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Abstract. In this paper, we consider the multipoint boundary value

problem for one-dimensional p-Laplacian dynamic equation on time scales.
We prove the existence at least three positive solutions of the boundary
value problem by using the Avery and Peterson fixed point theorem. The
interesting point is that the non-linear term f involves a first-order de-

rivative explicitly. Our results are new for the special cases of difference
equations and differential equations as well as in the general time scale
setting.
Keywords: Time scales, boundary value problem, p-Laplacian, positive

solutions, fixed point theorem
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1. Introduction

The theory of dynamic equation on time scales was initiated by Stefan Hilger
in his Ph.D. thesis in 1988 [13] as a means of unifying structure for the study
of differential equations in the continuous case and study of finite difference
equations in the discrete case. In recent years, it has found a considerable
amount of interest and attracted the attention of many researchers. It is still
a new area, and research in this area is rapidly growing. The study of time
scales has led to several important applications, e.g., in the study of insect
population models, heat transfer, neural networks, phytoremediation of metals,
wound healing, and epidemic models [5, 14,19,21].

In this paper, we study the existence of at least three positive solutions to
the following p-Laplacian multipoint boundary value problem (BVP) on time
scales

(1.1) (φp(u
∆(t)))∇ + q(t)f(t, u(t), u∆(t)) = 0, t ∈ [0, T ]T,
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(1.2) u(0) =
m−2∑
i=1

αiu(ξi), φp(u
∆(T )) =

m−2∑
i=1

βiφp(u
∆(ξi)),

where φp(u) is the p-Laplacian operator, i.e., φp(u) = |u|p−2u, for p > 1, with
(φp)

−1 = φq and 1
p + 1

q = 1. The usual notation and terminology for time

scales as can be found in [4, 5], will be used here. Throughout the paper, we
will suppose that the following conditions are satisfied:
(H1) f : [0, T ]T×R+×R → R+ is continuous, and does not vanish identically

on any closed subinterval of [0, T ]T, where R+ denotes the nonnegative
real numbers;

(H2) q : T → R+ is left dense continuous (i.e., q ∈ Cld(T,R+)), and does not
vanish identically on any closed subinterval of [0, T ]T, where Cld(T,R+)
denotes the set of all left dense continuous functionals from T to R+;

(H3) If ξm−2 > 0, let ξm−2 ≤ η, and if ξm−2 = 0, let η ≥ min

{
t ∈ T : t ≥

T

2

}
, and there exists r ∈ T such that η < r < T holds.

Recently, there has been much current attention focused on the study of
multipoint positive solutions of BVPs on time scales. When the nonlinear term
f does not depend on the first order derivative, many researchers have studied
multipoint boundary conditions on time scales; see [1, 3, 7–9, 11, 12, 15–18, 22].
However, there are few papers dealing with the existence of triple positive
solutions for boundary value problems on time scales, when the nonlinear term
f is involved in the first-order derivative explicitly; see [6, 20].

All the above works about positive solutions were done under the assumption
that f is allowed to depend just on u, while the first order derivative u∆ is not
involved explicitly in the nonlinear term f.

Motivated by all the above works, our main results will depend on an appli-
cation of the Avery and Peterson fixed point theorem. Here, the emphasis is
that the nonlinear term is involved explicitly with the first order derivative. As
we know, when the nonlinear term f is involved in the first-order derivative,
difficulties arise immediately. In this work, we use a fixed point theorem due to
Avery and Peterson to overcome the difficulties. We shall prove that the BVP
(1.1) and (1.2) has at least three positive solutions.

2. Preliminaries

In this section, we provide some background material from the theory of
cones in Banach spaces [10].

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex
set P ⊂ E is a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 imply λx ∈ P ;
(ii) x ∈ P, −x ∈ P imply x = 0.
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Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if
y − x ∈ P.

Let γ and θ be nonnegative continuous convex functionals on P, α be a
nonnegative continuous concave functional on P, and ψ be a nonnegative con-
tinuous functional on P. Then for positive real numbers a, b, c and d, we define
the following sets:

P (γ, d) = {x ∈ P : γ(x) < d},
P (γ, α, b, d) = {x ∈ P : b ≤ α(x), γ(x) ≤ d},

P (γ, θ, a, b, c, d) = {x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},
R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ(x) ≤ d}.

To prove our results, we need the following fixed point theorem due to Avery
and Peterson [2].

Theorem 2.2 ([2]). Let P be a cone in a real Banach space E. Let γ and θ be
nonnegative continuous convex functionals on P, α be a nonnegative continuous
concave functional on P, and ψ be a nonnegative continuous functional on P
satisfying ψ(λu) ≤ λψ(u) for 0 ≤ λ ≤ 1 such that for some positive numbers h
and d,

α(u) ≤ ψ(u) and ∥u∥ ≤ hγ(u)

for all u ∈ P (γ, d). Suppose F : P (γ, d) → P (γ, d) is completely continuous
and there exist positive numbers a, b and c with a < b such that

(S1) {u ∈ P (γ, θ, α, b, c, d) : α(u) > b} ̸= ∅, and α(Fu) > b for u ∈
P (γ, θ, α, b, c, d);

(S2) α(Fu) > b, for u ∈ P (γ, α, b, d), with θ(Fu) > c;
(S3) 0 /∈ R(γ, ψ, a, d) and ψ(Fu) < a for u ∈ R(γ, ψ, a, d), with ψ(u) = a.

Then F has at least three fixed points u1, u2, u3 ∈ P (γ, d) such that

γ(ui) ≤ d for i = 1, 2, 3, b < α(u1), a < ψ(u2), with α(u2) < b, ψ(u3) < a.

Let the Banach space E = C1
ld([0, σ(T )]T → R) with the norm

∥u∥ = max

{
sup

t∈[0,σ(T )]T

|u(t)|, sup
t∈[0,T ]T

|u∆(t)|
}
,

and define the cone P ⊂ E by

P =
{
u ∈ E : u(t) ≥ 0, for t ∈ [0, σ(T )]T and u∆∇(t) ≤ 0, u∆(t) ≥ 0, for t ∈ [0, T ]T

}
.
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We note that u(t) is a solution of (1.1) and (1.2), if and only if

u(t) =

∫ t

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s.

Define a completely continuous operator F : P → E by

(Fu)(t) =

∫ t

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s.

Lemma 2.3. The operator F : P → P is completely continuous.

Proof. Firstly, we prove that F maps P into P. From (H1) and (H2), it is
obvious that (Fu)(t) ≥ 0 for t ∈ [0, T ]T ⊂ [0, σ(T )]T and

(Fu)∆(t) = φq

(∫ T

t

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
≥ 0

is continuous and nonincreasing in [0, T ]T∫ T

t

q(τ)f(τ, u, u∆)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

∇

= −q(t)f(t, u, u∆) ≤ 0, t ∈ [0, T ]T.
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In addition, φq(u) is a monotone increasing continuously differentiable func-
tion for u > 0.

Secondly, we prove that F maps a bounded set into a bounded set. Assume
that c > 0 is a constant and

u ∈ Pc =

{
u ∈ P : ∥u∥ = max

{
sup

t∈[0,σ(T )]T

|u(t)|, sup
t∈[0,T ]T

|u∆(t)|
}

≤ c

}
.

By the continuity of f, there exists a constant C > 0 such that f(t, u, u∆) ≤
φp(C) for (t, u, u

∆) ∈ [0, T ]T × [0, c]× [0, c]. So t ∈ [0, T ]T,
(2.1)∣∣∣∣∣φq

∫ T

t

q(τ)f(τ, u, u∆)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

∣∣∣∣∣ < +∞

and∣∣∣∣∣
∫ t

0

φq

∫ T

s

q(τ)f(τ, u, u∆)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

(2.2) +

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

∣∣∣∣∣ < +∞.

Consequently, F maps a bounded set into a bounded set.
Thirdly, if t1, t2 ∈ [0, T ]T and t1 < t2, then we have∣∣∣(Fu)(t1)− (Fu)(t2)

∣∣∣
=

∣∣∣∣∣
∫ t2

t1

φq

∫ T

s

q(τ)f(τ, u, u∆)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

∆s

∣∣∣∣∣
≤ C

∣∣∣∣∣
∫ t2

t1

φq

∫ T

s

q(τ)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)∇τ

1−
∑m−2

i=1 βi

∆s

∣∣∣∣∣
≤ C

∣∣t1 − t2
∣∣φq

(∫ T

0

q(τ)∇τ +
∑m−2

i=1 βi
∫ T

0
q(τ)∇τ

1−
∑m−2

i=1 βi

)

= C
∣∣t1 − t2

∣∣φq

( ∫ T

0
q(τ)∇τ

1−
∑m−2

i=1 βi

)
→ 0 as t1 → t2.

By applying the Arzela-Ascoli theorem on time scales, we see that FPc is
relatively compact.
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We next claim F : Pc → P is continuous. Assume that {un}∞n=1 ⊂ Pc and
lim

n→∞
∥un − u0∥ → 0. This means that lim

n→∞
|un − u0| → 0 and lim

n→∞
|u∆n −

u∆0 | → 0. Since {(Fun)(t)}∞n=1 is uniformly bounded on [0, T ]T, there exists a
uniformly convergent subsequence in {(Fun)(t)}∞n=1. Let {(Fun(m))(t)}∞m=1 be
a subsequence which converges to v(t) uniformly on [0, T ]T. Examine that

(Fun)(t) =

∫ t

0

φq

(∫ T

s

q(τ)f(τ, un, u
∆
n )∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, un, u

∆
n )∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, un, u
∆
n )∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, un, u

∆
n )∇τ

1−
∑m−2

i=1 βi

)
∆s.

By using (2.1) and (2.2), inserting un(m) into the above and then letting m→
∞, we find

v(t) =

∫ t

0

φq

(∫ T

s

q(τ)f(τ, u0, u
∆
0 )∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u0, u

∆
0 )∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, u0, u
∆
0 )∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u0, u

∆
0 )∇τ

1−
∑m−2

i=1 βi

)
∆s,

where we have used Lebesque’s dominated convergence theorem on time scales.
From the definition of F, we know that v(t) = Fu0(t) on [0, T ]T. This shows
that each subsequence of {(Fun)(t)}∞n=1 uniformly converges to (Fu0)(t). So
the sequence {(Fun)(t)}∞n=1 uniformly converges to (Fu0)(t). This means that
F is continuous at u0 ∈ Pc. Therefore F is continuous on Pc, since u0 is
arbitrary. Thus F is completely continuous. The proof is complete. □

3. Existence results

We define the nonnegative continuous convex functionals γ and θ, nonneg-
ative continuous concave functional α, and nonnegative continuous functional
ψ, respectively on P by
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γ(u) = sup
t∈[0,T ]T

u∆(t) = u∆(0), θ(u) = sup
t∈[r,T ]T

u∆(t) = u∆(r),

α(u) = inf
t∈[η,T ]T

u(t) = u(η), ψ(u) = inf
t∈[η,T ]T

u(t) = u(η).

Now for convenince we introduce the following notations:

m = φq

( ∫ T

0
q(τ)∇τ

1−
∑m−2

i=1 βi

)
,

M =

( ∑m−2
i=1 αi

1−
∑m−2

i=1 αi

T + η

)
φq

 ∫ T

η
q(τ)∇τ

1−
∑m−2

i=1 βi

 ,

λ =

( ∑m−2
i=1 αi

1−
∑m−2

i=1 αi

T + η

)
φq

( ∫ T

0
q(τ)∇τ

1−
∑m−2

i=1 βi

)
.

Theorem 3.1. Let 0 < a < b <
ηM

Tm
d, Mη > m, and suppose that f satisfies

the following conditions:

(A1) f(t, u, u∆) ≤ φp

( d
m

)
for (t, u, u∆) ∈ [0, T ]T × [0, d]× [−d, d];

(A2) f(t, u, u∆) > φp

( b

M

)
for (t, u, u∆) ∈ [η, T ]T × [b, d]× [−d, d];

(A3) f(t, u, u∆) < φp

(a
λ

)
for (t, u, u∆) ∈ [0, T ]T × [0, a]× [−d, d].

Then the BVP (1.1) and (1.2) has at least three positive solutions u1, u2 and u3,
such that
(3.1)
∥ui∥ ≤ d for i = 1, 2, 3, b < u1(η), a < u2(η) and u2(η) < b with u3(η) < a.

Proof. The BVP (1.1) and (1.2) has a solution u = u(t) if and only if u solves
the operator equation u = Fu. Thus we set out to verify that the operator F
satisfies Avery and Peterson’s fixed point theorem which will prove the existence
of three fixed points of F which satisfy the conclusion of the theorem.

Firstly, we will show that F maps P (γ, d) into P (γ, d). For any u ∈ P (γ, d),
we have γ(u) = sup

t∈[0,T ]T

u∆(t) ≤ d. Assumption (A1) implies
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f(t, u, u∆) ≤ φp

( d
m

)
; then

γ(Fu) = sup
t∈[0,T ]T

(Fu)∆(t) = (Fu)∆(0)

= φq

∫ T

0

q(τ)f(τ, u, u∆)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi


≤ d

m
φq

∫ T

0

q(τ)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)∇τ

1−
∑m−2

i=1 βi


≤ d

m
φq

(∫ T

0

q(τ)∇τ +
∑m−2

i=1 βi
∫ T

0
q(τ)∇τ

1−
∑m−2

i=1 βi

)

=
d

m
φq

( ∫ T

0
q(τ)∇τ

1−
∑m−2

i=1 βi

)
= d.

Secondly, we show that condition (S1) in Theorem 2.2 holds. Let u =
Mb

m
t − Mb

m
η + 2b. It is easy to see that α(u) = 2b > b. θ(u) =

Mb

m
≤ Mb

m

and γ(u) =
Mb

m
< d. Thus

{
u ∈ P (γ, θ, α, b,

Mb

m
, d) : α(u) > b

}
̸= ∅. For any

u ∈ P (γ, θ, α, b, Mb
m , d), by condition (A2) of this theorem, one has f(t, u, u∆) >

φp

( b

M

)
for t ∈ [η, T ]T, and

α(Fu) = inf
t∈[η,T ]T

(Fu)(t) = Fu(η)

=

∫ η

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s
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>

( ∑m−2
i=1 αi

1−
∑m−2

i=1 αi

T + η

)
φq

(∫ T

η

q(τ)φp

( b

M

)
∇τ

+

∑m−2
i=1 βi

∫ T

η
q(τ)φp

( b

M

)
∇τ

1−
∑m−2

i=1 βi

)

=
b

M

( ∑m−2
i=1 αi

1−
∑m−2

i=1 αi

T + η

)
φq

( ∫ T

η
q(τ)∇τ

1−
∑m−2

i=1 βi

)
= b.

Therefore we have α(u) > b, for all u ∈ P (γ, θ, α, b,
Mb

m
, d). Consequently,

condition (S1) in Theorem 2.2 is satisfied.
Thirdly, we prove that (S2) in Theorem 2.2 holds. For any u ∈ P (γ, α, b, d)

with θ(Fu) >
M

m
b, that is

θ(Fu) = (Fu)∆(r)

= φq

∫ T

r

q(τ)f(τ, u, u∆)∇τ +
∑m−2

i=1 βi
∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi


>

M

m
b,

one has

α(Fu) = inf
t∈[η,T ]T

(Fu)(t) = Fu(η)

=

∫ η

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

> ηφq

(∫ T

r

q(τ)f(τ, u, u∆)∇τ +

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)

> η
M

m
b

> b.

Hence, condition (S2) in Theorem 2.2 is satisfied.
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Finally, we prove that (S3) in Theorem 2.2 is satisfied. Since ψ(0) = 0 < a,
it follows that 0 /∈ R(γ, ψ, a, d). Suppose that u ∈ R(γ, ψ, a, d) with ψ(u) =
inft∈[η,T ]T u(t) = u(η) = a. Then, by the condition (A3) of this theorem, we
have

α(Fu) = inf
t∈[η,T ]T

(Fu)(t) = Fu(η)

=

∫ η

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

ξi
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

≤
∫ η

0

φq

(∫ T

0

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

0
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ T

0

φq

(∫ T

0

q(τ)f(τ, u, u∆)∇τ

+

∑m−2
i=1 βi

∫ T

0
q(τ)f(τ, u, u∆)∇τ

1−
∑m−2

i=1 βi

)
∆s

<

∫ η

0

φq

(∫ T

0

q(τ)φp

(a
λ

)
∇τ

+

∑m−2
i=1 βi

∫ T

0
q(τ)φp

(a
λ

)
∇τ

1−
∑m−2

i=1 βi

)
∆s

+
1

1−
∑m−2

i=1 αi

m−2∑
i=1

αi

∫ T

0

φq

(∫ T

0

q(τ)φp

(a
λ

)
∇τ

+

∑m−2
i=1 βi

∫ T

0
q(τ)φp

(a
λ

)
∇τ

1−
∑m−2

i=1 βi

)
∆s

=

( ∑m−2
i=1 αi

1−
∑m−2

i=1 αi

T + η

)
φq

∫ T

0
q(τ)φp

(a
λ

)
∇τ

1−
∑m−2

i=1 βi
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=
a

λ

( ∑m−2
i=1 αi

1−
∑m−2

i=1 αi

T + η

)
φq

( ∫ T

0
q(τ)∇τ

1−
∑m−2

i=1 βi

)
= a.

Thus condition (S3) in Theorem 2.2 holds. As a result, all the conditions of
Theorem 2.2 are satisfied. The proof is complete. □

Theorem 3.2. Let i = 1, 2, · · · , n, 0 < a1 < b1 <
ηM

Tm
d1 < a2 < b2 <

ηM

Tm
d2 < a3 < . . . < an, n ∈ N, Mη > m, and suppose that f satisfies the

following conditions:

(B1) f(t, u, u∆) ≤ φp

(di
m

)
for (t, u, u∆) ∈ [0, T ]T × [0, di]× [−di, di];

(B2) f(t, u, u∆) > φp

( bi
M

)
for (t, u, u∆) ∈ [η, T ]T × [bi, di]× [−di, di];

(B3) f(t, u, u∆) < φp

(ai
λ

)
for (t, u, u∆) ∈ [0, T ]T × [0, ai]× [−di, di].

Then the BVP (1.1) and (1.2) has at least 2n+ 1 positive solutions.

Proof. When i = 1, it is clear that Theorem 3.2 holds. Then we can find at
least three positive symmetric solutions u1, u2 and u3 satisfying (3.1). Hence,
we finish the proof by induction. □
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