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Abstract. The aim of this paper is to compute a simplicial cohomology
group of some specific digital images. Then we define ring and algebra

structures of a digital cohomology with the cup product. Finally, we
prove a special case of the Borsuk-Ulam theorem for digital images.
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1. Introduction

Digital topology [32] is concerned with developing image analysis and com-
puter graphics. The digital simplicial homology groups [16] and cohomology
groups are major tools for image analysis because a general algorithm to de-
termine whether two different objects have isomorphic homology groups or
cohomology groups could be very effective tools for image analysis. As a re-
sult, digital homology and cohomology are significant fields for researchers.

Simplicial homology groups of digital images have been studied by several
researchers [2, 11, 13, 17, 37]. Arslan et al. [2] define the simplicial homology
groups of n-dimensional digital images which are based on the simplicial ho-
mology groups of topological spaces in algebraic topology. They also compute
simplicial homology groups of MSS18. Boxer et al. [11] improve knowledge
that are related to simplicial homology groups of digital images. Demir and
Karaca [37] introduce the simplicial homology groups of a connected sum of
digital closed κ-surfaces. They give theorems about computing the digital sim-
plicial homology groups of MSS18♯MSS18, MSS6 and MSS6♯MSS6. Ege and
Karaca [17] present some fundamental properties and definitions with respect

Article electronically published on 30 April, 2017.

Received: 4 June 2014, Accepted: 2 December 2015.
∗Corresponding author.

c⃝2017 Iranian Mathematical Society

477



Digital Borsuk-Ulam Theorem 478

to digital simplicial homology groups. They give the Eilenberg-Steenrod ax-
ioms for digital images, Universal Coefficient Theorem for digital images and
show that none of excision axiom, Künnneth formula and Hurewicz theorem
does not hold in digital images.

Karaca and Burak [25] propose a method for calculating the cohomology
ring of digital images. They compute cohomology ring of MSS′

18 and MSS18.
Also they give definitions and theorems that are related to relative cohomology
groups of digital images.

Furthermore the cup product makes the cohomology of a topological pair
into a graded algebra. In this work we show that H∗,κ(X,G) is a graded G-
algebra with cup product.

Borsuk [5] presented a proof of a conjecture of Ulam that has become known
as the Borsuk-Ulam theorem. Crabb and Jaworowski [15] state a largely ex-
pository account of various aspects of the Borsuk-Ulam theorem, including
extension of the classical theorem to families of maps parametrized by a base
space and to multivalued maps. Roy and Steiger [35] determine some combina-
torial consequences, typically asserting the existence of a certain combinatorial
object. They state algorithmic issues about the computational complexity of
finding the asserted combinatorial object.

In Section 2, we present some general notions of digital images. In next sec-
tion we give definitions and theorems with respect to cohomology groups of dig-
ital images and compute the simplicial cohomology groups of MSS18♯MSS18

and MSS6♯MSS6. In the last section, we define the simplicial cup product
and its general properties. Moreover, we give an example about computing the
cohomology ring of MSS18♯MSS18. Then we present algebra structures of dig-
ital cohomology with the cup product. Finally, we prove a digital Borsuk-Ulam
theorem and give some examples about these concepts [15].

2. Preliminaries

Let Z be the set of integers. Then Zn is the set of lattice points in the n-
dimensional Euclidean space. A (binary) digital image is a pair (X,κ), where
X ⊂ Zn for some positive integer n and κ represents certain adjacency relation
for the members of X. We use a variety of adjacency relations in the study of
digital images.
Let l, n be positive integers, 1 ≤ l ≤ n and distinct two points

p = (p1, p2, ..., pn), q = (q1, q2, ..., qn) ∈ Zn,

p and q are kl-adjacent [7] if there are at most l indices i such that
|pi − qi| = 1 and for all other indices j such that |pj − qj | ̸= 1, pj = qj .
The notation kl is sometimes also understood as the number of points q ∈ Zn
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that are kl-adjacent to a given point p ∈ Zn. Thus, in Z we have k1 = 2; in Z2

we have k1 = 4 and k2 = 8; in Z3 we have k1 = 6, k2 = 18 and k3 = 26.
Let κ be an adjacency relation on Zn. A κ-neighbor [7] of p ∈ Zn is a point of
Zn that is κ-adjacent to p. The κ-neighborhood of p is defined to be the set

Nκ(p) = {q | q isκ−adjacent to p}.
Let a, b ∈ Z with a < b. A set of the form

[a, b]Z = {z ∈ Z|a ≤ z ≤ b}
is called a digital interval [6].

Let X ⊂ Zn be a digital image with κ-adjacency. A digital image X is
κ-connected [24] if and only if for every pair of different points x, y ∈ X, there
is a set {x0, x1, ..., xr} of points of a digital image X such that x = x0, y = xr

and xi and xi+1 are κ-neighbors where i = 0, 1, ..., r − 1. A κ-component of a
digital image X is a maximal κ-connected subset of X.

Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0-adjacency and κ1-
adjacency, respectively. Then the function f : X → Y is said to be (κ0, κ1)-
continuous [7] if for every κ0-connected subset U of X, f(U) is a κ1-connected
subset of Y . We say that such a function is digitally continuous. Similar con-
cepts are determined on discrete manifolds in [13]: Let D1 and D2 be two
discrete manifolds and f : D1 → D2 be a mapping. The function f is said to
be an immersion from D1 to D2 or a gradually varied operator if x and y are
adjacent in D1 implies either f(x) = f(y) or f(x), f(y) are adjacent in D2.

Proposition 2.1 ( [7]). Let (X,κ0)⊂ Zn0 and (Y,κ1)⊂ Zn1 be digital images.
Then the function f : X → Y is said to be (κ0, κ1)-continuous if and only if for
every pair of κ0-adjacent points {x0, x1} of X, either f(x0) = f(x1) or f(x0)
and f(x1) are κ1-adjacent in Y .

A (2, κ)-continuous function f : [0,m]Z → X such that f(0) = x and f(m) =
y is called a digital κ-path [7] from x to y in a digital image X. A digital image
X is digital κ-path connected, if for every x, y ∈ X, there exists a κ-path in X
from x to y.

Definition 2.2 ( [7]). Let (X,κ0)⊂ Zn0 and (Y,κ1)⊂ Zn1 be digital images.
Two (κ0,κ1)-continuous functions f, g :X→Y are said to be digitally (κ0, κ1)-
homotopic in Y, if there is a positive integerm and a function H :X×[0,m]Z→Y
such that for all x∈ X, H(x, 0)= f(x) and H(x,m)= g(x); for all x∈ X, the
induced function Hx : [0,m]Z → Y defined by

Hx(t) = H(x, t) for all t ∈ [0,m]Z,

is (2, κ1)-continuous; and for all t ∈ [0,m]Z, the induced function Ht :X→ Y
defined by
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Ht(x) = H(x, t) for all x ∈ X,

is (κ0, κ1)-continuous. The function H is called a digital (κ0, κ1)-homotopy
[2] between f and g. A digital image (X,κ) is said to be κ-contractible if its
identity map is (κ, κ)-homotopic to a constant function c̄ for some c ∈ X, where
the constant function c̄ : X → X is defined by c̄(x) = c for all x ∈ X.

For a digital image (X,κ) and its subset (A, κ), we call (X,A) a digital im-
age pair with κ-adjacency. Moreover, if A is a singleton set x0, then (X,x0) is
called a pointed digital image.

A simple closed κ-curve [10] ofm≥4 points in a digital imageX is a sequence

{f(0), f(1), ..., f(m− 1)}
of images of the κ-path f : [0,m − 1]Z → X such that f(i) and f(j) are
κ-adjacent if and only if j = i± 1 mod m.

Figure 1. Minimal simple closed curves MSC4, MSC ′
8 and MSC8.

A point x ∈ X is called a κ-corner [4] if x is κ-adjacent to two and only
two points y, z ∈ X such that y and z are κ-adjacent to each other. The κ-
corner x is called simple [3] if y, z are not κ-corners and if x is the only point
κ-adjacent to both y, z. X is called a generalized simple closed κ-curve [29]
if what is obtained by removing all simple κ-corners of X is a simple closed
κ-curve. If (X,κ) is a κ-connected digital image in Z3, |X|x = N∗

26(x) ∩ X,
where N∗

26(x) = {x′ : x andx′ are 26−adjacent} [3, 4]. Generally, if (X,κ) is a
κ-connected digital image in Zn, n ≥ 3, |X|x = N∗

3n−1(x) ∩X, where

N∗
3n−1(x) = {x′ : x andx′ are (3n − 1)−adjacent} [20].

Let (X,κ0) ⊂ Zn0 and (Y, κ1) ⊂ Zn1 be digital images. A function f : X → Y
is (κ0, κ1)-isomorphism [9] if f is (κ0, κ1)-continuous and bijective and further
f−1 : Y → X is (κ1, κ0)-continuous, in which case we denote X ≈(κ0,κ1) Y .

Definition 2.3 ([20]). Let c∗ = (x0, x1, ..., xn) be a closed κ-curve in Z2 where
{κ, κ} = {4, 8}. A point x of the complement c∗ of a closed κ-curve c∗ in Z2

is said to be interior of c∗ if it belongs to the bounded κ-connected component
of c∗. The set of all interior points of c∗ is denoted by Int(c∗).
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For a closed κ-surface Sκ, we denote by Sκ the complement of Sκ in Zn.
Then a point x of Sκ is said to be interior of Sκ if it belongs to the bounded
κ-connected component of Sκ. The set of all interior points of Sκ is denoted
by int(Sκ).

Definition 2.4 ([21]). Let (X,κ) be a digital image in Zn, n ≥ 3, and
X = Zn −X. Then X is called a closed κ-surface if it satisfies the following.

(1) In the case that (κ, κ) ∈ {(κ, 2n), (2n, 3n − 1)}, where the κ-adjacency
is taken from Definition 2.3. with κ ̸= 3n − 2n − 1,
• for each point x ∈ X, |X|x has exactly one κ-component κ-
adjacent to x,
• |X|x has exactly two κ-components κ-adjacent to x; we denote by
Cxx and Dxx these two components; and
• for any point y∈Nκ(x)∩X, Nκ(y)∩Cxx ̸=∅ and Nκ(y)∩Dxx ̸=∅,
where Nκ(x) means the κ-neighbors of x.

Furthermore, if a closed κ-surface X does not have a simple κ-point,
then X is called simple.

(2) In the case that (κ, κ) = (3n − 2n − 1, 2n),
• X is κ-connected,
• for each point x ∈ X, |X|x is a generalized simple closed κ-curve.

Furthermore, if the image |X|x is a simple closed κ-curve, then the
closed κ-surface X is called simple.

Example 2.5. MSS18 and MSS′
18 are minimal simple closed 18-surfaces.

The following digital images MSC∗
4 , MSC ′∗

8 and MSC∗
8 which come from

the minimal simple closed curves MSC4, MSC ′
8 and MSC8 in Z2, respectively,

play important roles in establishing a connected sum of closed k-surfaces [20]:

• MSC∗
4 = MSC4 ∪ Int(MSC4),

• MSC ′∗
8 = MSC ′

8 ∪ Int(MSC ′
8),

• MSC∗
8 = MSC8 ∪ Int(MSC8).

The digital images MSS∗
18 and MSS∗

6 are in Z3. They are obtained from the
minimal simple closed curves MSC8 and MSC4 in Z2, respectively, and essen-
tially used in generating the notion of connected sum [20],

• MSS∗
6 = MSS6 ∪ Int(MSS6) where

MSS6 ≈(6,6) (MSC4 × [0, 2]Z) ∪ (Int(MSC4)× {0, 2})
and MSC4 is 4-isomorphic to the set

{(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)}.
• MSS∗

18 = MSS18 ∪ Int(MSS18) where

MSS18 ≈(18,18) (MSC8 × {1}) ∪ (Int(MSC8)× {0, 2})
and MSC8 is 8-isomorphic to the set
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{(0,0),(-1,1),(-2,0),(-2,-1),(-1,-2),(0,-1)}.

Definition 2.6 ( [20]). Let Sκ0 be a closed κ0-surface in Zn0 and Sκ1 be a
closed κ1-surface in Zn1 for n0, n1 ≥ 3. Consider A′

κ0
⊂ Aκ0

⊂ Sκ0
such that

A′
κ0
≈(κ0,8) Int(MSC∗

8 ), A
′
κ0
≈(κ0,4) Int(MSC∗

4 ) or A
′
κ0
≈(κ0,8) Int(MSC ′∗

8 ).
Let f : Aκ0 → f(Aκ0) ⊂ Sκ1 be a (κ0, κ1)-isomorphism and let

S′
κ1

= Sκ1 − f(A′
κ0
) and S′

κ0
= Sκ0 −A′

κ0
.

Then the connected sum, denoted by Sκ0♯Sκ1 , is the quotient space Sκ0 ∪
Sκ1/ ∼, where i : Aκ0 − A′

κ0
→ S′

κ0
is the inclusion map and i(x) ∼ f(x) for

x ∈ Aκ0 −A′
κ0
.

Example 2.7. Consider MSS18♯MSS18.
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Figure 2. MSS18♯MSS18

Definition 2.8 ([36]). Let S be a set of nonempty subset of a digital image
(X,κ). Then the members of S are called simplexes of (X,κ), if the following
hold:

• If p and q are distinct points of s ∈ S, then p and q are κ-adjacent.
• If s ∈ S and ∅ ̸= t ⊂ s, then t ∈ S.

A m-simplex is a simplex S such that |S| = m + 1. Let P be a digital
m-simplex. If P ′ is a nonempty proper subset of P , then P ′ is called a face
of P . We write V ert(P ) to denote the vertex set of P , namely, the set of all
digital 0-simplexes in P .
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.

Figure 3. (2,0), (2,1), (8,2) and (26,3)-simplexes

Let (X,κ) be a finite collection of digital m-simplices, 0 ≤ m ≤ d for some
non-negative integer d. (X,κ) is called a finite digital simplicial complex [2] if
the following statements hold:

• If P belongs to X, then every face of P also belongs to X.
• If P,Q ∈ X, then P ∩Q is either empty or a common face of P and Q.

Let (X,κ) ⊂ Zn be a digital simplicial complex. (X,κ) called digital oriented
simplicial complex if there is an ordering on the vertex set of (X,κ) [2]. The
dimension of X is the biggest integer m such that X has an m-simplex [2].
Cκ

q (X) is a free abelian group with basis all digital (κ, q)-simplices in X [2].

Proposition 2.9 ([11]). Let (X,κ) ⊂ Zn be a digital simplicial complex with
m-dimension. Then for all q > m, Cκ

q (X) is a trivial group.

Definition 2.10 ([2]). Let (X,κ) ⊂ Zn be a digital oriented simplicial complex
with m-dimension. A homomorphism

∂q : Cκ
q (X)→ Cκ

q−1(X)

called the boundary operator. If σ = [v0, ..., vq] is an oriented simplex with
0 < q ≤ m, we define

∂qσ = ∂q[v0, ..., vq] =

q∑
i=0

(−1)i[v0, ..., v̂i, ..., vq],

where the symbol v̂i means that the vertex vi is to be deleted from the array.

Proposition 2.11 ([2]). For m ≥ q, we have ∂q−1 ◦ ∂q = 0.

Theorem 2.12 ([2]). Let (X,κ) ⊂ Zn be a digital simplicial complex of di-
mension m. Then

..Cκ
∗ (X) : 0. Cκ

m(X). Cκ
m−1(X). . . .. Cκ

0 (X). 0.
∂m+1.

∂m.
∂m−1.

∂1.
∂0

is a chain complex.

Definition 2.13 ([11]). Let (X,κ) ⊂ Zn be a digital oriented simplicial com-
plex with m-dimension. The kernel of ∂q : Cκ

q (X) → Cκ
q−1(X) is called the

group of q-cycles and denoted by Zκ
q (X). The image of ∂q+1 : Cκ

q+1(X) →
Cκ

q (X) is called the group of q-boundaries and is denoted by Bκ
q (X). We

define the q th simplicial homology group of X by
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Hκ
q (X) = Zκ

q (X)/Bκ
q (X).

Theorem 2.14 ([2]). If f : X → Y is a digital (κ0, κ1)-isomorphism, then for
all q ≤ m

Hκ0
q (X) ∼= Hκ1

q (Y ).

Theorem 2.15 ([2]). If (X,κ) is a single vertex, then

Hκ
q (X) =

{
Z , q = 0
0 , q ̸= 0.

Definition 2.16 ( [30]). Let (X,κ)⊂ Zn be a digital simplicial complex; let
G be an abelian group. The digital simplicial cochain complex (C∗(X),δ) is
defined as follows: for any q ∈ Z, the q-dimensional digital cochain group with
coefficients in G, is the group

Cq,κ(X;G) = Hom(Cκ
q (X), G).

The coboundary operator δ is defined to be the dual of the boundary oper-
ator ∂ : Cκ

q+1(X)→ Cκ
q (X). Thus

Cq+1,κ(X;G)
δ←− Cq,κ(X;G)

so that δ raises dimension by one. The abelian group G is omitted from the
notation when it equals the group of integers. Elements of Cq,κ(X) are called
digital cochains and denoted either by cq or by c∗, if we don’t need to specify
their dimension q. The value of a digital cochain cq on a chain dq is denoted
by < cq, dq >. The q-th coboundary map

δq : Cq,κ(X)→ Cq+1,κ(X)

is the dual homomorphism of ∂q+1 defined by

< δqcq, dq+1 >=< cq, ∂q+1dq+1 >.

Definition 2.17 ( [30]). The kernel of δ is called the group of cocycles and
denoted by Zq,κ(X;G), its image is called the group of coboundaries and de-
noted by Bq,κ(X;G). The cohomology group of a digital image (X,κ) with
coefficients in G is the group

Hq,κ(X;G) = Zq,κ(X;G)/Bq,κ(X;G).

Theorem 2.18 ([18]). If (X,κ) is a single vertex, then

Hq,κ(X) =

{
Z , q = 0
0 , q ̸= 0.

Example 2.19. Let MSS′
18 be a digital surface with 18-adjacency in Z3.

Karaca and Burak [25], show that the digital cohomology groups of MSS′
18 are

Hq,18(MSS′
18) =

{
Z , q = 0, 2
0 , q ̸= 0, 2.
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Figure 4. MSS′
18

Example 2.20. Let MSS18 be a digital surface with 18-adjacency. The fol-
lowing result is given in [25]:

Hq,18(MSS18) =

 Z , q = 0
Z3 , q = 1
0 , q ≥ 2.
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.
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.
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Figure 5. MSS18

3. Simplicial cohomology groups of MSS18♯MSS18 and MSS6♯MSS6

Theorem 3.1. The digital simplicial cohomology groups of MSS18♯MSS18 are

Hq,18(MSS18♯MSS18) =

 Z , q = 0
Z7 , q = 1
0 , q ≥ 2.

Proof. Let MSS18♯MSS18={p0=(1, 1, 1), p1=(1, 2, 1), p2=(1, 3, 1),
p3=(0, 4, 1), p4=(−1, 3, 1), p5=(−1, 2, 1), p6=(−1, 1, 1), p7=(0, 0, 1),
p8 = (0, 3, 0), p9 = (0, 2, 0), p10 = (0, 1, 0), p11 = (0, 3, 2), p12 = (0, 2, 2),
p13 = (0, 1, 2)} ⊂ Z3, where

p6<p5<p4<p7<p13<p10<p12<p9<p11<p8<p3<p0<p1<p2.
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Figure 6. MSS18♯MSS18

C18
0 (MSS18♯MSS18), C

18
1 (MSS18♯MSS18) and C18

2 (MSS18♯MSS18)
are free abelian groups with bases, respectively,

⟨p0⟩, ⟨p1⟩, ⟨p2⟩, ⟨p3⟩, ⟨p4⟩, ⟨p5⟩, ⟨p6⟩, ⟨p7⟩, ⟨p8⟩, ⟨p9⟩, ⟨p10⟩, ⟨p11⟩, ⟨p12⟩, ⟨p13⟩,

1-simplexes

e0=⟨p0p1⟩, e1=⟨p1p2⟩, e2=⟨p3p2⟩, e3=⟨p4p3⟩, e4=⟨p5p4⟩, e5=⟨p6p5⟩,

e6=⟨p6p7⟩, e7=⟨p7p0⟩, e8=⟨p7p10⟩, e9=⟨p10p9⟩, e10=⟨p9p8⟩,

e11=⟨p8p3⟩, e12=⟨p11p3⟩, e13=⟨p12p11⟩, e14=⟨p13p12⟩, e15=⟨p7p13⟩,

e16=⟨p13p0⟩, e17=⟨p10p0⟩, e18=⟨p6p10⟩, e19=⟨p6p13⟩, e20=⟨p9p1⟩,

e21=⟨p5p9⟩, e22=⟨p5p12⟩, e23= ⟨p12p1⟩, e24= ⟨p8p2⟩, e25= ⟨p4p8⟩,

e26= ⟨p4p11⟩, e27= ⟨p11p2⟩

and
2-simplexes

σ0 = ⟨p7p10p0⟩, σ1 = ⟨p7p13p0⟩, σ2 = ⟨p6p7p10⟩, σ3 = ⟨p6p7p13⟩,

σ4 = ⟨p8p3p2⟩, σ5 = ⟨p11p3p2⟩, σ6 = ⟨p4p11p3⟩, σ7 = ⟨p4p8p3⟩.

Since C18
q (MSS18♯MSS18) is a trivial group for q ≥ 3, we have

0
∂3−−→ C18

2 (MSS18♯MSS18)
∂2−−→ C18

1 (MSS18♯MSS18)
∂1−−→ C18

0 (MSS18♯MSS18)
∂0−−→ 0.

By the definition of cochain, we obtain

C0,18(MSS18♯MSS18) ∼= Hom(C18
0 (MSS18♯MSS18),Z),

C1,18(MSS18♯MSS18) ∼= Hom(C18
1 (MSS18♯MSS18),Z),

C2,18(MSS18♯MSS18) ∼= Hom(C18
2 (MSS18♯MSS18),Z).

Hence we get

0
δ−1

−−−→ C0,18(MSS18♯MSS18)
δ0−−→ C1,18(MSS18♯MSS18)

δ1−−→ C2,18(MSS18♯MSS18)
δ2−−→ 0.

It is easy to see that
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∂1(e0) = p1 − p0, ∂1(e14) = p12 − p13,
∂1(e1) = p2 − p1, ∂1(e15) = p13 − p7,
∂1(e2) = p2 − p3, ∂1(e16) = p0 − p13,
∂1(e3) = p3 − p4, ∂1(e17) = p0 − p10,
∂1(e4) = p4 − p5, ∂1(e18) = p10 − p6,
∂1(e5) = p5 − p6, ∂1(e19) = p13 − p6,
∂1(e6) = p7 − p6, ∂1(e20) = p1 − p9,
∂1(e7) = p0 − p7, ∂1(e21) = p9 − p5,
∂1(e8) = p10 − p7, ∂1(e22) = p12 − p5,
∂1(e9) = p9 − p10, ∂1(e23) = p1 − p12,
∂1(e10) = p8 − p9, ∂1(e24) = p2 − p8,
∂1(e11) = p3 − p8, ∂1(e25) = p8 − p4,
∂1(e12) = p3 − p11, ∂1(e26) = p11 − p4,
∂1(e13) = p11 − p12, ∂1(e27) = p2 − p11.

So we find 0-cochains,

δ0p∗0 = −e0 + e7 + e16 + e17,
δ0p∗1 = e0 − e1 + e20 + e23,
δ0p∗2 = e1 + e2 + e24 + e27,
δ0p∗3 = −e2 + e3 + e11 + e12,
δ0p∗4 = −e3 + e4 − e25 − e26,
δ0p∗5 = −e4 + e5 − e21 − e22,
δ0p∗6 = −e5 − e6 − e18 − e19,
δ0p∗7 = e6 − e7 − e8 − e15,
δ0p∗8 = e10 − e11 − e24 + e25,
δ0p∗9 = e9 − e10 − e20 + e21,
δ0p∗10 = e8 − e9 + e18 − e17,
δ0p∗11 = −e12 + e13 + e26 − e27,
δ0p∗12 = −e13 + e14 + e22 − e23,
δ0p∗13 = −e14 + e15 − e16 + e19.

From the definition of ∂2, we can easily obtain

∂2(σ0) = ⟨p10p0⟩ − ⟨p7p0⟩+ ⟨p7p10⟩ = e17 − e7 + e8,
∂2(σ1) = ⟨p13p0⟩ − ⟨p7p0⟩+ ⟨p7p13⟩ = e16 − e7 + e15,
∂2(σ2) = ⟨p7p10⟩ − ⟨p6p10⟩+ ⟨p6p7⟩ = e8 − e18 + e6,
∂2(σ3) = ⟨p7p13⟩ − ⟨p6p13⟩+ ⟨p6p7⟩ = e15 − e19 + e6,
∂2(σ4) = ⟨p3p2⟩ − ⟨p8p2⟩+ ⟨p8p3⟩ = e2 − e24 + e11,
∂2(σ5) = ⟨p3p2⟩ − ⟨p11p2⟩+ ⟨p11p3⟩ = e2 − e27 + e12,
∂2(σ6) = ⟨p11p3⟩ − ⟨p4p3⟩+ ⟨p4p11⟩ = e12 − e3 + e26,
∂2(σ7) = ⟨p8p3⟩ − ⟨p4p3⟩+ ⟨p4p8⟩ = e11 − e3 + e25.

Thus, we get 1-cochains,
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δ1e∗0 = {0}, δ1e∗14 = {0},
δ1e∗1 = {0}, δ1e∗15 = σ1 + σ3,
δ1e∗2 = σ4 + σ5, δ1e∗16 = σ1,
δ1e∗3 = −σ6 − σ7, δ1e∗17 = σ0,
δ1e∗4 = {0}, δ1e∗18 = −σ2,
δ1e∗5 = {0}, δ1e∗19 = −σ3,
δ1e∗6 = σ2 + σ3, δ1e∗20 = {0},
δ1e∗7 = −σ0 − σ1, δ1e∗21 = {0},
δ1e∗8 = σ0 + σ2, δ1e∗22 = {0},
δ1e∗9 = {0}, δ1e∗23 = {0},
δ1e∗10 = {0}, δ1e∗24 = −σ4,
δ1e∗11 = σ4 + σ7, δ1e∗25 = σ7,
δ1e∗12 = σ5 + σ6, δ1e∗26 = σ6,
δ1e∗13 = {0}, δ1e∗27 = −σ5.

Let’s find the kernel of δ0. By the definition of δ0, we see that

δ0(

13∑
i=0

nip
∗
i ) = n0(−e0 + e7 + e16 + e17) + n1(e0 − e1 + e20 + e23)

+n2(e1 + e2 + e24 + e27) + n3(−e2+ e3+ e11+ e12)
+n4(−e3+ e4− e25− e26)+ n5(−e4+ e5− e21− e22)
+n6(−e5 − e6 − e18 − e19) + n7(e6 − e7 − e8 − e15)
+n8(e10 − e11 − e24 + e25) + n9(e9− e10− e20+ e21)
+n10(e8− e9+ e18− e17)+ n11(−e12+ e13+ e26− e27)
+n12(−e13+e14+e22−e23)+n13(−e14+e15−e16+e19).

Solving the equation

e0(−n0 + n1) + e1(−n1 + n2) + e2(n2 − n3) + e3(n3 − n4) + e4(n4 − n5)
+e5(n5− n6)+ e6(−n6+ n7)+ e7(n0− n7)+ e8(−n7+ n10)+ e9(n9− n10)
+e10(−n9+n8)+e11(n3−n8)+e12(n3−n11)+e13(n11−n12)+e14(n12−n13)
+e15(n13−n7)+e16(n0−n13)+e17(n0−n10)+e18(−n6+n10)+e19(−n6+n13)
+e20(n1−n9)+e21(−n5+n9)+e22(−n5+n12)+e23(n1−n12)+e24(n2−n8)
+e25(−n4 + n8) + e26(−n4 + n11) + e27(n2 − n11) = 0,

we find

n0=n1=n2=n3=n4=n5=n6=n7=n8=n9=n10=n11=n12=n13=n.

Hence, we get the group of zero dimensional cocycles

Z0,18 (MSS18) = {n(p0+p1+p2+p3+p4+p5+p6+p7+p8+p9+p10
+p11+p12+p13) |n∈Z}
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∼= Z.

Since B0,18(MSS18♯MSS18) ∼= 0, we obtain

H0,18(MSS18♯MSS18) ∼= Z.

Let

δ1(
27∑
i=0

kie
∗
i ) = k0({0}) + k1({0}) + k2(σ4 + σ5) + k3(−σ6 − σ7) + k4({0})

+k5({0}) + k6(σ2+ σ3)+ k7(−σ0− σ1)+ k8(σ0+ σ2)+ k9({0})
+k10({0})+ k11(σ4+σ7) + k12(σ5 + σ6) + k13({0}) + k14({0})
+k15(σ1 + σ3) + k16(σ1) + k17(σ0) + k18(−σ2) + k19(−σ3)
+k20({0}) + k21({0}) + k22({0}) + k23({0}) + k24(−σ4)
+k25(σ7) + k26(σ6) + k27(−σ5).

We find the kernel of δ1 and we have

σ0(−k7 + k8 + k17) + σ1(−k7 + k15 + k16) + σ2(k6 − k18 + k8)
+σ3(k6 − k19 + k15) + σ4(k2+k11−k24)+σ5(k2+k12−k27)
+σ6(−k3+k12+k26) + σ7(−k3+k11+k25)=0

Solving the equation above, we get

k3 = k12 + k26,
k6 = k8 + k18,
k7 = k8 + k17,
k16 = k8 − k15 + k17,
k19 = k8 + k15 + k18,
k24 = k2 + k11,
k25 = −k11 + k12 + k26,
k27 = k2 + k12.

Hence, we conclude that

Z1,18(MSS18♯MSS18)={k0e∗0 + k1e
∗
1 + k2e

∗
2 + (k12 + k26)e

∗
3 + k4e

∗
4

+k5e
∗
5 + (k8 + k18)e

∗
6 + (k8 + k17)e

∗
7 + k8e

∗
8 + k9e

∗
9

+k10e
∗
10 + k11e

∗
11 + k12e

∗
12 + k13e

∗
13+k14e

∗
14+k15e

∗
15

+(k8− k15 +k17)e
∗
16 +k17e

∗
17 +k18e

∗
18

+(k8+ k15+k18)e
∗
19 + k20e

∗
20+k21e

∗
21+k22e

∗
22+k23e

∗
23

+(k2+k11)e
∗
24+(−k11+k12+k26)e

∗
25 + k26e

∗
26

+(k2 + k12)e
∗
27 | ki ∈ Z, i = 0, 1, 2, 4, 5, 8, 9, 10, 11,

12, 13, 14, 15, 17, 18, 20, 21, 22, 23, 26}
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∼= Z20.

On the other hand, we obtain

B1,18(MSS18♯MSS18)={t0e0 + t1e1 + t2e2 + t3e3 + t4e4 + t5e5 + t6e6
+(−t0−t1+t2+t3+t4+t5−t6)e7+t7e8+t8e9+t9e10
+(t3+t4+t5+t6+t7+t8−t9)e11+t10e12+t11e13+t12e14
+(t3 + t4 + t5 + t6 + 2t7 + 2t8 − t10 − t11 − t12)e15
+(−t0 − t1 + t2 + t10 + t11 + t12)e16
+(−t0 − t1 + t2 + t3 + t4 + t5 − t6 − t7)e17 + (t6 + t7)e18
+(t3 + t4 + t5 + 2t6 + 2t7 + 2t8 − t10 − t11 − t12)e19
+(−t1+t2+t3+t4+t5−t6−t7−t8)e20
+(−t5 + t6 + t7 + t8)e21
+(t3 + t4 − t10 − t11)e22 + (−t1 + t2 + t10 + t11)e23
+(t2 + t3 + t4 + t5 + t6 + t7 + t8 − t9)e24
+(−t5 − t6 − t7 − t8)e25 + (t3 − t10)e26 + (t2 + t10)e27
| ti ∈ Z, i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} ∼= Z13.

So we have

H1,18(MSS18♯MSS18) ∼= Z7.

Therefore,
B2,18(MSS18♯MSS18)={h0σ0+ h1σ1+ h2σ2+ h3σ3+ h4σ4+ h5σ5+ h6σ6

+h7σ7 |hi ∈ Z, i = 0, 1, 2, 3, 4, 5, 6, 7} ∼= Z8.

Since Z2,18(MSS18♯MSS18) ∼= Z8, we have
H2,18(MSS18♯MSS18) ∼= {0}. □

Theorem 3.2. The digital simplicial cohomology groups of MSS6♯MSS6 are

Hq,6(MSS6♯MSS6) =

 Z , q = 0
Z39 , q = 1
0 , q ≥ 2.

4. Simplicial cohomology ring of MSS18♯MSS18

Definition 4.1 ( [31]). Let (X,κ) be a digital simplicial complex. Suppose
that the coefficient group G is the additive group of a commutative ring with
identity. The digital simplicial cup product

⌣: Cp,κ(X,G)× Cq,κ(X,G)→ Cp+q,κ(X,G)

of cochains cp and cq is defined by the formula

< cp ⌣ cq, [v0, ..., vp+q] >=< cp, [v0, ..., vp] > . < cq, [vp, ..., vp+q] >,

where v0 < ... < vp+q in the given ordering and “.” is the product in G.
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Figure 7. MSS6♯MSS6

Theorem 4.2 ([31]). Let α, α1, α2 ∈ Hp,κ(X,G1) and β, β1, β2 ∈ Hq,κ(X,G2).
Then we get

(α1 + α2) ⌣ β = α1 ⌣ β + α2 ⌣ β

and

α ⌣ (β1 + β2) = α ⌣ β1 + α ⌣ β2.

Proof. Let α, α1, α2 ∈ Hp,κ(X,G1) and β, β1, β2 ∈ Hq,κ(X,G2). Since
< (α1+α2) ⌣ β, [v0, ..., vp+q] >=< (α1+α2), [v0, ..., vp] > . < β, [vp, ..., vp+q] >

= (< α1, [v0, ..., vp] > + < α2, [v0, ..., vp] >). < β, [vp, ..., vp+q] >

=< α1, [v0, ..., vp] > . < β, [vp, ..., vp+q] >

+ < α2, [v0, ..., vp] > . < β, [vp, ..., vp+q] >

=< α1 ⌣ β, [v0, ..., vp+q] > + < α2 ⌣ β, [v0, ..., vp+q] >

=< α1 ⌣ β + α2 ⌣ β, [v0, ..., vp+q] >
and
< α ⌣ (β1+β2), [v0, ..., vp+q] >=< α, [v0, ..., vp] > . < (β1+β2), [vp, ..., vp+q] >

=<α,[v0, ..., vp] > .(<β1,[vp, ..., vp+q]>+<β2,[vp, ...,vp+q]>)

=< α, [v0, ..., vp] > . < β1, [vp, ..., vp+q] >

+ < α, [v0, ..., vp] > . < β2, [vp, ..., vp+q] >

=< α ⌣ β1, [v0, ..., vp+q] > + < α ⌣ β2, [v0, ..., vp+q] >
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=< α ⌣ β1 + α ⌣ β2, [v0, ..., vp+q] >,
we obtain
(α1 + α2) ⌣ β = α1 ⌣ β + α2 ⌣ β
and
α ⌣ (β1 + β2) = α ⌣ β1 + α ⌣ β2. □

Theorem 4.3 ([31]). δ(cp ⌣ cq) = δcp ⌣ cq + (−1)pcp ⌣ δcq.

Proof. The values of the digital simplicial cochains δcp ⌣ cq and
(−1)pcp ⌣ δcq at [v0, ..., vp+q+1] are equal to∑

0≤i≤p+1

(−1)i cp [v0, ..., v̂i, ..., vp+1] c
q [ vp+1, ..., vp+q+1 ] (1)

and

(−1)p
∑

p≤i≤p+q+1

(−1)i−pcp[v0, ..., vp]c
q[vp, ..., v̂i, ..., vp+q+1], (2)

respectively. The first term in (2) removes the last term in (1). The sum of
the other terms in these sums equals the value of the digital simplicial cochain
δ(cp ⌣ cq) at [v0, ..., vp+q+1]. □

Theorem 4.4 ( [31]). Let (X,κ) be a digital simplicial complex. The cup
product on digital simplicial cochains is associative, that is,

(cp ⌣ cq) ⌣ cr = cp ⌣ (cq ⌣ cr).

The digital simplicial cochain given by 1X is the unit element, that is,

1X ⌣ cp = cp ⌣ 1X = cp.

Proof. Let cp ∈ Hp,κ(X,G1), c
q ∈ Hq,κ(X,G2) and cr ∈ Hr,κ(X,G3). Then

< (cp ⌣ cq) ⌣ cr, [v0, ..., vp+q+r] >=< (cp ⌣ cq), [v0, ..., vp+q] >
. < cr, [vp+q, ..., vp+q+r] >

= (< cp, [v0, ..., vp] > . < cq, [vp, ..., vp+q] >). < cr, [vp+q, ..., vp+q+r] >
=< cp, [v0, ..., vp] > .(< cq, [vp, ..., vp+q] > . < cr, [vp+q, ..., vp+q+r] >)
=< cp, [v0, ..., vp] > .(< cq ⌣ cr, [vp, ..., vp+q+r] >)
=< cp ⌣ (cq ⌣ cr), [v0, ..., vp+q+r] >.
On the other hand, we obtain
< 1X ⌣ cp, [v0, ..., vp] >=< 1X , [v0, ..., vp] > . < cp, [v0, ..., vp] >

=< cp, [v0, ..., vp] >
and
< cp ⌣ 1X , [v0, ..., vp] >=< cp, [v0, ..., vp] > . < 1X , [v0, ..., vp] >

=< cp, [v0, ..., vp] >. □

Theorem 4.5 ( [31]). If cp ∈ Hp,κ(X,G1) and cq ∈ Hq,κ(X,G2) are digital
cocycles, then

cp ⌣ cq = (−1)pqcq ⌣ cp.
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Proof. By Definition 4.1, we have
< cp ⌣ cq, [v0, ..., vp+q] >=< cp, [v0, ..., vp] > . < cq, [vp, ..., vp+q] >
and
< cq ⌣ cp, [vp+q, ..., v0] >=< cq, [vp+q, ..., vp] > . < cp, [vp, ..., v0] > .

Since [vr, ..., v0] = (−1)r(r+1)/2[v0, ..., vr], we find
(p+ q)(p+ q + 1)− p(p+ 1)− q(q + 1) = 2pq. □

Theorem 4.6 ( [31]). Let (X,κ1)⊂ Zn1 and (Y, κ2)⊂ Zn2 be digital images.
If f : (X,κ1)→ (Y, κ2) is a digitally continuous map, cp ∈ Hp,κ(X,G1) and
cq ∈ Hq,κ(X,G2) are digital cocycles, then

f∗(cp ⌣ cq) = f∗(cp) ⌣ f∗(cq).

Proof. We have
< f∗(cp ⌣ cq), [v0, ..., vp+q] >=< cp ⌣ cq, [f(v0), ..., f(vp+q)] >

=< cp, [f(v0), ..., f(vp)] > . < cq, [f(vp), ..., f(vp+q)] >
=< f∗(cp), [v0, ..., vp] > . < f∗(cq), [vp, ..., vp+q] >
=< f∗(cp) ⌣ f∗(cq), [v0, ..., vp+q] >. □

Definition 4.7 ([30]). Let (X,κ) be a digital simplicial complex. H∗,κ(X;G) =
⊕Hi,κ(X;G) is the ring with the cup product. This is called the digital sim-
plicial cohomology ring of X.

Example 4.8. Consider MSS18♯MSS18.

Hq,18(MSS18♯MSS18) =

 Z , q = 0
Z7 , q = 1
0 , q ≥ 2.

By example 3.1, we obtain 1-cocycles of simplicial complex:
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Figure 8. Cocycle x, cocycle y and cocycle z

We compute the cup product of 1-cocycles a, b, c, d, f , g, h, k, l, m, n, p, q,
r and s, where the cup product of two 1-cocycles is equal to standart generator.
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Figure 11. Cocycle m, cocycle θ and cocycle α

5. Simplicial cohomology algebra of digital images

Definition 5.1. If Mi is module, then M = ⊕Mi is a graded module for all
i ∈ I. If Φ : M ⊗M →M is a homomorphism for the graded module M , then
M is a graded algebra.

Theorem 5.2. Let (X,κ) ⊂ Zn be a digital simplicial complex. Then H∗,κ(X,G)

is a graded G-algebra with the cup product.

Proof. Let us show that H∗,κ(X,G) is the graded G-module. Since H∗,κ(X,G)
= ⊕Hq,κ(X,G), we must show that Hq,κ(X,G) is a G-module. G is a commu-
tative ring and Hq,κ(X,G) is a ring. Also, the following statements hold for
scalar multiplication
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G×Hq,κ(X,G)→ Hq,κ(X,G), (g, α)→ g.α

• g.(α1 + α2) = g.α1 + g.α2

• (g1 + g2).α = g1.α+ g2.α
• (g1.g2).α = g1.(g2.α)
• 1.α = α

where α, α1, α2 ∈ Hq,κ(X,G) and g, g1, g2, 1 ∈ G. Hence Hq,κ(X,G) is a G-
module. So H∗,κ(X,G) is a graded G-module. Then H∗,κ(X,G) is a graded
G-algebra with cup product

⌣: Hq,κ(X,G)×Hp,κ(X,G)→ Hq+p,κ(X,G). □

Theorem 5.3. There is no continuous map g : S2→ S1 with g(−x) =−g(x)
for all x ∈ S2.
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Figure 12. S2 ve S1

Proof. S1={p0=(−1,1), p1=(−1,0), p2=(−1,−1), p3=(0,−1),
p4 = (1,−1), p5 = (1,0), p6 = (1, 1), p7 = (0, 1)} is digital 1-sphere with 4-
adjacency in Z2. For points of S1,

p0 = −p4, p1 = −p5, p2 = −p6, p3 = −p7.

S2 = [−1, 1]3Z/{(0, 0, 0)} is digital 2-sphere with 6-adjacency in Z3. For points
of S2,

c0 = −c25, c7 = −c18,
c1 = −c24, c8 = −c17,
c2 = −c23, c9 = −c16,
c3 = −c22, c10 = −c15,
c4 = −c21, c11 = −c14,
c5 = −c20, c12 = −c13,
c6 = −c19,
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a function g : S2 → S1 is defined as

g(c0) = p0, g(c9) = p5, g(c18) = p2,
g(c1) = p0, g(c10) = p5, g(c19) = p2,
g(c2) = p0, g(c11) = p1, g(c20) = p3,
g(c3) = p7, g(c12) = p1, g(c21) = p3,
g(c4) = p7, g(c13) = p5, g(c22) = p3,
g(c5) = p7, g(c14) = p5, g(c23) = p4,
g(c6) = p6, g(c15) = p1, g(c24) = p4,
g(c7) = p6, g(c16) = p1, g(c25) = p4.
g(c8) = p6, g(c17) = p2,

Then the function g : S2 → S1 satisfies the condition g(−x) = −g(x) for all
x ∈ S2. On the other hand the function g is not (6, 4)-continuous. c10, c11 ∈ S2

are 6-adjacent each other, g(c10) = p5 and g(c11) = p1 are not 4-adjacent each
other. □

One of the most useful results from topology is the Borsuk-Ulam Theorem.
It states that some pair of antipodal points has the same image. We state it in
the following form.

Theorem 5.4. ([5]) Suppose that f : (Sn, κ)→ Rn is a continuous map. Then
there exists a point x ∈ Sn ⊆ Rn+1 such that f(x) = f(−x).

Theorem 5.5. (Digital Borsuk-Ulam) If f : (Sn, κ) → Zn is continuous for
n = 1, 2, where κ = 4 for S1 and κ = 6 for S2, then there exists x ∈ Sn with
f(x) = f(−x).

Proof. If no such x exists, then the map g : S2 → S1 given by

g(x) = f(x)−f(−x)
∥f(x)−f(−x)∥

is a well-defined continuous and g(−x) = −g(x) for every x ∈ Sn, contradicting
Theorem 5.3. So there exists x∈Sn with f(x)=f(−x).□ □

Example 5.6. S1={p0=(−1,1), p1=(−1,0), p2=(−1,−1), p3=(0,−1),
p4 = (1,−1), p5 = (1,0), p6 = (1, 1), p7 = (0, 1)} is digital 1-sphere with 4-
adjacency in Z2. It is clear that,

p0 = −p4, p1 = −p5, p2 = −p6, p3 = −p7.

Let f : S1 → Z be a map defined by

f(p0) = f(p4) = 0,
f(p1) = f(p5) = 1,
f(p2) = f(p6) = 1,
f(p3) = f(p7) = 0.

This map is a (4, 2)-continuous map.
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..
p0(−1, 1)

.

p1(−1, 0)

.

p2(−1,−1)

.
p7(0, 1).

p3(0,−1)

.
p6(1, 1).

p5(1, 0)

.

p4(1,−1)

Figure 13. S1

6. Conclusion

First, we compute cohomology groups of certain digital surface. Secondly,
we present that ring and algebra structure that exists on the digital simplicial
cohomology groups with the cup product. The main result is a digital version
of the Borsuk-Ulam theorem.
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