Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 2, pp. 439-454

Title:
The Steiner diameter of a graph
Author(s):
Y. Mao

Published by Iranian Mathematical Society

THE STEINER DIAMETER OF A GRAPH

Y. MAO
(Communicated by Amir Daneshgar)

Abstract

The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph G of order at least 2 and $S \subseteq V(G)$, the Steiner distance $d(S)$ among the vertices of S is the minimum size among all connected subgraphs whose vertex sets contain S. Let n, k be two integers with $2 \leq k \leq n$. Then the Steiner k eccentricity $e_{k}(v)$ of a vertex v of G is defined by $e_{k}(v)=\max \{d(S) \mid S \subseteq$ $V(G),|S|=k$, and $v \in S\}$. Furthermore, the Steiner k-diameter of G is $\operatorname{sdiam}_{k}(G)=\max \left\{e_{k}(v) \mid v \in V(G)\right\}$. In 2011, Chartrand, Okamoto and Zhang showed that $k-1 \leq \operatorname{sdiam}_{k}(G) \leq n-1$. In this paper, graphs with $\operatorname{sdiam}_{3}(G)=2,3, n-1$ are characterized, respectively. We also consider the Nordhaus-Gaddum-type results for the parameter $\operatorname{sdiam}_{k}(G)$. We determine sharp upper and lower bounds of $\operatorname{siam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G})$ and $\operatorname{sdiam}_{k}(G) \cdot \operatorname{sdiam}_{k}(\bar{G})$ for a graph G of order n. Some graph classes attaining these bounds are also given. Keywords: Diameter, Steiner tree, Steiner k-diameter, complementary graph. MSC(2010): Primary: 05C05; Secondary: 05C12, 05C76.

1. Introduction

All graphs in this paper are undirected, finite and simple. We refer to [5] for graph theoretical notation and terminology not described here. Distance is one of the most basic concepts of graph-theoretic subjects. If G is a connected graph and $u, v \in V(G)$, then the distance $d(u, v)$ between u and v is the length of a shortest path connecting u and v. If v is a vertex of a connected graph G, then the eccentricity $e(v)$ of v is defined by $e(v)=\max \{d(u, v) \mid u \in V(G)\}$. Furthermore, the radius $\operatorname{rad}(G)$ and diameter $\operatorname{diam}(G)$ of G are defined by $\operatorname{rad}(G)=\min \{e(v) \mid v \in V(G)\}$ and $\operatorname{diam}(G)=\max \{e(v) \mid v \in V(G)\}$. These last two concepts are related by the inequalities $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$. The center $C(G)$ of a connected graph G is the subgraph induced by the vertices

[^0]u of G with $e(u)=\operatorname{rad}(G)$. Goddard and Oellermann gave a survey on this subject, see [19].

The distance between two vertices u and v in a connected graph G also equals the minimum size of a connected subgraph of G containing both u and v. This observation suggests a generalization of the classical graph distance. The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou [8] in 1989, is a natural and nice generalization of the concept of classical graph distance. For a graph $G(V, E)$ and a set $S \subseteq V(G)$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph $T\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance $d_{G}(S)$ among the vertices of S (or simply the distance of S) is the minimum size among all connected subgraphs whose vertex sets contain S. When there is no S-Steiner tree, we set $d_{G}(S)=\infty$ by convention. Note that if H is a connected subgraph of G such that $S \subseteq V(H)$ and $|E(H)|=d(S)$, then H is a tree. Clearly, $d(S)=\min \{e(T) \mid S \subseteq V(T)\}$, where T is subtree of G. Furthermore, if $S=\{u, v\}$, then $d(S)=d(u, v)$ is nothing new but the classical distance between u and v. Clearly, if $|S|=k$, then $d(S) \geq k-1$. If G is the graph of Figure $1(a)$ and $S=\{u, v, x\}$, then $d(S)=4$. There are several trees of size 4 containing S. One such tree T is also shown in Figure 1 (b), see [8].

Figure 1. Graphs for the basic definition
Let n and k be two integers with $2 \leq k \leq n$. The Steiner k-eccentricity $e_{k}(v)$ of a vertex v of G is defined by $e_{k}(v)=\max \{d(S)|S \subseteq V(G),|S|=k$, and $v \in$ $S\}$. The Steiner k-radius of G is $\operatorname{srad}_{k}(G)=\min \left\{e_{k}(v) \mid v \in V(G)\right\}$, while the Steiner k-diameter of G is $\operatorname{sdiam}_{k}(G)=\max \left\{e_{k}(v) \mid v \in V(G)\right\}$. Note for every connected graph $G, e_{2}(v)=e(v)$ for all vertices v of $G, \operatorname{srad}_{2}(G)=\operatorname{rad}(G)$ and $\operatorname{sdiam}_{2}(G)=\operatorname{diam}(G)$. Each vertex of the graph G of Figure $1(c)$ is labeled with its Steiner 3-eccentricity, so that $\operatorname{srad}_{3}(G)=4$ and $\operatorname{sdiam}_{3}(G)=6$.

In [12], Dankelmann, Swart and Oellermann obtained an upper bound on $\operatorname{sdiam}_{k}(G)$ for a graph G in terms of the order of G and the minimum degree of G, that is, $\operatorname{sdiam}_{k}(G) \leq \frac{3 n}{\delta+1}+3 k$. Recently, Ali, Dankelmann, Mukwembi [2] improved the bound of $\operatorname{sdiam}_{n}(G)$ and showed that $\operatorname{sdiam}_{k}(G) \leq \frac{3 n}{\delta+1}+2 k-5$,
for all connected graphs G. Moreover, they constructed graphs to show that the bounds are asymptotically best possible.

The Steiner tree problem in networks, and particularly in graphs, was formulated in 1971 by Hakimi (see [20]) and Levi (see [24]). In the case of an unweighted, undirected graph, this problem consists of finding, for a subset of vertices S, a minimal-size connected subgraph that contains the vertices in S. The computational side of this problem has been widely studied, and it is known that it is an NP-hard problem for general graphs (see [21]). The determination of a Steiner tree in a graph is a discrete analogue of the well-known geometric Steiner problem: In a Euclidean space (usually a Euclidean plane) find the shortest possible network of line segments interconnecting a set of given points. Steiner trees have application to multiprocessor computer networks. For example, it may be desired to connect a certain set of processors with a subnetwork that uses the least number of communication links. A Steiner tree for the vertices, corresponding to the processors that need to be connected, corresponds to such a desired subnetwork. The problem of determining the Steiner distance is known to be NP-hard [17].

Let G be a k-connected graph and u, v be any pair of vertices of G. Let $P_{k}(u, v)$ be a family of k vertex-disjoint paths between u and v, i.e., $P_{k}(u, v)=\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$, where $p_{1} \leq p_{2} \leq \cdots \leq p_{k}$ and p_{i} denotes the number of edges of path p_{i}. The k-distance $d_{k}(u, v)$ between vertices u and v is the minimum $\left|p_{k}\right|$ among all $P_{k}(u, v)$ and the k-diameter $d_{k}(G)$ of G is defined as the maximum k-distance $d_{k}(u, v)$ over all pairs u, v of vertices of G. The concept of k-diameter emerges rather naturally when one looks at the performance of routing algorithms. Its applications to network routing in distributed and parallel processing are studied and discussed by various authors including Chung [10], Du et al. [14], Hsu [22, 23], Meyer and Pradhan [16].

In the sequel, let $K_{s, t}, K_{n}, P_{n}$ and C_{n} denote the complete bipartite graph of order $s+t$ with part sizes s and t, complete graph of order n, path of order n, and cycle of order n, respectively. The degree of a vertex v in G is denoted by $d_{G}(v)$. For $S \subseteq V(G)$, we denote $G-S$ the subgraph by deleting the vertices of S together with the edges incident with them from G. If $S=\{v\}$, we simply write $G-v$ for $G-\{v\}$. Let $N_{G}(v)$ denote the neighbors of the vertex v in G.

From the above definitions, the following observation is easily seen.

Observation 1.1. Let k, n be two integers with $2 \leq k \leq n$.
(1) For a complete graph $K_{n}, \operatorname{sdiam}_{k}\left(K_{n}\right)=k-1$;
(2) For a path $P_{n}, \operatorname{sdiam}_{k}\left(P_{n}\right)=n-1$;
(3) For a cycle $C_{n}, \operatorname{sdiam}_{k}\left(C_{n}\right)=\left\lfloor\frac{n(k-1)}{k}\right\rfloor$.

In [9], Chartrand et al. derived the upper and lower bounds for $\operatorname{sdiam}_{k}(G)$.

Proposition 1.2 ([9]). Let k, n be two integers with $2 \leq k \leq n$, and let G be a connected graph of order n. Then

$$
k-1 \leq \operatorname{sdiam}_{k}(G) \leq n-1
$$

Moreover, the bounds are sharp.
The following observation is immediate.
Observation 1.3. Let G be a connected graph of order n. Then
(1) $\operatorname{sdiam}_{2}(G)=1$ if and only if G is a complete graph;
(2) $\operatorname{sdiam}_{2}(G)=n-1$ if and only if G is a path of order n.

Let $u v$ be an edge in G. A double-star on $u v$ is a maximal tree in G which is the union of stars centered at u or v such that each star contains the edge $u v$. Bloom [4] characterized the graphs with $\operatorname{sdiam}_{2}(G)=2$.
Theorem 1.4 ([4]). Let G be a connected graph of order n. Then $\operatorname{sdiam}_{2}(G)=$ 2 if and only if \bar{G} is non-empty and \bar{G} does not contain a double star of order n as its subgraph.

In this paper, we focus on the case $k=3$ and characterize the graphs with $\operatorname{sdiam}_{3}(G)=2$ in Section 2, which can be seen as an extension of (1) of Observation 1.3.
Theorem 1.5. Let G be a connected graph of order n. Then $\operatorname{sdiam}_{3}(G)=2$ if and only if $0 \leq \Delta(\bar{G}) \leq 1$ if and only if $n-2 \leq \delta(G) \leq n-1$.

We now define two graph classes. A triple-star H_{1} is defined as a connected graph of order n obtained from a triangle and three stars $K_{1, a}, K_{1, b}, K_{1, c}$ by identifying the center of a star and one vertex of the triangle, where $0 \leq a \leq$ $b \leq c, c \geq 1$ and $a+b+c=n-3$; see Figure $2(a)$. Let H_{2} be a connected graph of order n obtained from a path $P=u v w$ and $n-3$ vertices such that for each $x \in V\left(H_{2}\right)-\{u, v, w\}, x u, x v, x w \in E\left(H_{2}\right)$, or $x u, x v \in E\left(H_{2}\right)$ but $x w \notin E\left(H_{2}\right)$, or $x v, x w \in E\left(H_{2}\right)$ but $x u \notin E\left(H_{2}\right)$, or $x u, x w \in E\left(H_{2}\right)$ but $x v \notin E\left(H_{2}\right)$, or $x v \in E\left(H_{2}\right)$ but $x u, x w \notin E\left(H_{2}\right)$; see Figure $2(b)$.

(a) H_{1}

(b) H_{2}

Figure 2. Graphs for Theorem 1.6
Graphs with $\operatorname{sdiam}_{3}(G)=3$ are also characterized in Section 2, which can be seen as an extension of Theorem 1.4.

Theorem 1.6. Let G be a connected graph of order n. Then $\operatorname{sdiam}_{3}(G)=3$ if and only if G satisfies the following conditions.

- $\Delta(\bar{G}) \geq 2$;
- \bar{G} does not contain a triple-star H_{1} as its subgraph;
- \bar{G} does not contain H_{2} as its subgraph.

Denote by $T_{a, b, c}$ a tree with a vertex v of degree 3 such that $T_{a, b, c}-v=$ $P_{a} \cup P_{b} \cup P_{c}$, where $0 \leq a \leq b \leq c$ and $1 \leq b \leq c$ and $a+b+c=n-1$; see Figure $3(a)$. Observe that $T_{0, b, c}$, where $b+c=n-1$, is a path of order n. Denote by $\triangle_{p, q, r}$ a unicyclic graph containing a triangle K_{3} and satisfying $\triangle_{p, q, r}-V\left(K_{3}\right)=P_{p} \cup P_{q} \cup P_{r}$, where $0 \leq p \leq q \leq r$ and $p+q+r=n-3$; see Figure 3 (b).

Figure 3. Graphs for Theorem 1.7

In Section 2, graphs with $\operatorname{sdiam}_{3}(G)=n-1$ are also characterized, which can be seen as an extension of (2) of Observation 1.3.

Theorem 1.7. Let G be a connected graph of order $n(n \geq 3)$. Then sdiam ${ }_{3}(G)$ $=n-1$ if and only if $G=T_{a, b, c}$, where $a \geq 0$ and $1 \leq b \leq c$ and $a+b+c=n-1$, or $G=\triangle_{p, q, r}$, where $0 \leq p \leq q \leq r$ and $p+q+r=n-3$.

Let $\mathcal{G}(n)$ denote the class of simple graphs of order n. Give a graph theoretic parameter $f(G)$ and a positive integer n, the Nordhaus-Gaddum Problem is to determine sharp bounds for: (1) $f(G)+f(\bar{G})$ and (2) $f(G) \cdot f(\bar{G})$, as G ranges over the class $\mathcal{G}(n)$, and characterize the extremal graphs. The NordhausGaddum type relations have received wide investigations. Recently, Aouchiche and Hansen published a survey paper on this subject, see [3].

Xu [25] obtained the Nordhaus-Gaddum results for the Steiner 2-diameter of graphs. In Section 3, we obtain the Nordhaus-Gaddum results for the Steiner k-diameter of graphs.

Theorem 1.8. Let $G \in \mathcal{G}(n)$ be a connected graph, and \bar{G} be its connected complement. Let k be an integer with $3 \leq k \leq n$. Then
(i) $2 k-1-x \leq \operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \leq \max \{n+k-1,4 k-2\}$;
(ii) $\operatorname{sdiam}_{n}(G) \cdot \operatorname{sdiam}_{n}(\bar{G})=(n-1)^{2}$,
where $x=0$ if $n \geq 2 k-2$ and $x=1$ if $n<2 k-2$.

For $k=n, n-1, n-2,3$, we improve the above Nordhaus-Gaddum results of Steiner k-diameter and obtain the following results.

Observation 1.9. Let $G \in \mathcal{G}(n)$ be a connected graph, and \bar{G} be its connected complement. Let k be an integer with $3 \leq k \leq n$. Then
(i) $\operatorname{sdiam}_{n}(G)+\operatorname{sdiam}_{n}(\bar{G})=2 n-2$;
(ii) $\operatorname{sdiam}_{n}(G) \cdot \operatorname{sdiam}_{n}(\bar{G})=(n-1)^{2}$.

Akiyama and Harary [1] characterized the graphs for which G and \bar{G} both have connectivity one.

Lemma 1.10 ([1]). Let G be a graph with n vertices. Then $\kappa(G)=\kappa(\bar{G})=1$ if and only if G satisfies the following conditions.
(i) $\kappa(G)=1$ and $\Delta(G)=n-2$;
(ii) $\kappa(G)=1, \Delta(G) \leq n-3$ and G has a cut vertex v with pendant edge e and pendant vertex u such that $G-u$ contains a spanning complete bipartite subgraph.

By Lemma 1.10, we obtain the following result.
Proposition 1.11. Let $G \in \mathcal{G}(n)(n \geq 5)$ be a connected graph with a connected complement \bar{G}. Then
(i) $2 n-4 \leq \operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G}) \leq 2 n-2$;
(ii) $(n-2)^{2} \leq \operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G}) \leq(n-1)^{2}$.

Moreover,
(a) $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-4$ or $\operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G})=$ $(n-2)^{2}$ if and only if both G and \bar{G} are 2-connected;
(b) $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-3$ or $\operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G})=$ $(n-1)(n-2)$ if and only if $\lambda(G)=1$ and \bar{G} are 2 -connected, or $\lambda(\bar{G})=1$ and G are 2-connected.
(c) $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-2$ or $\operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G})=$ $(n-1)^{2}$ if and only if G satisfies one of the following conditions.

- $\kappa(G)=1, \Delta(G)=n-2$;
- $\kappa(G)=1, \Delta(G) \leq n-3$ and G has a cut vertex v with pendant edge e and pendant vertex u such that $G-u$ contains a spanning complete bipartite subgraph.

Proposition 1.12. Let $G \in \mathcal{G}(n)(n \geq 5)$ be a connected graph with a connected complement \bar{G}. If both G and \bar{G} contains at least two cut vertices, then
(i) $2 n-6 \leq \operatorname{sdiam}_{n-2}(G)+\operatorname{sdiam}_{n-2}(\bar{G}) \leq 2 n-2$;
(ii) $(n-3)^{2} \leq \operatorname{sdiam}_{n-2}(G) \cdot \operatorname{sdiam}_{n-2}(\bar{G}) \leq(n-1)^{2}$.

Otherwise,
(iii) $2 n-6 \leq \operatorname{sdiam}_{n-2}(G)+\operatorname{sdiam}_{n-2}(\bar{G}) \leq 2 n-3$;
(iv) $(n-3)^{2} \leq \operatorname{sdiam}_{n-2}(G) \cdot \operatorname{sdiam}_{n-2}(\bar{G}) \leq(n-1)(n-2)$.

Moreover, the upper and lower bounds are sharp.

For Steiner 3-diameter, we improve the result in Theorem 1.8 and prove the following result in Section 3.
Proposition 1.13. Let $G \in \mathcal{G}(n)(n \geq 10)$ be a connected graph with a connected complement \bar{G}. Then
(i) $6 \leq \operatorname{sdiam}_{3}(G)+\operatorname{sdiam}_{3}(\bar{G}) \leq n+2$;
(ii) $9 \leq \operatorname{sdiam}_{3}(G) \cdot \operatorname{sdiam}_{3}(\bar{G}) \leq 3(n-1)$.

Moreover, the bounds are sharp.

2. Graphs with given Steiner 3-diameter

In this section, we characterize graphs with $\operatorname{sdiam}_{3}(G)=2,3, n-1$ and give the proofs of Theorems 1.5, 1.6 and 1.7.

The following observation is easily seen.
Observation 2.1. If H is a spanning subgraph of G, then $\operatorname{sdiam}_{k}(G) \leq \operatorname{sdiam}_{k}(H)$.
When $G=T$ is a tree of order n, graphs attaining the upper bound of Proposition 1.2 can be characterized in the following, which will be used later.

Proposition 2.2. Let k, n be two integers with $2 \leq k \leq n$, and let T be a tree of order n. Then sdiam $_{k}(T)=n-1$ if and only if $r \leq k$, where r is the number of leaves in T.

Proof. Suppose $r \leq k$. Let $v_{1}, v_{2}, \cdots, v_{r}$ be all the leaves of T. Choose $S \subseteq$ $V(T)$ and $|S|=k$ such that $v_{1}, v_{2}, \cdots, v_{r} \in S$. Then any S-Steiner tree must use all edges of T. Since $|E(T)|=n-1$, it follows that $d_{T}(S) \geq|E(T)|=n-1$ and hence $\operatorname{sdiam}_{k}(T) \geq n-1$. Combining this with Proposition 1.2, we have $\operatorname{sdiam}_{k}(T)=n-1$.

Conversely, suppose $\operatorname{sdiam}_{k}(T)=n-1$. If $s \geq k+1$, then for any $S \subseteq V(G)$ with $|S|=k$, there exists a leaf v in T such that $v \notin S$. Let $T^{\prime}=T-v$. Then T^{\prime} is a S-Steiner tree and hence $d_{T}(S) \leq n-2$. From the arbitrariness of S, we have $\operatorname{sdiam}_{k}(T) \leq n-2<n-1$, a contradiction. So $s \leq k$.

From Proposition 1.2, we have $k-1 \leq \operatorname{sdiam}_{k}(G) \leq n-1$. We now show a property of the graphs attaining the lower bound.

Lemma 2.3. Let n, k be two integers with $2 \leq k \leq n$, and let G be a connected graph of order n. If $\operatorname{sdiam}_{k}(G)=k-1$, then $0 \leq \Delta(\bar{G}) \leq k-2$, namely, $n-k+1 \leq \delta(G) \leq n-1$.

Proof. Suppose $\Delta(\bar{G}) \geq k-1$. Then there exists a vertex $u \in V(\bar{G})$ such that $d_{\bar{G}}(u) \geq k-1$. Pick up $v_{1}, v_{2}, \cdots, v_{k-1} \in N_{\bar{G}}(u)$. Let $S=\left\{u, v_{1}, v_{2}, \cdots, v_{k-1}\right\}$. Since $u v_{i} \in E(\bar{G})(1 \leq i \leq k-1)$, it follows that $u v_{i} \notin E(G)$ and hence u is an isolated vertex in $G[S]$. Thus, any S-Steiner tree must use k edges of $E(G)$, which implies that $d_{G}(S) \geq k$. Therefore, $\operatorname{siam}_{k}(G) \geq k$, a contradiction. So $0 \leq \Delta(\bar{G}) \leq k-2$, namely, $n-k+1 \leq \delta(G) \leq n-1$.

Proof of Theorem 1.5. For Lemma 2.3, if $\operatorname{sdiam}_{3}(G)=2$, then $0 \leq \Delta(\bar{G}) \leq$ 1. Conversely, if $0 \leq \Delta(\bar{G}) \leq 1$, then $n-2 \leq \delta(G) \leq n-1$. Thus, G is a graph obtained from the complete graph of order n by deleting some independent edges. For any $S=\{u, v, w\} \subseteq V(G)$, at least two elements in $\{u v, v w, u w\}$ belong to $E(G)$. Without loss of generality, let $u v, v w \in E(G)$. It is clear that the tree T induced by the edges in $\{u v, v w\}$ is an S-Steiner tree and hence $d_{G}(S) \leq 2$. From the arbitrariness of S, we have $\operatorname{sdiam}_{3}(G) \leq 2$ and hence $\operatorname{sdiam}_{3}(G)=2$ by Proposition 1.2.

Proof of Theorem 1.6. Suppose that G is a graph with $\operatorname{sdiam}_{3}(G)=3$. From Theorem 1.5, we have $\Delta(\bar{G}) \geq 2$. It suffices to prove the following two claims.

Claim 1. \bar{G} does not contain a triple-star as its subgraph.
Assume, to the contrary, that \bar{G} contains a triple-star H_{1} as its subgraph. Choose $S=\{u, v, w\}$. Then $u v, u w, v w \in E(\bar{G})$ and hence $u v, u w, v w \notin E(G)$. For any $x \in V(G)-S$, one can see that $x u \notin E(G)$ or $x v \notin E(G)$ or $x w \notin E(G)$. Observe that any S-Steiner tree T must occupy at least one vertex of $V(G)-S$, say y. Then $y u \notin E(G)$ or $y v \notin E(G)$ or $y w \notin E(G)$. Without loss of generality, let $y u \notin E(G)$. Therefore, the tree T must occupy at least one vertex of $V(G)-\{u, v, w, y\}$. Thus the tree T contains at least 5 vertices in G, which implies that $d_{G}(S) \geq 4$ and hence $\operatorname{sdiam}_{3}(G) \geq 4$, a contradiction. So \bar{G} does not contain H_{1} as its subgraph.

Claim 2. \bar{G} does not contain H_{2} as its subgraph.
Assume, to the contrary, that G contains H_{2} as its subgraph. Choose $S=$ $\{u, v, w\} \subseteq V(G)$. Since $u v, v w \in E(\bar{G})$, it follows that $u v, v w \notin E(G)$. It is clear that any S-Steiner tree T uses at least one vertex in $V(G)-S$. For each $x \in V(G)-S$, we have $x u, x v, x w \in E(\bar{G})$ or $x u, x v \in E(\bar{G})$ or $x v, x w \in E(\bar{G})$ or $x u, x w \in E(\bar{G})$ or $x v \in E(\bar{G})$, that is, $x u, x v, x w \notin E(G)$ or $x u, x v \notin E(G)$ or $x v, x w \notin E(G)$ or $x u, x w \notin E(G)$ or $x v \notin E(G)$. One can see that the tree T connecting S uses at least two vertices in $V(G)-S$. Therefore, $e(T) \geq 4$ and $d_{G}(S) \geq 4$, and hence $\operatorname{sdiam}_{3}(G) \geq 4$, a contradiction. So \bar{G} does not contain H_{2} as its subgraph.

From the above arguments, we know that the result holds.
Conversely, suppose that G is a connected graph such that $\Delta(\bar{G}) \geq 2$ and \bar{G} does not contain both H_{1} and H_{2} as its subgraph. From the definition of $\operatorname{sdiam}_{3}(G)$, it suffices to show that $d_{G}(S)=3$ for any $S \subseteq V(G)$. Set $S=\{u, v, w\}$. Then $0 \leq|E(G[S])| \leq 3$.

If $2 \leq|E(G[S])| \leq 3$, then there are two edges in $G[S]$ belonging to $E(G)$, say $u v, v w$. Therefore, the tree T induced by the edges in $\{u v, v w\}$ is an S-Steiner tree in G, and hence $d_{G}(S)=2<3$, as desired.

Suppose $|E(G[S])|=0$. Then $u v, v w, u w \notin E(G)$ and hence $u v, v w, u w \in$ $E(\bar{G})$. Because \bar{G} does not contain the subgraph H_{1} as its subgraph, there exists a vertex $y \in V(G)-S$ such that $y u, y v, y w \notin E(\bar{G})$, which implies
$y u, y v, y w \in E(G)$. It is clear that the tree T induced by the edges in $\{y u, y v, y w\}$ is an S-Steiner tree in G and hence $d_{G}(S) \leq 3$, as desired.

Suppose $|E(G[S])|=1$. Without loss of generality, let $u w \in E(G)$. Then $u v, v w \in E(\bar{G})$. Since \bar{G} does not contain H_{2} as its subgraph, there exists a vertex $x \in V(G)-S$ such that $x u \in E(\bar{G})$ but $x v, x w \notin E(\bar{G})$, or $x w \in E(\bar{G})$ but $x u, x v \notin E(\bar{G})$. By symmetry, we only need to consider the former case. Then $x v, x w \in E(G)$. Combining this with $u w \in E(G)$, the tree T induced by the edges in $\{x v, x w, u w\}$ is an S-Steiner tree in G, and hence $d_{G}(S) \leq 3$, as desired.

From the arbitrariness of S, we know that $\operatorname{sdiam}_{3}(G) \leq 3$. Since $\Delta(\bar{G}) \geq 2$, it follows from Theorem 1.5 that $\operatorname{sdiam}_{3}(G)=3$.

We are now in a position to give the proof of Theorem 1.7.
Lemma 2.4. Let G be a connected graph of order $n(n \geq 5)$. If $4 \leq c(G) \leq n$, then $\operatorname{sdiam}_{3}(G) \leq n-2$, where $c(G)$ is the circumference of the graph G.

Proof. If $c(G)=n$, then there is a Hamilton cycle C_{n} in G. From Observations 1.1 and 2.1, we have $\operatorname{sdiam}_{3}(G) \leq \operatorname{sdiam}_{3}\left(C_{n}\right)=\left\lfloor\frac{2}{3} n\right\rfloor \leq n-2$. Let $c(G)=$ $t(4 \leq t \leq n-1)$. Then there exists a cycle of order t in G, say $C_{t}=v_{1} v_{2} \cdots v_{t} v_{1}$. Let $G_{1}, G_{2}, \cdots, G_{r}$ be the connected components of $G-V\left(C_{t}\right)$.

Suppose $r \geq 4$. Clearly, each connected component $G_{i}(1 \leq i \leq r)$ contains a spanning tree T_{i} (note that if G_{i} is trivial, then T_{i} is trivial). Since G is connected, there is an edge e_{i} such that one endpoint of e_{i} belongs to $V\left(T_{i}\right)$ and the other endpoint belongs to $V\left(C_{t}\right)$. Furthermore, we choose one edge from the cycle C_{t}, say e, and delete it. Then the tree T induced by the edges in $\left(\bigcup_{i=1}^{r} E\left(T_{i}\right)\right) \cup\left(\bigcup_{i=1}^{r} e_{j}\right) \cup\left(E\left(C_{t}\right)-e\right)$ is a spanning tree of G with at least four leaves. From Proposition 2.2 and Observation 2.1, $\operatorname{sdiam}_{3}(G) \leq \operatorname{sdiam}_{3}(T) \leq$ $n-2$, as desired.

We now assume $r \leq 3$. It suffices to show that $d_{G}(S) \leq n-2$ for any $S \subseteq V(G)$ with $|S|=3$. We have the following four cases to consider. If $\mid S \cap$ $V\left(C_{t}\right) \mid=3$, then it follows from Observation 1.1 that $d_{G}(S) \leq \operatorname{sdiam}_{3}\left(C_{t}\right)=$ $\left\lfloor\frac{2}{3} t\right\rfloor \leq \frac{2}{3} t \leq \frac{2}{3}(n-1) \leq n-2$, as desired. If $\left|S \cap V\left(C_{t}\right)\right|=2$, then there exists a vertex $x \in S$ such that $x \in V\left(G-V\left(C_{t}\right)\right)$. Then x must belong to some connected component in $G-V\left(C_{t}\right)$. Without loss of generality, let $x \in V\left(G_{1}\right)$, and let $S=\left\{x, v_{i}, v_{j}\right\}$ where $v_{i}, v_{j} \in V\left(C_{t}\right)(1 \leq i \neq j \leq t)$. Because G_{1} is connected, G_{1} contains a spanning tree, say T_{1}. Since G is connected, we can find an edge e_{1} with one endpoint belonging to $V\left(T_{1}\right)$ and the other, say v_{k}, belonging to $V\left(C_{t}\right)$ (note that v_{k}, v_{i} or v_{k}, v_{j} are not necessarily different). Since $d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right) \leq \operatorname{sdiam}_{3}\left(C_{t}\right)=\left\lfloor\frac{2}{3} t\right\rfloor$, we have $d_{G}(S) \leq d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right)+$ $\left|E\left(T_{1}\right)\right|+1=d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right)+\left|V\left(T_{1}\right)\right| \leq\left\lfloor\frac{2}{3} t\right\rfloor+n-t \leq n-\frac{1}{3} t<n-1$ and hence $d_{G}(S) \leq n-2$, as desired.

Suppose $\left|S \cap V\left(C_{t}\right)\right|=1$. Then there exist two vertices $x, y \in S$ such that $x, y \in V\left(G-V\left(C_{t}\right)\right)$. Set $S=\left\{x, y, v_{i}\right\}$ where $v_{i} \in V\left(C_{t}\right)(1 \leq i \leq t)$. Thus,
x, y must belong to the same connected component of $G-V\left(C_{t}\right)$, or x, y belong to two different connected components. Consider the former case. Without loss of generality, let $x, y \in V\left(G_{1}\right)$. Since G_{1} is connected, it follows that G_{1} contains a spanning tree, say T_{1}. Because G is connected, we can find an edge e_{1} with one endpoint belonging to $V\left(T_{1}\right)$ and the other, say v_{j}, belonging to $V\left(C_{t}\right)$ (note that v_{i} and v_{j} are not necessarily different). Since $d\left(\left\{v_{i}, v_{j}\right\}\right) \leq\left\lfloor\frac{1}{2} t\right\rfloor$, it follows that $d_{G}(S) \leq d\left(\left\{v_{i}, v_{j}\right\}\right)+\left|E\left(T_{1}\right)\right|+1=d\left(\left\{v_{i}, v_{j}\right\}\right)+\left|V\left(T_{1}\right)\right| \leq n-t+$ $\left\lfloor\frac{1}{2} t\right\rfloor \leq n-\left\lceil\frac{1}{2} t\right\rceil$. Since $t \geq 4$, we have $d_{G}(S) \leq n-2$, as desired. Consider the latter case. Without loss of generality, let $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. Clearly, $G_{i}(i=1,2)$ contains a spanning tree T_{i}. We can find the edges e_{1}, e_{2} with one endpoint belonging to $V\left(T_{1}\right), V\left(T_{2}\right)$ and the other, say v_{j}, v_{k}, belonging to $V\left(C_{t}\right)$, respectively (note that v_{i}, v_{j}, v_{k} are not necessarily different). Since $d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right) \leq \operatorname{sdiam}_{3}\left(C_{t}\right)=\left\lfloor\frac{2}{3} t\right\rfloor$, we have $d_{G}(S) \leq d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right)+\left|E\left(T_{1}\right)\right|+$ $\left|E\left(T_{2}\right)\right|+2=d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right)+\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right| \leq\left\lfloor\frac{2}{3} t\right\rfloor+n-t \leq n-\left\lceil\frac{1}{3} t\right\rceil$ and hence $d_{G}(S) \leq n-2$, as desired.

Suppose $\left|S \cap V\left(C_{t}\right)\right|=0$. Then $S \subseteq V\left(G-V\left(C_{t}\right)\right)$. Let $S=\{x, y, z\}$. Thus, x, y, z belong to three different connected components, or x, y, z belong to two different connected components, or x, y, z must belong to one connected component. We only prove the first case, the other two cases can be proved similarly. Without loss of generality, let $x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)$ and $z \in V\left(G_{3}\right)$. For $i=1,2,3, G_{i}$ contains a spanning tree T_{i}. Since G is connected, we can find the edges e_{1}, e_{2}, e_{3} with one endpoint belonging to $V\left(T_{1}\right), V\left(T_{2}\right), V\left(T_{3}\right)$ and the other, say v_{i}, v_{j}, v_{k}, belonging to $V\left(C_{t}\right)$, respectively (note that v_{j}, v_{k}, v_{j} are not necessarily different). Since $d_{G}\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right) \leq \operatorname{sdiam}_{3}\left(C_{t}\right)=\left\lfloor\frac{2}{3} t\right\rfloor$, we have $d_{G}(S) \leq d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right)+\sum_{i=1}^{3}\left|E\left(T_{i}\right)\right|+3=d\left(\left\{v_{i}, v_{j}, v_{k}\right\}\right)+\sum_{i=1}^{3}\left|V\left(T_{i}\right)\right| \leq$ $\left\lfloor\frac{2}{3} t\right\rfloor+n-t \leq n-\left\lceil\frac{1}{3} t\right\rceil$ and hence $d_{G}(S) \leq n-2$, as desired.

From the above arguments, we conclude that $\operatorname{sdiam}_{3}(G) \leq n-2$. The proof is now complete.

If T is a nontrivial tree and $S \subseteq V(T)$, where $|S| \geq 2$, then there is a unique subtree T_{s} of size $d(S)$ containing the vertices of S. We refer to such a tree as the tree generated by S.

Chartrand, Oellermann, Tian and Zou [8] obtained the following result.
Lemma 2.5 ([8]). If H is a subgraph of a graph G and v is a vertex of G, then $d(v, H)$ denotes the minimum distance from v to a vertex of H. Therefore,

$$
d(S \cup\{v\})=d(S)+d\left(v, T_{s}\right)
$$

Proof of Theorem 1.7. For $n=3$, $\operatorname{sdiam}_{3}(G)=n-1=2$ if and only if $G=P_{3}=T_{0,1,1}$ or $G=K_{3}=\triangle_{0,0,0}$. For $n=4, \operatorname{sdiam}_{3}(G)=n-1=3$ if and only if $G=P_{4}=T_{0,1,2}$ or $G=\triangle_{0,0,1}$. We now assume $n \geq 5$.

Suppose $G=T_{a, b, c}$, where $0 \leq a \leq b \leq c$ and $1 \leq b \leq c$ and $a+b+c=n-1$. Since there are at most three leaves in G, it follows from Proposition 2.2 that
$\operatorname{sdiam}_{3}(G)=n-1$. Suppose $G=\triangle_{p, q, r}$, where $0 \leq p \leq q \leq r$ and $p+q+r=$ $n-3$. From Proposition 1.2, we have $\operatorname{sdiam}_{3}(G) \leq n-1$. It suffices to show that $\operatorname{sdiam}_{3}(G) \geq n-1$. Choose the three leaves in $T_{a, b, c}$, say x, y, z, such that $x \in V\left(P_{a}\right), y \in V\left(P_{b}\right)$ and $z \in V\left(P_{c}\right)$. Let $S^{\prime}=\{x, z\}$ and $S=\{x, y, z\}$. From Lemma 2.5, $d_{G}(S)=d_{G}\left(S^{\prime} \cup\{y\}\right)=d_{G}\left(S^{\prime}\right)+d\left(y, T_{s}\right)=(b+c)+a=n-1$, and hence $\operatorname{sdiam}_{3}(G)=\operatorname{sdiam}_{3}\left(T_{a, b, c}\right)=n-1$, as desired. Similarly, we can get $\operatorname{sdiam}_{3}\left(\triangle_{p, q, r}\right)=n-1$, as desired.

Conversely, suppose $\operatorname{sdiam}_{3}(G)=n-1$. If G is a tree, then it follows from Proposition 2.2 that G contains at most three leaves. Thus, $G=T_{a, b, c}$, where $0 \leq a \leq b \leq c$ and $1 \leq b \leq c$ and $a+b+c=n-1$. Now, we consider the graph G containing cycles. Recall that $c(G)$ is the circumference of the graph G. Obviously, $3 \leq c(G) \leq n$. If $4 \leq c(G) \leq n$, then it follows from Lemma 2.4 that $\operatorname{sdiam}_{3}(G) \leq n-2$, a contradiction. Therefore, $c(G)=3$. Suppose that G contains at least two triangles. If there exist two triangles having at most one common vertex, then G contains a spanning tree with at least four leaves, say T. From Observation 2.1 and Proposition 1.2, we have $\operatorname{sdiam}_{3}(G) \leq \operatorname{sdiam}_{3}(T) \leq$ $n-2$, a contradiction. So we assume that there exist two triangles having two common vertices in G. Therefore, G contains K_{4}^{-}as its subgraph, where K_{4}^{-} is a graph obtained from a clique K_{4} by deleting one edge. Now, we consider the two vertices of degree 3 in K_{4}^{-}. If the degree of each such vertex in K_{4}^{-} is larger than 4 in G, then G contains a spanning tree with four leaves. Again from Observation 2.1 and Proposition 1.2, $\operatorname{sdiam}_{3}(G) \leq \operatorname{sdiam}_{3}(T) \leq n-2$, a contradiction. Then G contains the graph H as its subgraph, where H is a graph obtained from K_{4}^{-}and two paths by identifying one endvertex of each path and each vertex of degree 2 in K_{4}^{-}. One can also that $\operatorname{sdiam}_{3}(H) \leq n-2$ and hence $\operatorname{sdiam}_{3}(G) \leq \operatorname{sdiam}_{3}(H) \leq n-2$, a contradiction. From the above arguments, we conclude that G only contains one triangle and hence $G=\triangle_{a, b, c}$. The proof is complete.

3. Nordhaus-Gaddum results

The following proposition is a preparation of the proof of Theorem 1.8.
Proposition 3.1. Let G be a connected graph. If $\operatorname{sdiam}_{k}(G) \geq 2 k$, then $\operatorname{sdiam}_{k}(\bar{G}) \leq k$.

Proof. For any $S \subseteq V(G)$ and $|S|=k$, if $G[S]$ is not connected, then $\bar{G}[S]$ is connected, and hence $d_{\bar{G}}(S)=k-1<k$. Suppose that $G[S]$ is connected. Then we have the following claim.

Claim 1. There exists a vertex $u \in V(G)-S$ such that $\left|E_{G}[u, S]\right|=0$.
Assume, to the contrary, that $\left|E_{G}[x, S]\right| \geq 1$ for any $x \in V(G)-S$. For any $S^{\prime} \subseteq V(G)$ and $\left|S^{\prime}\right|=k$, since $G[S]$ is connected and $\left|E_{G}[x, S]\right| \geq 1$ for any $x \in S^{\prime}-S$, it follows that $G\left[S \cup S^{\prime}\right]$ is connected, and hence $d_{G}\left(S^{\prime}\right) \leq 2 k-1$. From the arbitrariness of S^{\prime}, we have $\operatorname{sdiam}_{k}(G) \leq 2 k-1$, a contradiction.

From Claim 1, there exists a vertex $u \in V(G)-S$ such that $\left|E_{\bar{G}}[u, S]\right|=k$, and the tree induced by these k edges is an S-Steiner tree in \bar{G}. So $d_{\bar{G}}(S)=k$. From the arbitrariness of S, we have $\operatorname{sdiam}_{k}(\bar{G}) \leq k$, as desired.

Proof of Theorem 1.8. We first give the proof of the upper bounds. If $\operatorname{sdiam}_{k}(G) \geq 2 k$, then it follows from Proposition 3.1 that $\operatorname{sdiam}_{k}(\bar{G}) \leq k$. Furthermore, since $\operatorname{sdiam}_{k}(G) \leq n-1$, we have $\operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \leq$ $n+k-1$ and $\operatorname{sdiam}_{k}(G) \cdot \operatorname{sdiam}_{k}(\bar{G}) \leq k(n-1)$. By the same reason, if $\operatorname{sdiam}_{k}(\bar{G}) \geq 2 k$, then $\operatorname{sdiam}_{k}(G) \leq k$, and hence $\operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \leq$ $n+k-1$ and $\operatorname{sdiam}_{k}(G) \cdot \operatorname{sdiam}_{k}(\bar{G}) \leq k(n-1)$. We now assume that $\operatorname{sdiam}_{k}(G) \leq 2 k-1$ and $\operatorname{sdiam}_{k}(\bar{G}) \leq 2 k-1$. Then $\operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \leq$ $4 k-2$, and hence $\operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \leq \max \{n+k-1,4 k-2\}$ and $\operatorname{sdiam}_{k}(G) \cdot \operatorname{sdiam}_{k}(\bar{G}) \leq \max \left\{k(n-1),(2 k-1)^{2}\right\}$.

Next, we find the lower bounds. From Proposition 1.2, since $\operatorname{sdiam}_{k}(G) \geq$ $k-1$ and $\operatorname{sdiam}_{k}(\bar{G}) \geq k-1$, we have $\operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \geq 2 k-2$ and $\operatorname{sdiam}_{k}(G) \cdot \operatorname{sdiam}_{k}(\bar{G}) \geq(k-1)^{2}$. Since $n \geq 2 k-2$, we claim that $\operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \geq 2 k-1$ and $\operatorname{sdiam}_{k}(G) \cdot \operatorname{sdiam}_{k}(\bar{G}) \geq(k-1) k$. Assume, to the contrary, that $\operatorname{sdiam}_{k}(G)+\operatorname{siam}_{k}(\bar{G})=2 k-2$ and $\operatorname{sdiam}_{k}(G)$. $\operatorname{sdiam}_{k}(\bar{G}) \geq(k-1)^{2}$. Then $\operatorname{sdiam}_{k}(G)=\operatorname{sdiam}_{k}(\bar{G})=k-1$. From Lemma 2.3, we have $n-k+1 \leq \delta(G) \leq n-1$ and $0 \leq \Delta(G) \leq k-2$, and hence $n \leq$ $2 k-3$, a contradiction. So $\operatorname{sdiam}_{k}(G)+\operatorname{sdiam}_{k}(\bar{G}) \geq 2 k-1$ and $\operatorname{sdiam}_{k}(G)$. $\operatorname{sdiam}_{k}(\bar{G}) \geq(k-1) k$.

Lemma 3.2. Let G be a graph. Then sdiam ${ }_{n-1}(G)=n-2$ if and only if G is 2-connected.

Proof. Suppose that G is 2-connected. For any $S \subseteq V(G)$ and $|S|=n-1$, there exists a unique vertex $V(G)-S$, say v, such that $G-v$ is connected, and hence $G-v$ contains a spanning tree, which implies $d_{G}(S) \leq n-2$. From the arbitrariness of S, we have $\operatorname{sdiam}_{n-1}(G) \leq n-2$. From Proposition 1.2, $\operatorname{sdiam}_{n-1}(G)=n-2$.

Conversely, we suppose $\operatorname{sdiam}_{n-1}(G)=n-2$. If G is not 2 -connected, then there exists a cut vertex in G, say v. Choose $S=V(G)-v$. Then $|S|=n-1$. Observe that any S-Steiner tree must use all the vertices of G. Thus $d_{G}(S) \geq n-1$, which contradicts $\operatorname{sdiam}_{n-1}(G)=n-2$.

By using Proposition 3.1 and Lemma 3.2, we can proof Proposition 1.11.
Proof of Proposition 1.11. From Proposition 1.2, we have $2 n-4 \leq \operatorname{sdiam}_{n-1}(G)$ $+\operatorname{sdiam}_{n-1}(\bar{G}) \leq 2 n-2$ and $(n-2)^{2} \leq \operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G}) \leq(n-1)^{2}$. Clearly, $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-4$ or $\operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G})=$ $(n-2)^{2}$ if and only if $\operatorname{sdiam}_{n-1}(G)=\operatorname{sdiam}_{n-1}(\bar{G})=n-2$. From Lemma 3.2, $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-4$ or $\operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G})=(n-2)^{2}$ if and only if both G and \bar{G} are 2-connected.

It is clear that $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-3$ or $\operatorname{sdiam}_{n-1}(G)$. $\operatorname{sdiam}_{n-1}(\bar{G})=(n-1)(n-2)$ if and only if $\operatorname{sdiam}_{n-1}(G)=n-2$ and $\operatorname{sdiam}_{n-1}(\bar{G})=n-1$, or $\operatorname{sdiam}_{n-1}(G)=n-1$ and $\operatorname{sdiam}_{n-1}(\bar{G})=n-$ 2. Furthermore, $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-3$ or $\operatorname{sdiam}_{n-1}(G)$. $\operatorname{sdiam}_{n-1}(\bar{G})=(n-1)(n-2)$ if and only if $\lambda(G)=1$ and \bar{G} is 2-connected, or $\lambda(\bar{G})=1$ and G is 2 -connected.

For the remaining case, we have $\operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=2 n-2$ or $\operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G})=(n-1)^{2}$ if and only if $\operatorname{sdiam}_{n-1}(G)=$ $\operatorname{sdiam}_{n-1}(\bar{G})=n-1$. From Lemma $1.10, \operatorname{sdiam}_{n-1}(G)+\operatorname{sdiam}_{n-1}(\bar{G})=$ $2 n-2$ or $\operatorname{sdiam}_{n-1}(G) \cdot \operatorname{sdiam}_{n-1}(\bar{G})=(n-1)^{2}$ if and only if G satisfies the following conditions.

- $\kappa(G)=1, \Delta(G)=n-2 ;$
- $\kappa(G)=1, \Delta(G) \leq n-3$ and G has a cut vertex v with pendant edge e and pendant vertex u such that $G-u$ contains a spanning complete bipartite subgraph.

Proof of Proposition 1.12. From Proposition 1.2, $2 n-6 \leq \operatorname{sdiam}_{n-2}(G)+$ $\operatorname{sdiam}_{n-2}(\bar{G}) \leq 2 n-2$ and $(n-3)^{2} \leq \operatorname{sdiam}_{n-2}(G) \cdot \operatorname{sdiam}_{n-2}(\bar{G}) \leq(n-1)^{2}$. So the results follow for the case that both G and \bar{G} contain at least two cut vertices. From now on, we assume that G or \bar{G} contains only one cut vertex, or G or \bar{G} is 2-connected. Without loss of generality, we assume that G contains only one cut vertex or G is 2 -connected. For any $S \subseteq V(G)$ and $|S|=n-2$, there exists a vertex $v \in V(G)-S$ such that $G-v$ is connected, and hence $G-v$ contains a spanning tree, which implies $d_{G}(S) \leq n-2$. From the arbitrariness of S, we have $\operatorname{sdiam}_{n-2}(G) \leq n-2$. From Proposition 1.2, we have $\operatorname{sdiam}_{n-2}(\bar{G}) \leq n-1$. So $\operatorname{sdiam}_{n-2}(G)+\operatorname{sdiam}_{n-2}(\bar{G}) \leq 2 n-3$ and $\operatorname{sdiam}_{n-2}(G) \cdot \operatorname{sdiam}_{n-2}(\bar{G}) \leq(n-1)(n-2)$.

To show the sharpness of the bounds in Proposition 1.12, we consider the following example.

Example 3.3. Let $G=P_{4}$. Then $\bar{G}=P_{4}, \operatorname{sdiam}_{2}\left(P_{4}\right)=\operatorname{sdiam}_{2}\left(\overline{P_{4}}\right)=3$. Therefore, we have $\operatorname{sdiam}_{2}\left(P_{4}\right)+\operatorname{siam}_{2}\left(\overline{P_{4}}\right)=6=2 n-4$ and $\operatorname{sdiam}_{2}\left(P_{4}\right)$. $\operatorname{sdiam}_{2}\left(\overline{P_{4}}\right)=9=(n-1)^{2}$, which implies that the upper bounds are sharp for the case both G and \bar{G} contain at least two cut vertices. Let S^{*} be a tree obtained from a star of order $n-2$ and a path of length 2 by identifying the center of the star and a vertex of degree one in the path. Then $\overline{S^{*}}$ is a graph obtained from a clique of order $n-1$ by deleting an edge $u v$ and then adding an pendent edge $v w$ at v. Choose $S=V(G)-\{u, w\}$. Then any S-Steiner tree uses all the vertices of $V(G)$, and hence $d_{G}(S) \geq n-1$. From the arbitrariness of S, we have $\operatorname{sdiam}_{n-2}(G) \geq n-1$, and hence $\operatorname{sdiam}_{n-2}(G)=n-1$, by Proposition 1.2. Choose $S \subseteq V(\bar{G})-w$ and $|S|=n-2$. Then any S-Steiner tree uses $n-1$ vertices of $V(\bar{G})$, and hence $d_{\bar{G}}(S) \geq n-2$. From the arbitrariness of S, we
have $\operatorname{sdiam}_{n-2}(\bar{G}) \geq n-2$. One can easily check that $\operatorname{sdiam}_{n-2}(\bar{G}) \leq n-2$. So $\operatorname{sdiam}_{n-2}(\bar{G})=n-2$, and hence $\operatorname{sdiam}_{n-2}(G)+\operatorname{sdiam}_{n-2}(\bar{G})=2 n-3$ and $\operatorname{sdiam}_{n-2}(G) \cdot \operatorname{sdiam}_{n-2}(\bar{G})=(n-1)(n-2)$. This implies that the upper bounds in Proposition 1.12 are sharp. Let G be a graph such that both G and \bar{G} are 3-connected. For any $S \subseteq V(G)$ and $|S|=n-2$, there exist two vertices u, v in $V(G)-S$ such that $G-\{u, v\}$ is connected, and hence $G-\{u, v\}$ contains a spanning tree, which implies $d_{G}(S) \leq n-3$. From the arbitrariness of S, we have $\operatorname{sdiam}_{n-2}(G) \leq n-3$, and hence $\operatorname{sdiam}_{n-2}(G)=n-3$, by Proposition 1.2. Similarly, we have $\operatorname{sdiam}_{n-2}(\bar{G})=n-3$. Then $\operatorname{sdiam}_{n-2}(G)+\operatorname{sdiam}_{n-2}(\bar{G})=$ $2 n-6$ and $\operatorname{sdiam}_{n-2}(G) \cdot$ sdiam $_{n-2}(\bar{G})=(n-3)^{2}$, which implies that the lower bounds in Proposition 1.12 are sharp.

Proof of Proposition 1.13. The upper bounds follow from Theorem 1.8. We now find the lower bounds of $\operatorname{sdiam}_{3}(G)+\operatorname{sdiam}_{3}(\bar{G})$ and $\operatorname{sdiam}_{3}(G)$. $\operatorname{sdiam}_{3}(\bar{G})$. If $\operatorname{sdiam}_{3}(G)+\operatorname{sdiam}_{3}(\bar{G})<6$ or $\operatorname{sdiam}_{3}(G) \cdot \operatorname{sdiam}_{3}(\bar{G})<9$, then we have $\operatorname{sdiam}_{3}(G)=2$ or $\operatorname{sdiam}_{3}(\bar{G})=2$. Without loss of generality, let $\operatorname{sdiam}_{3}(G)=2$. From Theorem 1.5, we have $0 \leq \Delta(\bar{G}) \leq 1$ and hence \bar{G} is disconnected. Thus $\operatorname{sdiam}_{3}(\bar{G})=\infty$, which results in $\operatorname{sdiam}_{3}(G)+\operatorname{sdiam}_{3}(\bar{G})=$ ∞ and $\operatorname{sdiam}_{3}(G) \cdot \operatorname{sdiam}_{3}(\bar{G})=\infty$, a contradiction. ${\operatorname{So~} \operatorname{sdiam}_{3}(G)+\operatorname{sdiam}_{3}(\bar{G})}_{(\bar{G})}$ ≥ 6 and $\operatorname{sdiam}_{3}(G) \cdot \operatorname{sdiam}_{3}(\bar{G}) \geq 9$.

To show the sharpness of the bounds in Proposition 1.13, we consider the following example.
Example 3.4. One can check that $G=P_{n}$ is a sharp example for the upper bounds of this proposition. To show the sharpness of the lower bounds, we consider the following example. If $\operatorname{sdiam}_{3}(G)+\operatorname{sdiam}_{3}(\bar{G})=6$, then $\operatorname{sdiam}_{3}(G)=\operatorname{sdiam}_{3}(\bar{G})=3$. Let G^{\prime} be a graph of order $n-4$, and let a, b, c, d be a path. Let G be the graph obtained from G^{\prime} and the path by adding edges between the vertex a and all vertices of G^{\prime} and adding edges between the vertex d and all vertices of G^{\prime}; see FIHURE $4(a)$. We now show that $\operatorname{sdiam}_{3}(G)=\operatorname{sdiam}_{3}(\bar{G})=3$. Choose $S=\{a, b, d\}$. Then it is easy to see that $d_{G}(S) \geq 3$ and hence $s d i a m_{3}(G) \geq 3$. It suffices to prove that $d_{G}(S) \leq 3$ for any $S \subseteq V(G)$ with $|S|=3$. Suppose $\left|S \cap V\left(G^{\prime}\right)\right|=3$. Without loss of generality, let $S=\{x, y, z\}$. Then the tree T induced by the edges in $\{x a, y a, z a\}$ is an S-Steiner tree and hence $d_{G}(S) \leq 3$. Suppose $\left|S \cap V\left(G^{\prime}\right)\right|=2$. Without loss of generality, let $x, y \in S \cap V\left(G^{\prime}\right)$. If $a \in S$, then the tree T induced by the edges in $\{x a, y a\}$ is an S-Steiner tree, which implies $d_{G}(S) \leq 2$. If $b \in S$, then the tree T induced by the edges in $\{x a, y a, a b\}$ is an S-Steiner tree and hence $d_{G}(S) \leq 3$. Suppose $\left|S \cap V\left(G^{\prime}\right)\right|=1$. Without loss of generality, let $x \in S \cap V\left(G^{\prime}\right)$. If $a, b \in S$, then the tree T induced by the edges in $\{x a, a b\}$ is an S-Steiner tree and hence $d_{G}(S) \leq 2$. If $b, c \in S$, then the tree T induced by the edges in $\{x d, c d, b c\}$ is an S-Steiner tree and hence $d_{G}(S) \leq 3$. If $a, c \in S$, then the tree T induced by the edges in $\{x a, a b, b c\}$ is an S-Steiner tree, which

Figure 4. Graphs for Theorem 1.8
implies $d_{G}(S) \leq 3$. Suppose $\left|S \cap V\left(G^{\prime}\right)\right|=0$. If $a, b, c \in S$, then the tree T induced by the edges in $\{a b, b c\}$ is an S-Steiner tree and hence $d_{G}(S) \leq 2$. If $a, b, d \in S$, then the tree T induced by the edges in $\{a b, b c, c d\}$ is an S-Steiner tree, which implies $d_{G}(S) \leq 3$. From the arbitrariness of S, we conclude that $\operatorname{sdiam}_{3}(G) \leq 3$ and hence $\operatorname{sdiam}_{3}(G)=3$. Similarly, one can also check that $\operatorname{sdiam}_{3}(\bar{G})=3$.

Acknowledgements

The author is very grateful to the referees' valuable comments and suggestions, which helped greatly to improve the presentation of this paper. This work is supported by the National Science Foundation of China (Nos. 11601254, 11551001, 11661068, 11161037) and the Science Found of Qinghai Province (Nos. 2016-ZJ-948Q, 2014-ZJ-907).

References

[1] J. Akiyama and F. Harary, A graph and its complement with specified properties, Internat. J. Math. Math. Sci. 2 (1979), no. 2, 223-228.
[2] P. Ali, P. Dankelmann and S. Mukwembi, Upper bounds on the Steiner diameter of a graph, Discrete Appl. Math. 160 (2012), no. 12, 1845-1850.
[3] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013), no. 4-5, 466-546.
[4] G.S. Bloom, J.W. Kennedy and L.V. Quintas, A characterization of graphs of diameter two, Amer. Math. Monthly 95 (1988), no. 1, 37-38.
[5] J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244, Springer, 2008.
[6] F. Buckley and F. Harary, Distance in Graphs, Addision-Wesley, Redwood City, CA, 1990.
[7] J. Cáceresa, A. Márquezb and M.L. Puertasa, Steiner distance and convexity in graphs, European J. Combin. 29 (2008), no. 3, 726-736.
[8] G. Chartrand, O.R. Oellermann, S. Tian and H.B. Zou, Steiner distance in graphs, Ćasopis pro Pĕstování Matematiky, 114 (1989), no. 4, 399-410.
[9] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010), no. 4, 360-367.
[10] F.R.K. Chung, Diameter of graphs: Old problems and new results, 18th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Congr. Numer. 60 (1987), 295317.
[11] P. Dankelmann, H.C. Swart and O.R. Oellermann, On the average Steiner distance of graphs with prescribed properties, Discrete Appl. Math. 79 (1997), no. 1-3, 91-103.
[12] P. Dankelmann, H. Swart and O.R. Oellermann, Bounds on the Steiner diameter of a graph, Combinatorics, Graph Theory, and Algorithms, Vol. I, II (Kalamazoo, MI, 1996), pp. 269-279, New Issues Press, Kalamazoo, 1999.
[13] D.P. Day, O.R. Oellermann and H.C. Swart, Steiner Distance-hereditary graphs, SIAM J. Discrete Math. 7 (1994), no. 3, 437-442.
[14] D.Z. Du, Y.D. Lyuu and D.F. Hsu, Line digraph iteration and connectivity analysis of de Bruijn and Kautz graphs, IEEE Trans. Comput. 42 (1994), no. 5, 612-616.
[15] A. D'Atri and M. Moscarini, Distance-Hereditary graphs, Steiner trees, and connected domination, SIAM J. Comput. 17 (1988), no. 3, 521-538.
[16] F.J. Meyer and D. K. Pradhan, Flip-trees: fault-tolerant graphs with wide containers, IEEE Trans. Comput. 37 (1988), no. 4, 472-478.
[17] M.R. Garey and D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness, IEEE Trans. Comput. Freeman \& Company, New York, 1979.
[18] W. Goddard, O.R. Oellrmann and H.C. Swart, Steiner distance stable graphs, Discrete Math. 132 (1994), no. 1-3, 65-73.
[19] W. Goddard and O.R. Oellrmann, Distance in graphs, in: M. Dehmer (ed.), Structural Analysis of Complex Networks, pp. 49-72, Birkhäuser, Dordrecht, 2011.
[20] S.L. Hakimi, Steiner's problem in graph and its implications, Networks 1 (1971), no. 2, 113-133.
[21] F.K. Hwang, D.S. Richards and P. Winter, The Steiner Tree Problem, North-Holland, Amsterdam, 1992.
[22] D.F. Hsu, On container width and length in graphs, groups, and networks, IEICE Transaction on Fundamentals of Electronics, Communications and Computer Science, 77 (1994) 668-680.
[23] D.F. Hsu and T. Łuczak, On the k-diameter of k-regular k-connected graphs, Discrete Math. 133 (1994), no. 1-3, 291-296.
[24] A.Y. Levi, Algorithm for shortest connection of a group of graph vertices, Sov. Math. Dokl. 12 (1971) 1477-1481.
[25] S.J. Xu, Some parameters of graph and its complement, Discrete Math. 65 (1987), no. 2, 197-207.
(Yaping Mao) Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China.

E-mail address: maoyaping@ymail.com

[^0]: Article electronically published on 30 April, 2017.
 Received: 6 August 2014, Accepted: 29 November 2015.

