^{e^{\prime}+1}+s^{c /+4}+$ $s^{c^{\prime}+5}+s^{e^{\prime}+4}+s^{e^{\prime}+5}$.

Comparing the l.r.p in $Q_{2}(G)$ and the l.r.p in $Q_{2}(H)$, we obtain $c^{\prime}=e^{\prime}=5$. It can be easily checked that $Q_{2}(G) \neq Q_{2}(H)$, a contradiction.

If $e=3, d=f=4$, since the girth of G and H is 9 , which needs $f+e \geq 8$, we obtain a contradiction.

If $f=3, d=e=4$, since the girth of G and H is 9 , which needs $f+e \geq 8$, we obtain a contradiction.

This completes the proof.

Similarly, we can prove the following result.
Lemma 3.7. $K_{4}(1,2,6, d, e, f)$ and $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$ are not chromatically equivalent.

Now, the chromaticity of $K_{4}(1,2,6, d, e, f)$ is given as follows.
Theorem 3.8. K_{4}-homeomorphs $K_{4}(1,2,6, d, e, f)$ with girth 9 is not χ-unique if and only if it is isomorphic to $K_{4}(1,2,6,6,3,4), K_{4}(1,2,6,9,3,5), K_{4}(1,2,6$, $5,5,5), K_{4}(1,2,6,4,5,8), K_{4}(1,2,6,3,4,10), K_{4}(1,2,6,5,3,8), K_{4}(1,2,6,4, s$, 4), $K_{4}(1,2,6, f+2,4, f), K_{4}(1,2,6, i, i+7, i+1), K_{4}(1,2,6, i+2, i, i+6)$, $K_{4}(1,2,6, i, i+1, i+3)$ or $K_{4}(1,2,6, i+2, i+2, i)$, where $i \geq 1, s \geq 4, f \geq 4$.

Proof. Let G and H be two graphs such that $G \cong K_{4}(1,2,6, d, e, f)$ and $G \sim H$. Since the girth of G is 9 , at most one among d, e, f are 1 . Moreover, by

Lemma 2.1(2)(3), it follows that H is a K_{4}-homeomorph with girth 9. Then H must be one of the following 10 types.

Type 1: $K_{4}\left(1,2,6, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 7, d^{\prime}+f^{\prime} \geq 6, e^{\prime}+f^{\prime} \geq 8 ;$
Type 2: $K_{4}\left(1,3,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 8 ;$
Type 3: $K_{4}\left(1,4,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 5, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 8 ;$
Type 4: $K_{4}\left(2,3,4, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 6, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 7 ;$
Type 5: $K_{4}\left(2,2,5, d^{\prime}, e^{\prime}, f^{\prime}\right)$, where $d^{\prime}+e^{\prime} \geq 7, d^{\prime}+f^{\prime} \geq 5, e^{\prime}+f^{\prime} \geq 7 ;$
Type 6: $K_{4}\left(1,2, c^{\prime}, 2, e^{\prime}, 4\right)$, where $c^{\prime} \geq 6, e^{\prime} \geq 5$;
Type 7: $K_{4}\left(1,2, c^{\prime}, 4, e^{\prime}, 2\right)$, where $c^{\prime} \geq 6, e^{\prime} \geq 6 ;$
Type 8: $K_{4}\left(1,2, c^{\prime}, 3, e^{\prime}, 3\right)$, where $c^{\prime} \geq 6, e^{\prime} \geq 5$;
Type 9: $K_{4}\left(1,3, c^{\prime}, 2, e^{\prime}, 3\right)$, where $c^{\prime} \geq 5, e^{\prime} \geq 5$;
Type 10: $K_{4}\left(2,2, c^{\prime}, 2, e^{\prime}, 3\right)$, where $c^{\prime} \geq 5, e^{\prime} \geq 5$.
If H has Type 1, then from Lemma 2.2, we know that the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
& K_{4}(1,2,6, i, i+7, i+1) \sim K_{4}(1,2,6, i+2, i, i+6), \\
& K_{4}(1,2,6, i, i+1, i+7) \sim K_{4}(1,2,6, i+6, i, i+2), \\
& K_{4}(1,2,6, i, i+1, i+3) \sim K_{4}(1,2,6, i+2, i+2, i),
\end{aligned}
$$

where $i \geq 1$.
If H has Type 2, then from Lemma 3.1, we know that the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
K_{4}(1,2,6,3,4,6) & \sim K_{4}(1,3,5,5,6,2), \\
K_{4}(1,2,6,3,4,10) & \sim K_{4}(1,3,5,9,2,6), \\
K_{4}(1,2,6,4,5,8) & \sim K_{4}(1,3,5,2,6,9), \\
K_{4}(1,2,6,4,7,5) & \sim K_{4}(1,3,5,2,8,6), \\
K_{4}(1,2,6,5,3,8) & \sim K_{4}(1,3,5,7,2,7),
\end{aligned}
$$

$$
\begin{aligned}
K_{4}(1,2,6,5,9,3) & \sim K_{4}(1,3,5,7,8,2) \\
K_{4}(1,2,6, f+2,4, f) & \sim K_{4}(1,3,5,2, f, f+4),
\end{aligned}
$$

where $f \geq 4$.
If H has Type 3, then from Lemma 2.3, we know that the solution of the equation $P(G)=P(H)$ is

$$
K_{4}(1,2,6,4,4,4) \sim K_{4}(1,4,4,2,3,7)
$$

If H has Type 4, then from Lemma 2.4, we know that the solutions of the equation $P(G)=P(H)$ are

$$
\begin{aligned}
K_{4}(1,2,6,4, s, 4) & \sim K_{4}(2,3,4,1,7, s) \\
K_{4}(1,2,6,6,3,4) & \sim K_{4}(2,3,4,7,1,5) \\
K_{4}(1,2,6,6,4,4) & \sim K_{4}(2,3,4,1,5,8) \\
K_{4}(1,2,6,9,3,5) & \sim K_{4}(2,3,4,10,6,1) \\
K_{4}(1,2,6,5,5,5) & \sim K_{4}(2,3,4,6,6,1)
\end{aligned}
$$

where $s \geq 4$.
If H has Types $5-9$, then from Lemmas 3.3-3.7, we know that there is no solution of the equation $P(G)=P(H)$, i.e., a contradiction.

If H has Type 10, then from Lemma 2.5, we know that H is chromatically unique. Since $G \sim H$, we have $G \cong H$. But it is obvious that G is not isomorphic to H. This is a contradiction.

This completes the proof of Theorem 3.8.

Acknowledgements

The authors would like to thank the referee for his/her valuable and constructive comments.

References

[1] S. Catada-Ghimire and R. Hasni, New result on chromaticity of K_{4}-homeomorphic graphs, Int. J. Comput. Math. 91 (2014), no. 5, 834-843.
[2] S. Catada-Ghimire, R. Hasni and Y.H. Peng, Chromatically equivalent pairs of K_{4}-homeomorphic graphs, Acta Math. Appl. Sin. Engl. Ser. 2010 (2010) DOI: 10.1007/s10255-010-0034-x, 8 pages.
[3] C.Y. Chao and L.C. Zhao, Chromatic polynomials of a family of graphs, Ars Combin. 15 (1983) 111-129.
[4] X.E. Chen and K.Z. Ouyang, Chromatic classes of certain 2-connected (n,n+2)-graphs homeomorphs to K_{4}, Discrete Math. 172 (1997), no. 1-3, 17-29.
[5] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing, Hackensack, NJ, 2005.
[6] Z.Y. Guo and E.G. Whitehead Jr., Chromaticity of a family of K_{4}-homeomorphs, Discrete Math. 172 (1997), no. 1-3, 53-58.
[7] R. Hasni, Chromatic equivalence of a family of K_{4}-homeomorphs with girth 9, Int. J. Pure Appl. Math. 85 (2013), no. 1, 33-43.
[8] N.S.A. Karim, R. Hasni and G.C. Lau, Chromaticity of a family of K_{4}-homeomorphs with girth 9, AIP Conf. Proc. 1605 (2014) 563-567.
[9] N.S.A. Karim, R. Hasni and G.C. Lau, Chromaticity of a family of K_{4}-homeomorphs with girth 9 II, Malays. J. Math. Sci. 9 (2015), no. 3, 367-396.
[10] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990), no. 3, 259-285.
[11] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, II, Discrete Math. 172 (1997), no. 1-3, 59-78.
[12] W.M. Li, Almost every K_{4}-homeomorphs is chromatically unique, Ars Combin. 23 (1987) 13-35.
[13] Y.L. Peng, Some new results on chromatic uniqueness of K_{4}-homeomorphs, Discrete Math. 228 (2004), no. 1-3, 177-183.
[14] Y.L. Peng, Chromatic uniqueness of a family of K_{4}-homeomorphs, Discrete Math. 308 (2008), no. 24, 6132-6140.
[15] Y.L. Peng, A family of chromatically unique K_{4}-homeomorphs, Ars Combin. 105 (2012) 491-502.
[16] Y.L. Peng and R.Y. Liu, Chromaticity of a family of K_{4}-homeomorphs, Discrete Math. 258 (2002), no. 1-3, 161-177.
[17] H.Z. Ren, On the chromaticity of K_{4} homeomorphs, Discrete Math. 252 (2002), no. 1-3, 247-257.
[18] W. Shi, On the Critical Group and Chromatic Uniqueness of a Graph, Master Thesis, University of Science and Technology of China, P.R. China, 2011.
[19] W. Shi, Y.I. Pan and Y. Zhao, Chromatic uniqueness of K_{4}-homeomorphs with girth 8, J. Math. Res. Appl. 32 (2012), no. 3, 269-280.
[20] E.G. Whitehead Jr. and L.C. Zhao, Chromatic uniqueness and equivalence of K_{4} homeomorphs, J. Graph Theory 8 (1984), no. 3, 355-364.
[21] S. Xu, A lemma in studying chromaticity, Ars Combin. 32 (1991) 315-318.
[22] S. Xu, Chromaticity of a family of K_{4}-homeomorphs, Discrete Math. 117 (1993), no. 1-3, 293-297.
(Nor Suriya Abd Karim) Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia.

E-mail address: yaya_kulaan@yahoo.com
(Roslan Hasni) School of Informatics and Applied Mathematics, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

E-mail address: hroslan@umt.edu.my
(Gee Choon Lau) Faculty of Computer and Mathematical Sciences, University Teknologi MARA (Segamat Campus), 85000 Segamat, Johor, Malaysia.

E-mail address: geeclau@yahoo.com

[^0]: Article electronically published on 30 April, 2017.
 Received: 24 March 2015, Accepted: 17 November 2015.

 * Corresponding author.

