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Abstract. In this paper, we shall establish some extended Simpson-type
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1. Introduction

Throughout this paper, let a < b in R.
The inequality

(1.1) f

(
a+ b

2

)
≤ (≥)

1

b− a

∫ b

a

f (t) dt ≤ (≥)
f (a) + f (b)

2

which holds for all convex (concave) functions f : [a, b] → R, is known in the
literature as Hermite-Hadamard inequality [8].

For some results which generalize, improve, and extend the inequality (1.1),
see [1–7] and [9–16].

In [12], Tseng et al. established the following Hermite-Hadamard-type in-
equality which refines the inequality (1.1).
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Theorem 1.1. Suppose that f : [a, b] → R is a convex function on [a, b]. Then
we have the inequality

f

(
a+ b

2

)
≤ 1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
(1.2)

≤ 1

b− a

∫ b

a

f (x) dx

≤ 1

2

[
f

(
a+ b

2

)
+

f (a) + f (b)

2

]
≤ f (a) + f (b)

2
.

The third inequality in (1.2) is known in the literature as Bullen’s inequality.

Using the similar proof of Theorem 1.1, we also note that the inequalities in
(1.2) are reversed when f is concave on [a, b] .

In [4], Dragomir and Agarwal established the following results connected
with the second inequality in the inequality (1.1).

Theorem 1.2. Let f : [a, b] → R be a differentiable function on (a, b) . If |f ′|
is convex on [a, b] , then we have

(1.3)

∣∣∣∣f (b) + f (a)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a

8

(∣∣f ′ (a)
∣∣+ ∣∣f ′ (b)

∣∣)
which is the trapezoid inequality provided |f ′| is convex on [a, b] .

Theorem 1.3. Let f : [a, b] → R be a differentiable function on (a, b) and let

p > 1. If |f ′|p/(p−1)
is convex on [a, b], then we have∣∣∣∣f (b) + f (a)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(1.4)

≤ b− a

2 (p+ 1)
1
p

[
|f ′ (a)|

p
p−1 + |f ′ (b)|

p
p−1

2

] p−1
p

which is the trapezoid inequality provided |f ′|p/(p−1)
is convex on [a, b] .

In [11], Pearce and Pečarić established the following results that give an
improved and simplified constant in Theorem 1.3 to obtain Theorem 1.4 as
follows:

Theorem 1.4. Let f : [a, b] → R be a differentiable function on (a, b) and
q ≥ 1. If the mapping |f ′|q is convex on [a, b] , then we have

(1.5)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a

4

[
|f ′ (a)|q + |f ′ (b)|q

2

] 1
q

,

which is the trapezoid inequality provided |f ′|q is convex on [a, b] .

Theorem 1.5. Under the assumptions of Theorem 1.4, we have

(1.6)

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a

4

[
|f ′ (a)|q + |f ′ (b)|q

2

] 1
q

,
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which is the midpoint inequality provided |f ′|q is convex on [a, b] .

The comparable results to Theorem 1.4 and Theorem 1.5 with a concavity
property instead of convexity.

Theorem 1.6. Under the assumptions of Theorem 1.4 and |f ′|q (q ≥ 1) is
concave on [a, b], we have

(1.7)

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a

4

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣
and

(1.8)

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a

4

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣ ,
which are the trapezoid inequality and the midpoint inequality provided |f ′|q is
concave on [a, b], respectively.

From the above results, it is natural to consider the extended Simpson-type
formula in the following lemma.

Remark 1.7. Let 0 ≤ α ≤ 1, x ∈
[
a, a+b

2

]
and y ∈

[
a+b
2 , b

]
. Then we have the

extended Simpson-type formulas as follows:

(1) The trapezoid-type formula∣∣∣∣α [f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣f ((1− γ) a+ γb) + f (γa+ (1− γ) b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as α = 1, x = (1− γ) a+ γb and y = γa+ (1− γ) b.

(2) The trapezoid formula∣∣∣∣α [f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as α = 1, x = a and y = b.

(3) The midpoint formula∣∣∣∣α [f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as α = 0.
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(4) The Simpson-type formula∣∣∣∣α [f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣α [f ((1− γ) a+ γb) + f (γa+ (1− γ) b)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as 0 ≤ γ ≤ 1

2 , x = (1− γ) a+ γb and y = γa+ (1− γ) b.
(5) The Simpson formula∣∣∣∣α [f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣16
[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as α = 1

3 , x = a and y = b.
(6) The Bullen formula∣∣∣∣α [f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣14
[
f (a) + 2f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as α = 1

2 , x = a and y = b.

In this paper, we establish some extended Simpson-type inequalities which
reduce the Simpson-type, trapezoid-type, midpoint-type, Bullen-type inequal-
ities, and generalize Theorems 1.2 and 1.4-1.6. Some applications to special
means of real numbers are given. Finally, the approximations for quadrature
formula are also given.

2. Extended Simpson-type inequality

Throughout this section, let 0 ≤ α ≤ 1, x ∈
[
a, a+b

2

]
, y ∈

[
a+b
2 , b

]
, and let

J1, J2, h (t) , h1 (t) (t ∈ [a, b]) be defined as follows.

J1 =
α

3 (b− a)3

[
(x− a)2

(
3b− a

2
− x

)
+

(
a+ b

2
− x

)2(
5b− a

4
− x

)
(2.1)

+ (b− y)3 +

(
y − a+ b

2

)2 (
5b− a

4
− y

)]
+

1− α

8
.
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J2 =
α

3 (b− a)3

[
(x− a)3 +

(
a+ b

2
− x

)2 (
x− 5a− b

4

)
(2.2)

+ (b− y)2
(
y − 3a− b

2

)
+

(
y − a+ b

2

)2(
y − 5a− b

4

)]
+

1− α

8
.

h (t) =


t− a, a ≤ t < x

α
(
t− a+b

2

)
+ (1− α) (t− a) , x ≤ t < a+b

2

α
(
t− a+b

2

)
+ (1− α) (t− b) , a+b

2
≤ t < y

t− b, y ≤ t ≤ b

.

h1 (t) =


t− a, a ≤ t < x

α
(
a+b
2

− t
)
+ (1− α) (t− a) , x ≤ t < a+b

2

α
(
t− a+b

2

)
+ (1− α) (b− t) , a+b

2
≤ t < y

b− t, y ≤ t ≤ b

.

In order to prove our main results, we need the following lemma and remark
whose proof can be obtained by simple computation.

Lemma 2.1. Let a, b, x, y, α, J1, J2, h (t) , h1 (t) (t ∈ [a, b]) be defined as above.
Then we have

J1 =
1

(b− a)3

∫ b

a

h1 (t) (b− t) dt, J2 =
1

(b− a)3

∫ b

a

h1 (t) (t− a) dt,

J1 + J2

=
1

(b− a)2

∫ b

a

h1 (t) dt

=
α

2 (b− a)2

[
(x− a)2 +

(
a+ b

2
− x

)2

+ (b− y)2 +

(
y − a+ b

2

)2
]
+

1− α

4

=
1

4
− α

[
(x− a)

(
a+b
2

− x
)

(b− a)2
+

(b− y)
(
y − a+b

2

)
(b− a)2

]
,

aJ1 + bJ2

=
1

(b− a)2

∫ b

a

h1 (t) tdt

=
α

6 (b− a)2

[
(x− a)2 (2x+ a) +

(
a+ b

2
− x

)2(
2x+

a+ b

2

)

+(b− y)2 (2y + b) +

(
y − a+ b

2

)2 (
2y +

a+ b

2

)]
+

1− α

4

(
a+ b

2

)
,

0 < J1 ≤ J1 + J2 ≤ 1

4
and 0 < J2 ≤ J1 + J2 ≤ 1

4
.
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Remark 2.2. Let 0 ≤ γ, ρ ≤ 1
2 , x = (1− γ) a+ γb and y = ρa+ (1− ρ) b in the

identities (2.1)and (2.2). Then we have

J1 =
1

8
− αγ

(
1

2
− γ

)
, J2 =

1

8
− αρ

(
1

2
− ρ

)
and

J1 + J2 =
1

4
− α

[
γ

(
1

2
− γ

)
+ ρ

(
1

2
− ρ

)]
.

Further, if γ = ρ, then

J1 = J2 =
1

8
− αγ

(
1

2
− γ

)
and J1 + J2 =

1

4
− αγ (1− 2γ) .

Now, we are ready to state and prove the main results.

Theorem 2.3. Let a, b, x, y, α, J1, J2, h (t) , h1 (t) (t ∈ [a, b]) be defined as above
and let q, f be defined as in Theorem 1.4. Then we have the extended Simpson-
type inequality∣∣∣∣∣α

[
f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(2.3)

≤ (J1 + J2) (b− a)

(
J1 |f ′ (a)|q + J2 |f ′ (b)|q

J1 + J2

) 1
q

.

Proof. Using the integration by parts and simple computation, we have the
following identity:

1

b− a

∫ b

a

h (t) f ′ (t) dt(2.4)

= α

[
f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt.

Now, using Hölder’s inequality, the convexity of |f ′|q and Lemma 2.1, we
have the inequality∣∣∣∣ 1

b− a

∫ b

a

h (t) f ′ (t) dt

∣∣∣∣(2.5)

≤ 1

b− a

∫ b

a

|h (t)|
∣∣f ′ (t)

∣∣ dt
≤ 1

b− a

∫ b

a

h1 (t)
∣∣f ′ (t)

∣∣ dt
≤ 1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
(∫ b

a

h1 (t)
∣∣f ′ (t)

∣∣q dt) 1
q

=
1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
(∫ b

a

h1 (t)

∣∣∣∣f ′
(
b− t

b− a
· a+

t− a

b− a
· b
)∣∣∣∣q dt)

1
q



415 Hsu, Hwang and Tseng

≤ 1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
[∫ b

a

h1 (t)
b− t

b− a

∣∣f ′ (a)
∣∣q + h1 (t)

t− a

b− a

∣∣f ′ (b)
∣∣q dt] 1

q

=

(
1

(b− a)2

∫ b

a

h1 (t) dt

)1− 1
q
(

1

(b− a)3

∫ b

a

h1 (t) (b− t) dt ·
∣∣f ′ (a)

∣∣q
+

1

(b− a)3

∫ b

a

h1 (t) (t− a) dt ·
∣∣f ′ (b)

∣∣q) 1
q

· (b− a)

= (J1 + J2)
1− 1

q
(
J1

∣∣f ′ (a)
∣∣q + J2

∣∣f ′ (b)
∣∣q) 1

q (b− a)

= (J1 + J2) (b− a)

(
J1 |f ′ (a)|q + J2 |f ′ (b)|q

J1 + J2

) 1
q

.

The inequality (2.3) follows from the identity (2.4) and the inequality (2.5) .
This completes the proof. □
Under the conditions of Theorem 2.3 and Remark 2.2, we have the following

corollaries and remarks.

Corollary 2.4. Using Theorem 2.3 and Remark 1.7, we have∣∣∣∣α [
f ((1− γ) a+ γb) + f (γa+ (1− γ) b)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤

[
1

4
− αγ (1− 2γ)

]
(b− a)

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

which is the Simpson-type inequality provided |f ′|q is convex on [a, b] .

Corollary 2.5. In Corollary 2.4, let γ = 0. Then, we have∣∣∣∣∣α
(
f (a) + f (b)

2

)
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(2.6)

≤ b− a

4

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

.

Remark 2.6. In Corollary 2.5, let α = 1
3 . Then, we have∣∣∣∣∣16

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ b− a

4

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

,

which is the Simpson inequality [5] provided |f ′|q is convex on [a, b] .
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Remark 2.7. In Corollary 2.5, let α = 1
2 . Then, we have∣∣∣∣∣14

[
f (a) + 2f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ b− a

4

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

,

which is the Bullen’s inequality provided |f ′|q is convex on [a, b] .

Remark 2.8. If we choose α = 1 in Corollary 2.5, then the inequality (2.6)
reduces the trapezoid inequality (1.5) .

Remark 2.9. If we choose α = 0 in Corollary 2.5, then the inequality (2.6)
reduces the midpoint inequality (1.6) .

Corollary 2.10. In Corollary 2.4, let α = 1. Then, we have∣∣∣∣∣f ((1− γ) a+ γb) + f (γa+ (1− γ) b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤

[
1

4
− γ (1− 2γ)

]
(b− a)

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

,

which is the trapezoid-type inequality provided |f ′|q is convex on [a, b] .

Remark 2.11. In Corollary 2.10, let γ = 1
4 . Then, we have∣∣∣∣∣f

(
3a+b
4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ b− a

8

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

,

which is the second inequality in (1.2) provided |f ′|q is convex on [a, b] .

Theorem 2.12. Let a, b, x, y, α, J1, J2, h (t) , h1 (t) (t ∈ [a, b]) be defined as above
and let q, f be defined as in Theorem 1.6. Then we have the extended Simpson-
type inequality∣∣∣∣∣α

[
f (x) + f (y)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(2.7)

≤ (J1 + J2) (b− a)

∣∣∣∣f ′
(
J1a+ J2b

J1 + J2

)∣∣∣∣ .
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Proof. Since q > 1 and |f ′|q is concave on [a, b] , |f ′| is also concave on [a, b] .
Using the Jensen’s integral inequality and Lemma 2.1, we have∣∣∣∣ 1

b− a

∫ b

a

h (t) f ′ (t) dt

∣∣∣∣(2.8)

≤ 1

b− a

∫ b

a

|h (t)|
∣∣f ′ (t)

∣∣ dt
≤ 1

b− a

∫ b

a

h1 (t)
∣∣f ′ (t)

∣∣ dt
≤ 1

b− a

(∫ b

a

h1 (t) dt

) ∣∣∣∣∣f ′

(∫ b

a
h1 (t) tdt∫ b

a
h1 (t) dt

)∣∣∣∣∣
= (b− a)

(
1

(b− a)2

∫ b

a

h1 (t) dt

) ∣∣∣∣∣∣f ′

 1
(b−a)2

∫ b

a
h1 (t) tdt

1
(b−a)2

∫ b

a
h1 (t) dt

∣∣∣∣∣∣
= (b− a) (J1 + J2)

∣∣∣∣f ′
(
J1a+ J2b

J1 + J2

)∣∣∣∣ .
The inequality (2.7) follows from the identity (2.4) and the inequality (2.8) .
This completes the proof. □

Under the conditions of Theorem 2.12 and Remark 1.7, we have the following
corollaries and remarks.

Corollary 2.13. In Theorem 2.12, let x = (1− γ) a+γb and y = γa+(1− γ) b
where 0 ≤ γ ≤ 1

2 . Then, using Remark 2.2, we have

J1 = J2 =
1

8
− αγ

(
1

2
− γ

)
, J1 + J2 =

1

4
− αγ (1− 2γ)

and ∣∣∣∣α [
f ((1− γ) a+ γb) + f (γa+ (1− γ) b)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤

[
1

4
− αγ (1− 2γ)

]
(b− a)

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣ ,
which is the Simpson-type inequality provided |f ′|q is concave on [a, b] .
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Corollary 2.14. In Corollary 2.13, let γ = 0. Then, we have∣∣∣∣∣α
[
f (a) + f (b)

2

]
+ (1− α) f

(
a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(2.9)

≤ b− a

4

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣ .
Remark 2.15. In Corollary 2.14, let α = 1

3 . Then, we have∣∣∣∣∣16
[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ b− a

4

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣ ,
which is the Simpson inequality [5] provided |f ′|q is concave on [a, b] .

Remark 2.16. In Corollary 2.14, let α = 1
2 . Then, we have∣∣∣∣∣14

[
f (a) + 2f

(
a+ b

2

)
+ f (b)

]
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ b− a

4

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣ ,
which is the Bullen’s inequality provided |f ′|q is concave on [a, b] .

Remark 2.17. If we choose α = 1 in Corollary 2.14, then the inequality (2.9)
reduces the trapezoid inequality (1.7) .

Remark 2.18. If we choose α = 0 in Corollary 2.14, then the inequality (2.9)
reduces the midpoint inequality (1.8) .

Corollary 2.19. In Corollary 2.13, let α = 1. Then, we have∣∣∣∣f ((1− γ) a+ γb) + f (γa+ (1− γ) b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤

[
1

4
− γ (1− 2γ)

]
(b− a)

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣ ,
which is the trapezoid-type inequality provided |f ′|q is concave on [a, b] .

Remark 2.20. In Corollary 2.19, let γ = 1
4 . Then, we have∣∣∣∣∣f

(
3a+b
4

)
+ f

(
a+3b
4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ b− a

8

∣∣∣∣f ′
(
a+ b

2

)∣∣∣∣ ,
which is the second inequality in (1.2) provided |f ′|q is concave on [a, b] .
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3. Applications for special means

In the literature, let us recall the following special means of the two real
numbers u and v:

(1) The weighted arithmetic mean

Aα (u, v) := αu+ (1− α) v, u, v ∈ R.
(2) The unweighted arithmetic mean

A (u, v) :=
u+ v

2
, u, v ∈ R.

(3) The harmonic mean

H (u, v) :=
2

1
u + 1

v

, u, v > 0.

(4) The identric mean

I (u, v) :=

{
1
e

(
vv

uu

) 1
v−u if u ̸= v

u if u = v
, u, v > 0.

(5) The logarithmic mean

L (u, v) :=

{
v−u

ln v−lnu if u ̸= v

u if u = v
, u, v > 0.

(6) The p-logarithmic mean

Lp (u, v) :=


[
vp+1−up+1

(p+1)(v−u)

] 1
p

if u ̸= v

u if u = v
, u, v > 0, p ∈ R\ {−1, 0} .

(7) The p-power mean

Mp (u, v) :=

(
up + vp

2

) 1
p

, u, v > 0, p ∈ R\ {0} .

Using the above results, we have the following results about the above special
means:

Proposition 3.1. In Corollary 2.4, let s ∈ (−∞, 1] ∪
[
1 + 1

q ,∞
)
\ {−1, 0} ,

q ≥ 1, a > 0, b > 0 and let f (t) = ts on [a, b] . Then we have∣∣Aα

(
A
(
As

γ (b, a) , A
s
γ (a, b)

)
, As (a, b)

)
− Ls

s (a, b)
∣∣

≤
[
1

4
− αγ (1− 2γ)

]
|s| (b− a)Mq

(
as−1, bs−1

)
.

Corollary 3.2. In Proposition 3.1, let γ = 0. Then, we have

(3.1) |Aα (A (as, bs) , As (a, b))− Ls
s (a, b)| ≤

|s| (b− a)

4
Mq

(
as−1, bs−1

)
.
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Corollary 3.3. In Proposition 3.1, let α = 1. Then, we have∣∣A (
As

γ (b, a) , A
s
γ (a, b)

)
− Ls

s (a, b)
∣∣(3.2)

≤
[
1

4
− γ (1− 2γ)

]
|s| (b− a)Mq

(
as−1, bs−1

)
.

Proposition 3.4. In Corollary 2.13, let s ∈
[
1, 1 + 1

q

]
, q ≥ 1, a ≥ 0, b ≥ 0

and let f (t) = ts on [a, b] . Then we have∣∣Aα

(
A
(
As

γ (b, a) , A
s
γ (a, b)

)
, As (a, b)

)
− Ls

s (a, b)
∣∣

≤
[
1

4
− αγ (1− 2γ)

]
s (b− a)As−1 (a, b) .

Corollary 3.5. In Proposition 3.4, let γ = 0. Then, we have

(3.3) |Aα (A (as, bs) , As (a, b))− Ls
s (a, b)| ≤

s (b− a)

4
As−1 (a, b) .

Corollary 3.6. In Proposition 3.4, let α = 1. Then, we have∣∣A (
As

γ (b, a) , A
s
γ (a, b)

)
− Ls

s (a, b)
∣∣(3.4)

≤
[
1

4
− γ (1− 2γ)

]
s (b− a)As−1 (a, b) .

Proposition 3.7. In Corollary 2.4, let q ≥ 1, a > 0, b > 0 and let f (t) = 1
t on

[a, b] . Then we have∣∣Aα

(
H−1 (Aγ (b, a) , Aγ (a, b)) , A

−1 (a, b)
)
− L−1 (a, b)

∣∣
≤

[
1

4
− αγ (1− 2γ)

]
(b− a)Mq

(
a−2, b−2

)
.

Corollary 3.8. In Proposition 3.7, let γ = 0. Then, we have

(3.5)
∣∣Aα

(
H−1 (a, b) , A−1 (a, b)

)
− L−1 (a, b)

∣∣ ≤ b− a

4
Mq

(
a−2, b−2

)
.

Corollary 3.9. In Proposition 3.7, let α = 1. Then, we have∣∣H−1 (Aγ (b, a) , Aγ (a, b))− L−1 (a, b)
∣∣(3.6)

≤
[
1

4
− γ (1− 2γ)

]
(b− a)Mq

(
a−2, b−2

)
.

Proposition 3.10. In Corollary 2.13, let a > 0, b > 0 and let f (t) = ln t on
[a, b] . Then we have

|Aα (A (lnAγ (b, a) , lnAγ (a, b)) , lnA (a, b))− ln I (a, b)|

≤
[
1

4
− αγ (1− 2γ)

]
(b− a)A−1 (a, b) .



421 Hsu, Hwang and Tseng

Corollary 3.11. In Proposition 3.10, let γ = 0. Then, we have

(3.7) |Aα (A (ln a, ln b) , lnA (a, b))− ln I (a, b)| ≤ b− a

4
A−1 (a, b) .

Corollary 3.12. In Proposition 3.10, let α = 1. Then, we have

|A (lnAγ (b, a) , lnAγ (a, b))− ln I (a, b)|(3.8)

≤
[
1

4
− γ (1− 2γ)

]
(b− a)A−1 (a, b) .

4. Applications for the extended Simpson quadrature formula

Throughout this section, let 0 ≤ α ≤ 1, In : a = x0 < x1 < · · · < xn−1 <

xn = b be a partition of the interval [a, b] , li = xi+1 − xi, ξi ∈
[
xi,

xi+xi+1

2

]
and ζi ∈

[
xi+xi+1

2 , xi+1

]
(i = 0, 1, · · · , n− 1) . Define the extended Simpson

quadrature formula

(4.1)

∫ b

a

f(t)dt = Sα (f, In, ξ, ζ) +Rα (f, In, ξ, ζ) ,

where

Sα (f, In, ξ, ζ) := α
n−1∑
i=0

f (ξi) + f (ζi)

2
li + (1− α)

n−1∑
i=0

f

(
xi + xi+1

2

)
li,

and ξi ∈ [xi, (xi + xi+1) /2] , ζi ∈ [(xi + xi+1) /2, xi+1], and the remainder

term Rα (f, In, ξi, ζi) denotes the associated approximation error of
∫ b

a
f(t)dt

by Sα (f, In, ξ, ζ).
Let α ∈

{
0, 1

3 , 1
}
in the identity (4.1) . Then we have the following special

formulae.

(1) The midpoint formula

S0 (f, In, ξ, ζ) =

n−1∑
i=0

f

(
xi + xi+1

2

)
li.

(2) The trapezoid formula

S1 (f, In, ξ, ζ) =

n−1∑
i=0

f (xi) + f (xi+1)

2
li,

where ξi = xi and ζi = xi+1 (i = 0, 1, · · · , n− 1) .
(3) The Simpson formula

S 1
3
(f, In, ξ, ζ) =

n−1∑
i=0

1

6

[
f (xi) + 4f

(
xi + xi+1

2

)
+ f (xi+1)

]
li,
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where ξi = xi and ζi = xi+1 (i = 0, 1, · · · , n− 1) .

Theorem 4.1. Let f be defined as in Theorem 2.3 and let
∫ b

a
f(t)dt, Sα(f, In,

ξ, ζ) and Rα (f, In, ξ, ζ) be defined as in the identity (4.1) . Then, the remainder
term Rα (f, In, ξ, ζ) satisfies the estimate

|Rα (f, In, ξ, ζ)|(4.2)

≤
n−1∑
i=0

(T1 (i) + T2 (i)) l
2
i

(
T1 (i) |f ′ (xi)|q + T2 (i) |f ′ (xi+1)|q

T1 (i) + T2 (i)

) 1
q

≤ max {|f ′ (a)| , |f ′ (b)|}
n−1∑
i=0

(T1 (i) + T2 (i)) l
2
i ,

where

T1 (i) =
α

3l3i

[
(ξi − xi)

2

(
3xi+1 − xi

2
− ξi

)
+

(
xi + xi+1

2
− ξi

)2 (
5xi+1 − xi

4
− ξi

)
+ (xi+1 − ζi)

3

+

(
ζi −

xi + xi+1

2

)2 (
5xi+1 − xi

4
− ζi

)]
+

1− α

8

and

T2 (i) =
α

3l3i

[(
xi + xi+1

2
− ξi

)2 (
ξi −

5xi − xi+1

4

)
+ (ξi − xi)

3
+ (xi+1 − ζi)

2

(
ζi −

3xi − xi+1

2

)
+

(
ζi −

xi + xi+1

2

)2 (
ζi −

5xi − xi+1

4

)]
+

1− α

8

for all i = 0, 1, · · · , n− 1.

Proof. Apply Theorem 2.3 on the intervals [xi, xi+1] (i = 0, 1, · · · , n−1) to get∣∣∣∣[αf (ξi) + f (ζi)

2
+ (1− α) f

(
xi + xi+1

2

)]
li −

∫ xi+1

xi

f(t)dt

∣∣∣∣(4.3)

≤ (T1 (i) + T2 (i)) l
2
i

(
T1 (i) |f ′ (xi)|q + T2 (i) |f ′ (xi+1)|q

T1 (i) + T2 (i)

) 1
q

for all i = 0, 1, · · · , n− 1.
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Using the convexity of |f ′|q , we have(
T1 (i) |f ′ (xi)|q + T2 (i) |f ′ (xi+1)|q

T1 (i) + T2 (i)

) 1
q

(4.4)

≤
[

T1 (i)

T1 (i) + T2 (i)

(
b− xi

b− a
|f ′ (a)|q + xi − a

b− a
|f ′ (b)|q

)
+

T2 (i)

T1 (i) + T2 (i)

(
b− xi+1

b− a
|f ′ (a)|q + xi+1 − a

b− a
|f ′ (b)|q

)] 1
q

≤
(
max

{
|f ′ (a)|q , |f ′ (b)|q

}) 1
q = max {|f ′ (a)| , |f ′ (b)|}

for all i = 0, 1, · · · , n− 1.
The inequality (4.2) follows from the inequalities (4.3), (4.4) and the gener-

alized triangle inequality. This completes the proof. □
Corollary 4.2. In Theorem 4.1, let α = 1

3 and ξi = xi, ζi = xi+1(i =

0, 1, · · · , n−1). Then T1 (i) = T2 (i) =
1
8 (i = 0, 1, · · · , n− 1) and the Simpson-

type error satisfies∣∣∣R 1
3
(f, In, ξ, ζ)

∣∣∣ ≤
n−1∑
i=0

l2i
4

[
|f ′ (xi)|q + |f ′ (xi+1)|q

2

] 1
q

≤ max {|f ′ (a)| , |f ′ (b)|}
n−1∑
i=0

l2i
4
.

Corollary 4.3. In Theorem 4.1, let α = 1 and ξi = xi, ζi = xi+1(i =
0, 1, · · · , n−1). Then T1 (i) = T2 (i) =

1
8 (i = 0, 1, · · · , n− 1) and the trapzoid-

type error satisfies

|R1 (f, In, ξ, ζ)| ≤
n−1∑
i=0

l2i
4

[
|f ′ (xi)|q + |f ′ (xi+1)|q

2

] 1
q

≤ max {|f ′ (a)| , |f ′ (b)|}
n−1∑
i=0

l2i
4

which is Proposition 3 in [11].

Corollary 4.4. In Theorem 4.1, let α = 0 and ξi = xi, ζi = xi+1 (i =
0, 1, · · · , n−1). Then T1 (i) = T2 (i) =

1
8 (i = 0, 1, · · · , n− 1) and the midpoint-

type error satisfies

|R0 (f, In, ξ, ζ)| ≤
n−1∑
i=0

l2i
4

[
|f ′ (xi)|q + |f ′ (xi+1)|q

2

] 1
q

≤ max {|f ′ (a)| , |f ′ (b)|}
n−1∑
i=0

l2i
4
.
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Similarly, using Theorem 2.12 we can prove the following theorem.

Theorem 4.5. Let f be defined as in Theorem 2.12, T1 (i) , T2 (i) t(i = 0, 1, · · · ,
n−1) be defined as in Theorem 4.1 and let

∫ b

a
f(t)dt, Sα (f, In, ξ, ζ) and Rα(f, In,

ξ, ζ) be defined as in the identity (4.1) . Then, the remainder term Rα (f, In, ξ, ζ)
satisfies the estimate

|Rα (f, In, ξ, ζ)| ≤
n−1∑
i=0

(T1 (i) + T2 (i)) l
2
i

∣∣∣∣f ′
(
T1 (i)xi + T2 (i)xi+1

T1 (i) + T2 (i)

)∣∣∣∣
for all i = 0, 1, ..., n− 1.

Corollary 4.6. In Theorem 4.5, let α = 1
3 and ξi = xi, ζi = xi+1(i =

0, 1, · · · , n−1). Then T1 (i) = T2 (i) =
1
8 (i = 0, 1, · · · , n− 1) and the Simpson-

type error satisfies∣∣∣R 1
3
(f, In, ξ, ζ)

∣∣∣ ≤ n−1∑
i=0

l2i
4

∣∣∣∣f ′
(
xi + xi+1

2

)∣∣∣∣ .
Corollary 4.7. In Theorem 4.5, let α = 1 and ξi = xi, ζi = xi+1(i =
0, 1, · · · , n−1). Then T1 (i) = T2 (i) =

1
8 (i = 0, 1, · · · , n− 1) and the trapzoid-

type error satisfies

|R1 (f, In, ξ, ζ)| ≤
n−1∑
i=0

l2i
4

∣∣∣∣f ′
(
xi + xi+1

2

)∣∣∣∣ .
Corollary 4.8. In Theorem 4.5, let α = 0 and ξi = xi, ζi = xi+1 (i =
0, 1, · · · , n−1). Then T1 (i) = T2 (i) =

1
8 (i = 0, 1, · · · , n− 1) and the midpoint-

type error satisfies

|R0 (f, In, ξ, ζ)| ≤
n−1∑
i=0

l2i
4

∣∣∣∣f ′
(
xi + xi+1

2

)∣∣∣∣
which is Proposition 4 in [11].
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