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ON REDUCING SEQUENCES AND AN APPLICATION
TO LOCAL COHOMOLOGY MODULES

NONG QUOC CHINH

ABSTRACT. This paper is concerned with the reducing sequences
introduced by Auslander-Buchsbaum [1]. A bound from above for
the Krull dimension of the Koszul homology modules with respect
to a reducing sequence is shown. Using reducing sequence, a result
on the Artinianness and the finiteness of the support of the local
cohomology modules is given.

1. Introduction

Throughout this paper, let (R, m) be a Noetherian local ring and let
M be a finitely generated R-module with dim M = d. It is well known
that for an ideal I of R, if z1,...,x, € I is a regular sequence of M
then the i-th local cohomology module H:(M) is vanishing for all i < n
and the s-th Koszul homology module Hg(z1,...,%,; M) is vanishing
for all s > 1. Also the structure of Cohen-Macaulay modules (mod-
ules satisfying the condition that any system of parameters is a regular
sequence) is fully known. Next, the notion of filter regular sequence
was introduced by Cuong-Schenzel-Trung [4] as an extension of the no-
tion of regular sequence. Li-Tang [7] proved that if zq,...,z, € I is
a filter regular sequence of M then H:(M) is Artinian for all i < n,
and ((Hg(z1,...,zn; M)) < oo for all s > 1. Moreover, the structure of
generalized Cohen-Macaulay modules and f-modules (modules satisfying
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the condition that any system of parameters is a filter regular sequence)
is described carefully in [4], [14]. Recently, the notion of generalized
regular sequences as a generalization of that of filter regular sequences
is introduced in [10]. It is shown that if zy,...,2, € I is a general-
ized regular sequence of M then Supp H:(M) is finite for all i < n and
dim Hy(z1,...,2p; M) < 1 for all s > 1. Also in [11], the authors used
generalized regular sequences in order to give some geometrical applica-
tions, specially in the study coordinate rings of algebraic varieties and
Stanley-Reisner rings.

The notion of reducing sequences was introduced by Auslander-
Buchsbaum [1]: A sequence zi,...,z, of elements in m is called a
reducing sequence of M if for all i = 1,...,n, z; ¢ p for all p €
Ass M /(xy1,...,z;—1)M satisfying dim R/p > d — i. It is clear that any
filter regular sequence and hence any regular sequence of M is a reduc-
ing sequence of M. Moreover, any generalized regular sequence of M of
length at most d — 2 is reducing sequence of M. Therefore, the notion of
reducing sequences is in some sense an extension of all the above kinds
of sequences.

The purpose of this paper is to study reducing sequences and its
application to local cohomology modules. In the next section, we give
some basic properties of reducing sequences. A bound from above for the
Krull dimension of the s-th Koszul homology module Hy(z1, ..., zx; M),
where z1,. ..,z is a reducing sequence of M, is given (Proposition 2.5).
In section 3, we present some applications of reducing sequences. We
show a condition so that local cohomology modules H:(M) are Artinian
(resp. Supp H:(M) is finite) for all but only one i (Theorem 3.3). We
also consider the Krull dimension of the support of local cohomology
modules (Theorem 3.5).

2. Reducing sequences and Koszul homology modules

We recall first the notion of reducing sequence which was introduced
by Auslander-Buchsbaum [1].

Definition 2.1. Let k be a positive integer. A sequence z1, ...,z of
elements in m is called a reducing sequence of M if for all ¢ = 1,...,k,
xz; €p for all p € Ass(M/(z1,...,z;—1)M) satisfying dim R/p > d — i.
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Recall that a sequence z1,...,z; of elements in m is called a filter
reqular sequence (resp. generalized regular sequence) of M if for all i =
...,k z; gpforallp € Ass(M/(x1,...,zi—1)M) satisfying dim R/p >
0, cf. [4] (resp. z; & p for all p € Ass(M/(z1,...,2;—1)M) satisfying
dimR/p > 1, cf. [10]). If I is an ideal of R such that dim M/IM > 0
(resp. dim M/IM > 1) then all maximal filter regular sequences (resp.
maximal generalized regular sequences) of M in I have the same length
and this common length is called filter depth (resp. generalized depth)
of M in I and denoted by f-depth(I; M) (resp. gdepth(I;M)), cf. [7],
[10].

Remark 2.2. Reducing sequences are not necessarily filter regular se-
quences or generalized regular sequences. For example, let R =
k[[z,y,z,t,v]] be the ring of formal series of 5 variables over a field
k. Let M = R/(x) N (22,y) N (22,9?%,2). Then z,t is a reducing sequence
of M, but it is neither a filter regular sequence of M nor a generalized
regular sequence of M.

For each ideal I of R, it should be noticed that if dim M/IM > 0
then any reducing sequence of M is a part of system of parameters of
M. Therefore any reducing sequence of M in I has finite length. Of
course, if dimM/IM = 0 then I contains a reducing sequence of M

with infinite length. Therefore from now on, we always assume that I
is an ideal of R such that dim M/IM > 0.

Definition 2.3. The reducing depth of M in I, denoted by
rdepth(I; M), is the supremum of lengths of all reducing sequences of
M in I.

Proposition 2.4. If dimM/IM =k > 0, then
d—Fk—1<rdepth(I; M) <d—k.

Proof. Since any reducing sequence of M in [ is a part of a system of
parameters of M, we have rdepth(I; M) < d — k. Since dim M /IM = k,
the ideal I cannot be contained in any prime ideal p € Supp M with
dim R/p > k. Therefore, by Prime Avoidance Theorem, there exist ele-
ments z1,...,xq—k—1 € I such that z; ¢ p forallp € Ass(M/(z1,...,2i1
YM) satisfying dimR/p > d — i for all i = 1,...,d — k — 1. Thus,
rdepth(I; M) >d—k — 1. O
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Recall that M is called f-module (resp. generalized f-module) if any
system of parameters of M is a filter regular sequence (resp. gener-
alized regular sequence). The structure of f-modules and generalized
f-modules are well-known by many properties of localizations, comple-
tions, multiplicities, local cohomology, and non-Cohen-Macaulay locus,
cf. [4], [11]. Specially, when R is a quotient of a Cohen-Macaulay ring,
f-modules are exactly generalized Cohen-Macaulay modules, i.e. mod-
ules with ¢(H: (M)) < oo for all i < d, cf. [4]. Therefore it is natural to
ask about the structure of modules satisfying the condition that any sys-
tem of parameters is a reducing sequence. The following result answers
part of this question.

Proposition 2.5. Assume that R is a quotient of a Cohen-Macaulay
ring.
(i) The following are equivalent:
(a) Any system of parameters of M is a reducing sequence.
(b) M is a generalized Cohen-Macaulay module.
(ii) The following are equivalent:
(a) Any part of a system of parameters of M of d — 2 elements
s a reducing sequence.
(b) M is a generalized f-module.

Before proving Proposition 2.5, we need the notion of polynomial type

introduced by Cuong [3]. For each system of parameters z = (z1,...,zq)
of M and each d-tuple of positive integers n = (nqy,...,nq), we set
2(n) = (=", ..,27%) and

I(z(n); M) = {(M/(z(n)M)) — e(z(n); M).
In general I(z(n); M), considered as a function in ni,...,ng, is not
a polynomial when ny,...,ng > 0, but it always takes non negative

values and is bounded above by polynomials. Specially, the least degree
of all polynomials in n bounding above the function I(z(n); M) does not
depend on the choice of z, cf. [3]. This least degree is denoted by p(M)
and called the polynomial type of M.

Proof of Proposition 2.5. (i) is already proved in [4]. We prove (ii).
It follows by [11, Theorem 3.2] that M is a generalized f-module if and
only if p(M) < 1, where p(M) is the polynomial type of M. Moreover,
we get by [3, Theorem 1.2] that p(M) < 1 if and only if any part of a
system of parameters of M of d—2 elements is a reducing sequence. [J
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For a sequence zi,...,zp of elements in m, we denote by
Hy(zq,...,25; M) for s > 0, the s-th Koszul homology module of M
with respect to x1,...,Tg.

Proposition 2.6. Let x1,...,x, be a reducing sequence of M.
(i) If k > d —1 then £(Hs(z1,...,z55M)) < 0o for all s > 1.
(ii) If k < d —2 then dim (Hs(z1,..., 255 M)) <d—k—1 for all s > 1.

Proof. The assertion (i) is a modification of a result of Dutta [5]. Note
that any reducing sequence of M of length d is a system of parameters
of M. Therefore if k > d then (x1,...,2,) is a multiplicative system of
M. Hence E(Hs(ml,...,xk;M)) < oo for all s > 0. Now let k =d — 1.
Then there exists an element z4 € m such that (z1,...,z4) is a system
of parameters of M. Denote by e(z1,...,xq; M) the multiplicity of M
with respect to (z1,...,24). It is clear that (x1,...,z4) is a reducing
sequence of M. So, by [12, 7.9, Theorem 18], we have

e(x1,...,xa; M) = e(z2,...,zq; M/21 M) =
= e(zg_1,xq; M/(z1,...,249-2)M)
6(.’L‘d;M/(,’L‘1, s axdfl)M)

t
(2.1) = Ze(M/(xl, o osza 1) M) e(Ta, R/pi),

where pq,...,p; are all the minimal primes of AnnM + (z1,...,
zq-1)R and T4 is the image of z4 in R/p;. By the associativity law
for multiplicities, cf. [12, 7.9, Theorem 18], we have

e(r1,...,xq; M) =
(2.2) Zle (e(ml/l, e g1 /1 My,) e(Zg; R/pi)>,

where z;/1 is the image of z; in Ry, for all j =1,...,d — 1. We get by
[12, 8.4, Theorem 5]

e(x1/1,...,2q-1/1; My,) =
(2.3) S0 (Hy(m /1, /13 My,)).

From (2.1), (2.2) and (2.3) we have
t

d—1
Z( md,R/p Z s+1€ :El/l :Ed,l/l;Mpi))> = 0.
s=1

=1
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Note that e(Z4, R/p;) > 0. Moreover, by Lichtenbaum [6],

d—1

S (=1 (H (21 /1, .. wa /1 My,)) >0
s=1

for all 7. Therefore we obtain
d—1

S (=) H(z1 /1, mg1 /15 My,) =0

s=1
for all s = 1,...,t. So, by Lichtenbaum [6] again, Hs(z1/1,...,24-1/1;
M,,) =0foralli=1,...,randall s > 1. Hence K(Hs(xl, - ,md_l;M))
< oo for all s > 1.

(ii). Assume that £ < d — 2. We set p = d — k and prove by induction
on p > 2 that

dim(Hs(wl,...,wk;M)) <d-k-1=p-1
for all s > 1. Let p = 2. We get the exact sequence
0 — Hg(x1,...,2n-1; M) /xnHs(z1,...,2n_1; M)
(2.4) — Hy(z1, ..., x0n; M),

by [12, 8.3, Proposition 2], for all integers n < d and all s > 1. By the
exact sequence (2.4) forn =d—1, dim Hg(z1,...,24 o; M) <1=2-1
for all s > 1, so the result is true when p = 2. Assume that the result is
true for p, i.e. dim Hy(z1,...,24-p; M) < p—1 for all s > 1. Then by
(2.4) for n = d — p, we have
dim Hg (21, - -+, Zg—(pt1); M) < dim Hg (21, ..., 2q-p; M) + 1
<p-—-1l41=p (s >1).

3. Local cohomology modules

Lemma 3.1. SuppH}i_l(M) is finite.

Proof. The proof is by induction on d. The case d = 1 is clear. Let
d > 2. and let M = M/T;(M). Then H}(M) = H}(M) for all i > 1,



Reducing sequences and local cohomology modules 7

and there exists a € I which is M-regular. So, the exact sequence
0— M % —M — M/aM — 0 implies the exact sequence

HY2(M/aM) — 0 Ld= ) @ 0.

Since dim M /aM < d—1, Supp H?_Q(M/GM) is finite by the induction
hypothesis. So, Supp (0 ‘d-1 (1) a) is finite. Since Supp (0 L (3T

a) = Supp HId*I(M), it follows that Supp H?*I(M) is a finite set. [

Remark. Th. Marley [8, Corollary 2.5] proved the finiteness of Supp
Hldfl(M ) by using a result on the asymptotic behavior of associated
primes. Here we give a simple inductive proof. The following result has

been proved in [7] and [10].

Lemma 3.2.
(i) If dim M/IM > O then f-depth(I; M) is finite and

f-depth(I; M) = inf{i : HY(M) is not Artinian}.
(ii) If dim M/IM > 1 then gdepth(I; M) is finite and
gdepth(I; M) = inf{i : Supp H:(M) is not a finite set}.
Moreover, Ass HL(M) is a finite set for all i < gdepth(I; M).

It is clear that if I is an ideal of R such that dim M/IM = 0 (resp.
dim M/IM = 1) then the local cohomology module H%(M) is Ar-
tinian (resp. Supp H:(M) is a finite set) for all integers i. In the case
dim M/IM > 0, the filter depth of M in I is finite. So, there is by
Lemma 3.2 at least an integer 7 such that Hi(M) is not Artinian. Sim-
ilarly, in the case dim M/IM > 1, the generalized depth of M in I is
finite. Therefore there is at least an integer i such that Supp H4(M) is
an infinite set. By using reducing sequences, we can show some cases
in which H}(M) are Artinian (resp. Supp H:(M) is a finite) for all but
only one index 1.

Theorem 3.3. Let I be an ideal of R.

(i) Assume that dim M/IM = 1. Then rdepth(I; M) = d—1 if and only
if HY (M) is Artinian for all i # d—1 and Supp H}ifl(M) s a finite set.
(ii) Assume that dim M /IM = 2. Then rdepth(I; M) = d — 2 if and
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only if Supp H:(M) is a finite set for all i #d —2 and Ass H}id(M) is
a finite set. In this case, gdepth(l; M) = d — 2.

Proof. (i). Assume that rdepth, (I; M) = d — 1. Then there exists, by
the definition of reducing depth, a reducing sequence z1,...,z4 1 of M
in I. By Proposition 2.6, the Koszul homology module H;(x1,..., 24 1;
M) is of finite length for all i > 1. So, ¢(H(z1,...,24-1; M)) < o0
for all + < d — 2. Let J be the ideal of R generated by z,...,x4-1. It
follows by Melkersson [9, Theorem 5.5] that H%(M) is Artinian for all
1 < d— 2. By Lemma 3.2, the filter depth of M in J is the least integer
i such that H%(M) is not Artinian. So, f-depth(J; M) > d — 1. Since
J C 1, it is easily seen that f-depth(I; M) > f-depth(J; M). Therefore
we have f-depth(I; M) > d — 1. So, again by Lemma 3.2, H{(M) is
Artinian for all i < d — 2. It should be mentioned that H¢(M) is always
Artinian, cf. [13]. Therefore H:(M) is Artinian for all i # d — 1.
Moreover, Supp Hldfl(M ) is a finite set by Lemma 3.1. Conversely,
assume that H!(M) is Artinian for all i # d — 1. Then we get by
Lemma 3.2 that f-depth(/; M) > d — 1. Hence, rdepth(f : M) > d — 1.
Since dim M/IM = 1, we have rdepth(I : M) < d — 1 by Proposition
2.4. Thus rdepth(I : M) =d — 1.

(ii). Assume that rdepth(Z; M) = d— 2. Then there exists a reducing se-
quence 1y, ...,xq—9 of M in I. By Proposition 2.6, dim H;(x1, ..., z4_9;

M) <1 for all 4 > 1. Hence E(Hi(xl,...,xd,Q;M)) <ooforalls>1
p

and all prime ideal p # m. Let J = (z1,...,74-2)R. It follows by [9,
Theorem 5.5] that Hjp (My) is Artinian for all i < d — 3. Note that the

support of any Artinian module is contained in {m}. It follows that
min{s : dim Supp H}(M) > 2} > d — 2.

Here, dim Supp H4(M) is the supremum of dim R/p where p runs over
the set Supp Hi(M). Note that the generalized depth of M in J is the
least integer i such that there exists p € HY(M) such that dim R/p > 2,
cf. [10, Proposition 4.5]. Hence gdepth(J; M) > d — 2. Since J C I,
we have gdepth(I; M) > d — 2. Therefore we get by Lemma 3.2 that
Supp H:(M) is a finite set for all i # d — 3. Moreover, Supp H?_I(M)
is a finite set by Lemma 3.1. Therefore Supp H:(M) is a finite set for
all i # d — 2. Lastly, Ass H?*Z(M) is finite by Lemma 3.2. Conversely,
since Supp H:(M) is a finite set for all i # d — 2, it follows by Lemma
3.2 that gdepth(I; M) > d — 2. Hence rdepth(l; M) > d — 2. Since
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dim M/IM = 2, we get by Proposition 2.4 that rdepth(/; M) < d — 2
and hence rdepth(I; M) =d — 2. O

For an ideal I generated by the elements z1, ..., x, of R and an integer
r > 0, HYM) is Artinian for all i < r if and only if
((HY (71, ..,70; M)) < oo for all i < r, cf. [9, Theorem 5.5]. Note
that H%(M) is Artinian for all ¢ < r if and only Supp H:(M) C {m} for
all ¢ < r. Therefore by induction on k, with the standard arguments of
localization, we can easily get the following result.

Lemma 3.4. Let I = (z1,...,2,)R be an ideal of R and let r k be
positive integers. Then the following conditions are equivalent:

(i) dim(H (z1,..., 20 M)) <k for all i <.

(ii) dim Supp H4(M) < k for all i < r.

Assume that dim M/IM =1t > 2. Then by Proposition 2.4 we get
d—t—1<rdepth(I; M) <d—t.

It is natural to ask when rdepth(I; M) is exactly d — t. The following
result gives an answer to this question.

Theorem 3.5 If dimM/IM = t, then the following conditions are
equivalent:

(i) rdepth(I; M) = d —t.

(ii) dimSupp H{(M) <t—1 for alli <d —t — 1.

Before proving Theorem 3.5, we need the notion of k-depth. Let k be
an integer. A sequence z1,..., T, of elements in m is called a k-regular
sequenceifforalli =1,... n,z; & pforallp € Ass(M/(z1,...,z;i1)M)
satisfying dim R/p > k. It is clear that regular sequences (resp. filter
regular sequences, generalized regular sequences) are O-regular sequences
(resp. l-regular sequences, 2-regular sequences). Let I be an ideal of R.
The k-depth of M in I, denoted by depth*(I; M), is the supremum of
lengths of all k-regular sequences of M in I. It is easily checked that if
dim M/IM > k then any k-regular sequence of M in [ is of finite length
and all maximal k-regular sequences of M in I have the same length. In
this case,

depth®(I; M) = min{depth(IRy; M,) : p € Supp M/IM,
(3.1) dim R/p > k} = min{i : dim Supp H:(M) > k}.
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Proof of Theorem 3.5. Assume that rdepth(l; M) = d — t. Let
Z1,...,Tq—¢ be a reducing sequence of M in I. By Proposition 2.6,

dim Hi(z1,...,24-¢, M) <t —1, forall i > 1.

Let J = (21,...,24 ¢)R. By Lemma 3.4 we get dim Supp H5(M) < t—1
for all i < d —t — 1. Therefore, it follows by (3.1), that depth?(J; M) >
d — t. Hence depth’(I; M) > d — t. So we have again by (3.1) that
dim Supp H}(M) <t—1foralli<d-—t— 1. Conversely, assume that
dim Supp H}(M) < t — 1 for all i < d — ¢ — 1. Then depth’(I; M) >
d — t. Hence rdepth(I; M) > d — t. Note that rdepth(I; M) < d —t by
Proposition 2.4. Thus, rdepth(I; M) =d —t. O

Example 3.6. Let S = k[z,y,z,t,v,w] be the polynomial ring of 6
variables over a field k. Let m = (x,y, z,t,v,w)S be the unique homoge-
nous maximal ideal of S§. Set R = Sy, the localization of S with respect
tom. Let I = (z,y,2,t)R and J = (x,y, z) R. Set

M = R/vRN (v})RN (z,y, z,t,v°, w)R.
M' = R/vRN (z,t,v*)RN (z,y, z,t,v>, w)R.
Then we have dim M = dim M’ =5 and
(i) dimM/IM = dimM'/IM' = 1; rdepth(l; M) = 4; rdepth
(I; M') = 3; H:(M) is Artinian for all i # 4.
(i) dimM/JM = dimM'/JM' = 2; rdepth(l;M) = 3; rdepth
(I; M') = 2; Supp H:(M) is a finite set for all i # 3.

It is clear that dimM = dim M’ = 5. For each element a € S,
we denote by @ the image of ¢ in R. Then we can easily check that
Z,7,7,t is a reducing sequence of M. Therefore we get by Theorem 3.3
that rdepth(I; M) = 4 and H(M) is Artinian for all i # 4. We can also
check that 7,7, Z is a maximal filter regular sequence of M’ in I. It means
that f-depth(I; M') = 3. Therefore rdepth(I; M') # 4 by Theorem 3.2.
Hence rdepth(Z; M') = 3 by Proposition 2.4. Proof of (ii) is similar to
that of (i).
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