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Abstract. At present paper, we establish the existence of pullback D-
attractor for the process associated with non-autonomous partly dissipa-
tive reaction-diffusion equation in L2(Rn)×L2(Rn). In order to do this,

by energy equation method we show that the process, which possesses a

pullback D-absorbing set, is pullback D̂0-asymptotically compact.
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1. Introduction

Consider the following non-autonomous partly dissipative reaction-diffusion
equation

∂u

∂t
− ν∆u+ λu+ h(u) + αυ = f(x, t) in [τ,+∞)× Rn,

(1.1)

∂υ

∂t
+ δυ − βu = g(x, t) in [τ,+∞)× Rn,

(1.2)

with the initial data

u(τ, x) = uτ (x), υ(τ, x) = υτ (x) in Rn,(1.3)
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Pullback D-attractors 516

where ν, λ, δ > 0 with λ < δ, f, g ∈ Lloc(R, L2(Rn), α, β ∈ R with αβ > 0.
Suppose that the nonlinear function h satisfies

h(s)s ≥− C0s
2, h(0) = 0, h′(s) ≥ −C1, s ∈ R,(1.4)

|h′(s)| ≤ C2(1 + |s|r), s ∈ R,(1.5)

with r ≥ 0 for n ≤ 2 and r ≤ min{ 4
n ,

2
n−2} for n ≥ 3, where Ci, i = 0, 1, 2, are

positive constants and 0 ≤ C0 < λ.
The long-time behavior of the solutions of non-autonomous evolution par-

tial differential equations can be characterized in terms of uniform attractors,
that is, the compact sets that uniformly (with respect to time symbol) attract
every bounded subset of the phase space and are minimal in the sense of at-
tracting property. By constructing the skew-product flow, one can reduce the
non-autonomous system to a autonomous one in an extended phase space. In
this situation, the structure of the uniform attractor can be described as the
union of kernel sections. See details in [6]. At the same time, pullback (or
cocycle) attractors have been introduced to non-autonomous systems to inves-
tigate the dynamics of them, see, e.g. [5, 7]. By definition, pullback attractor
is a parameterized family of compact sets which attracts every bounded set of
phase space from −∞. It is noticed that in contrast to the existence of uniform
attractors, the existence of pullback attractors can be obtained under the weak
assumptions on the external forces. Thus, the development of the theory on
pullback attractors plays an important role in understanding the dynamics of
non-autonomous systems.

Recently, authors in [4, 9, 12, 17] develop the theory of pullback attractors
in the classical sense and study the pullback D-attractors for non-autonomous
systems under the consideration of universes of initial data changing in time.
In this case, the pullback attracting property of pullback D-attractors is about
the families of sets depending on time which are not necessary to be bounded.

The purpose of this paper is to investigate the existence of pullback D-
attractors for system (1.1)-(1.3). For the evolution equations in unbounded
domains, since the Sobolev embedding is not compact, there are some difficul-
ties in obtaining the compact attracting sets for the semigroup (autonomous
case) or process (non-autonomous case) corresponding to them. One way to
overcome such difficulties is to investigate the problem in weighted spaces, see,
e.g. [2, 8]. By using the method of tail estimates of the solutions, authors
in [15] obtained that the semigroup associated with autonomous system (1.1)-
(1.3) (f and g are independent of t) is asymptotically compact. Motivated by
the energy equation method, see, e.g. [3,13,16,19–21], we show that the process

associated with (1.1)-(1.3) is pullback D̂0-asymptotically compact, and obtain
the existence of pullback D-attractor.
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For convenience, hereafter, let Hs(Rn) be the standard Sobolev spaces. De-
note by H = L2(Rn) with the norm ∥ · ∥ and the scalar product ⟨·, ·⟩, respec-
tively. For any 1 < p ≤ ∞, let ∥ · ∥p be the norm of Lp(Rn). Let X be a
Banach space with distance d(·, ·), C be generic positive constant which may
vary from line to line or even in the same line.

This paper is organized as follows: in the next section, we give some def-
initions and recall some results which will be used in the following sections;
in Section 3, we prove the existence of pullback D-attractor for the process
associated with (1.1)-(1.3) in H ×H.

2. Preliminaries

We first recall some basic definitions and abstract results on the existence
of pullback D-attractors. Let U be a process acting in a Banach space X, i.e.,
a family {U(t, τ) : −∞ < τ ≤ t < ∞} of mappings U(t, τ) : X → X satisfying
(1) U(τ, τ) = Id (identity),
(2) U(t, τ) = U(t, r)U(r, τ) for all τ ≤ r ≤ t.

Let D be a nonempty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂
P(X), where P(X) denotes the family of all nonempty subsets of X.

Definition 2.1. It is said that D̂0 ∈ D is pullback D-absorbing for the process

U(t, τ) on X if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t such
that

U(t, τ)D(τ) ⊂ D0(t), for all τ ≤ τ0(t, D̂).

Definition 2.2. A family AD = {AD(t) : t ∈ R} ⊂ P(X) is said to be a
pullback D-attractor for the process U(t, τ) on X if
(1) AD(t) is compact for every t ∈ R,
(2) AD is pullback D-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ)D(τ),AD(t)) = 0, for all D̂ ∈ D, and all t ∈ R,

(3) AD is invariant, i.e., U(t, τ)AD(τ) = AD(t) for −∞ < τ ≤ t < +∞, where
dist(A,B) is the Hausdorff semi-distance between A and B, defined by

dist(A,B) = sup
x∈A

inf
y∈B

d(x, y), for A,B ⊂ X.

In order to illuminate the invariance of pullback D-attractor, the following
property is needed.

Definition 2.3. A process U(t, τ) on X is said to be closed if for any τ ≤ t,
and any sequence {xn} ⊂ X with xn → x ∈ X and U(t, τ)xn → y, then
U(t, τ)x = y.

It is clear that if the process is closed, then it is norm-to-weak continuous,
and if it is continuous or weak continuous, then it is norm-to-weak continuous.
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Definition 2.4. It is said that a process U(t, τ) onX is pullback D̂0-asymptoti-
cally compact if for any t ∈ R, any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X
satisfying τn → −∞ and xn ∈ D0(τn) for all n, the sequence {U(t, τn)xn} is
relatively compact in X.

The family D is said to be inclusion-closed if D̂ ∈ D, and D̂′ = {D′(t) : t ∈
R} ⊂ P(X) with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D. Recall the results in [9].

Theorem 2.5. Consider a closed process U(t, τ), t ≥ τ , t, τ ∈ R, on X, a

universe D in P(X) which is inclusion-closed, and a family D̂0 = {D0(t) :
t ∈ R} ∈ D which is closed and pullback D-absorbing for U(t, τ), and assume

also that U(t, τ) is pullback D̂0-asymptotically compact. Then there exists a
minimal and unique pullback D-attractor AD = {AD(t) : t ∈ R} defined by

AD(t) =
∩
s≤t

∪
τ≤s

U(t, τ)D0(τ)
X

, ∀ t ∈ R.

3. Pullback D–attractor of system (1.1)-(1.3)

We notice that if (u, υ) is a solution of (1.1)-(1.2) with the data (α, β, f, g),
then (u,−υ) is a solution of (1.1)-(1.2) with the data (−α,−β, f,−g). Since
αβ > 0, we assume without loss of generality in this paper that α and β are
both positive. By the standard Fatou-Galerkin methods (see, e.g. [1,10,14,18]),
we can get the well-posedness of (1.1)-(1.3).

Theorem 3.1. Assume that h satisfies (1.4)-(1.5) and f, g ∈ Lloc(R, L2(Rn)).
Then for any τ ∈ R, any initial data (uτ , υτ ) ∈ H × H and any T > τ ,
there exists a unique solution (u, υ) = (u(t; τ, uτ , υτ ), υ(t; τ, uτ , υτ )) for problem
(1.1)-(1.3) satisfying

(u, υ) ∈ C([τ, T ];H ×H), u ∈ L2(τ, T ;H1(Rn)),

and the mapping (uτ , υτ ) → (u(t), υ(t)) is continuous in H ×H.

By Theorem3.1, we can define a continuous process {U(t, τ)} on H ×H by

U(t, τ)(uτ , υτ ) = (u(t), υ(t)) := (u(t; τ, uτ , υτ ), υ(t; τ, uτ , υτ )) for all t ≥ τ.

Let D be the class of all families {D(t) : t ∈ R} of nonempty subsets of H ×H
such that

lim
t→−∞

eσt[D(t)]+ = 0,(3.1)

where

0 < σ < min{λ− C0, δ,
2λ

r + 1
}

and

[D(t)]+ = sup{∥ u ∥2 + ∥ v ∥2: (u, v) ∈ D(t)}.
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For the external terms, we suppose that

∫ t

−∞
eσs ∥ f(s) ∥2 ds < +∞,

∫ t

−∞
eσs ∥ g(s) ∥2 ds < +∞, ∀ t ∈ R.

(3.2)

Lemma 3.2. Assume that (1.4)-(1.5) hold and f, g ∈ Lloc(R,H) satisfy (3.2).
Then there exists a pullback D-absorbing set in H ×H.

Proof. Taking the inner product of (1.1) with βu in H, we have

β

2

d

dt
∥ u ∥2 +βν ∥ ∇u ∥2 +βλ ∥ u ∥2 +β

∫
Rn

h(u)u+ βα

∫
Rn

uυ = β

∫
Rn

f(x, t)u.

(3.3)

Similarly, taking the inner product of (1.2) with αυ in H, we have

α

2

d

dt
∥ υ ∥2 +αδ ∥ υ ∥2 −βα

∫
Rn

uυ = α

∫
Rn

g(x, t)υ.(3.4)

Summing up (3.3) and (3.4), we have

1

2

d

dt
(β ∥ u ∥2 +α ∥ υ ∥2) + βν ∥ ∇u ∥2 +βλ ∥ u ∥2 +αδ ∥ υ ∥2 +β

∫
Rn

h(u)u

= β

∫
Rn

f(x, t)u+ α

∫
Rn

g(x, t)υ.

(3.5)

Note that the terms on the right-hand side of (3.5) can be estimated by

| β
∫
Rn

f(x, t)u |≤ β ∥ f(x, t) ∥∥ u ∥≤ β(λ− C0)

2
∥ u ∥2 +

β

2(λ− C0)
∥ f(x, t) ∥2,

(3.6)

and

| α
∫
Rn

g(x, t)υ |≤ α ∥ g(x, t) ∥∥ υ ∥≤ 1

2
αδ ∥ υ ∥2 +

α

2δ
∥ g(x, t) ∥2 .(3.7)

By (3.6)-(3.7) and (1.4), we obtain from (3.5) that

d

dt
(β ∥ u ∥2 +α ∥ υ ∥2) + 2βν ∥ ∇u ∥2 +β(λ− C0) ∥ u ∥2 +αδ ∥ υ ∥2

≤ β

λ− C0
∥ f(x, t) ∥2 +

α

δ
∥ g(x, t) ∥2,(3.8)

which implies that

d

dt
(β ∥ u ∥2 +α ∥ υ ∥2) + 2βν ∥ ∇u ∥2 +σ(β ∥ u ∥2 +α ∥ υ ∥2)

≤ β

λ− C0
∥ f(x, t) ∥2 +

α

δ
∥ g(x, t) ∥2 .(3.9)
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Neglecting 2βν ∥ ∇u ∥2 and utilizing Gronwall lemma, we get that

(3.10)

β ∥ u(t) ∥2 +α ∥ υ(t) ∥2

≤ e−σ(t−τ)(β ∥ u(τ) ∥2 +α ∥ υ(τ) ∥2) +
∫ t

τ

e−σ(t−s)(
β

λ− C0
∥ f(x, s) ∥2

+
α

δ
∥ g(x, s) ∥2)ds

≤ e−σ(t−τ)(β ∥ u(τ) ∥2 +α ∥ υ(τ) ∥2) + βe−σt

λ− C0

∫ t

−∞
eσs ∥ f(x, s) ∥2 ds

+
αe−σt

δ

∫ t

−∞
eσs ∥ g(x, s) ∥2 ds.

By (3.1) we know that for any (u(τ), υ(τ)) ∈ D(τ), there exists a τ0(t, D̂) such
that

∥ u(t) ∥2+∥ υ(t) ∥2 ≤ 2e−σt

γ
(

β

λ− C0

∫ t

−∞
eσs ∥ f(x, s) ∥2 ds+

α

δ

∫ t

−∞
eσs ∥ g(x, s) ∥2 ds)

△
= R(t)2, ∀τ ≤ τ0(t, D̂),(3.11)

where γ = min{α, β}. Note that

lim
t→−∞

eσt(R(t))2 = 0,(3.12)

we get that D̂0 = {D0(t) : t ∈ R}, defined by

D0(t) = {(u(t), υ(t)) ∈ H ×H :∥ u(t) ∥2 + ∥ υ(t) ∥2≤ R(t)2},(3.13)

is a pullback D-absorbing set. □
Lemma 3.3. Let the assumptions of Lemma 3.2 hold. Then for any (u(τ), υ(τ))

∈ D(τ) and any t ∈ R, there exists τ1(t, D̂) ≤ t such that for all τ ≤ τ1(t, D̂),
the following inequality holds

∥ ∇u(t) ∥2≤ Ce−σt(

∫ t

−∞
eσs(∥ f(x, s) ∥2 + ∥ g(x, s) ∥2)ds,(3.14)

where the positive constant C is independent of D(τ) and t.

Proof. Taking the inner product of (1.1) with −∆u in H, we get that

1

2

d

dt
||∇u||2 + ν||△u||2 + λ||∇u||2 =

∫
Rn

h(u)∆u+ α

∫
Rn

υ△u−
∫
Rn

f(t)△u.

(3.15)

We now estimate every term on the right-hand side of (3.15). By (1.4), we
have ∫

Rn

h(u)∆u = −
∫
Rn

h′(u) | ∇u |2≤ C1 ∥ ∇u ∥2 .(3.16)
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Also, we find that

|
∫
Rn

f(t)△u| ≤∥ f ∥∥ ∆u ∥≤ 1

2
ν ∥ ∆u ∥2 +

1

2ν
∥ f ∥2,(3.17)

and

| α
∫
Rn

υ△u |≤ α ∥ υ ∥∥ △u ∥≤ 1

2
ν ∥ ∆u ∥2 +

α2

2ν
∥ υ ∥2 .(3.18)

It follows from (3.15)-(3.18) that

d

dt
∥ ∇u ∥2≤ 2C1 ∥ ∇u ∥2 +

1

ν
∥ f ∥2 +

α2

ν
∥ υ ∥2 .(3.19)

Integrating (3.9) with respect to t and considering (3.10), we get that∫ t+1

t

∥ ∇u(s) ∥2 ds+
α2

ν

∫ t+1

t

∥ υ(s) ∥2 ds

≤ C(β ∥ u(t) ∥2 +α ∥ υ(t) ∥2) + C

∫ t+1

t

(∥ f(x, s) ∥2 + ∥ g(x, s) ∥2)ds

≤ C(β ∥ u(t) ∥2 +α ∥ υ(t) ∥2) + Ce−σt

∫ t+1

−∞
eσs(∥ f(x, s) ∥2 + ∥ g(x, s) ∥2)ds

≤ Ce−σ(t−τ)(β ∥ u(τ) ∥2 +α ∥ υ(τ) ∥2) + Ce−σt

∫ t+1

−∞
eσs(∥ f(x, s) ∥2 + ∥ g(x, s) ∥2)ds.

(3.20)

By (3.20) and using uniform Gronwall lemma (see, e.g. [18]), we obtain from
(3.19) that

∥ ∇u(t+ 1) ∥2 ≤ Ce−σ(t−τ)(β ∥ u(τ) ∥2 +α ∥ υ(τ) ∥2)

+ Ce−σt

∫ t+1

−∞
eσs(∥ f(x, s) ∥2 + ∥ g(x, s) ∥2)ds,(3.21)

where the constant C is independent of ∥ u(τ) ∥, ∥ υ(τ) ∥ and t. The estimate
(3.21) implies the desired estimate (3.14). □

In order to get the pullback D̂0-asymptotical compactness for the process,
we endow external terms with the additional assumptions:

(A) lim
k→∞

∫ t

−∞
eσs

∫
|x|≥k

| f(x, s) |2 dxds = 0,

lim
k→∞

∫ t

−∞
eσs

∫
|x|≥k

| g(x, s) |2 dxds = 0, ∀t ∈ R.

Lemma 3.4. Let the assumptions of Lemma 3.2 and (A) hold, and D̂0 be

defined by (3.13). Then for every ε > 0, any t ∈ R, there exists k̃ = k̃(ε, t) ≥ 0
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such that

lim
τ→−∞

sup

∫ t

τ

e−2λ(t−s)

∫
|x|≥k

| U(s, τ)(uτ , υτ ) |2 dxds < ε, k ≥ k̃, (uτ , υτ ) ∈ D0(τ).

(3.22)

Proof. Let θ be a smooth function satisfying 0 ≤ θ(s) ≤ 1 for s ∈ R+, and

θ(s) = 0 for 0 ≤ s ≤ 1 and θ(s) = 1 for s ≥ 2.

Then there exists a constant C such that |θ′(s)| ≤ C for s ∈ R+.
Multiplying (1.1) by βθ(|x|2/k2)u and integrating in Rn, we get that

1

2
β
d

dt

∫
Rn

θ(
|x|2

k2
)|u|2 − βν

∫
Rn

θ(
|x|2

k2
)u△u+ βλ

∫
Rn

θ(
|x|2

k2
)|u|2

= −β

∫
Rn

θ(
|x|2

k2
)h(u)u− βα

∫
Rn

θ(
|x|2

k2
)uυ + β

∫
Rn

θ(
|x|2

k2
)fu.(3.23)

Similarly, multiplying (1.2) by αθ(|x|2/k2)υ and integrating in Rn, we get that

α

2

d

dt

∫
Rn

θ(
|x|2

k2
)|υ|2 + αδ

∫
Rn

θ(
|x|2

k2
)|υ|2 = βα

∫
Rn

θ(
|x|2

k2
)uυ +α

∫
Rn

θ(
|x|2

k2
)gυ.

(3.24)

Summing up (3.23) and (3.24), we have

(3.25)

1

2

d

dt

∫
Rn

θ(
|x|2

k2
)(β|u|2 + α|υ|2) + βλ

∫
Rn

θ(
|x|2

k2
)|u|2 + αδ

∫
Rn

θ(
|x|2

k2
)|υ|2

= βν

∫
Rn

θ(
|x|2

k2
)u△u− β

∫
Rn

θ(
|x|2

k2
)h(u)u+ β

∫
Rn

θ(
|x|2

k2
)fu+ α

∫
Rn

θ(
|x|2

k2
)gυ.

We now estimate every term on the right-hand side of (3.25). First,

βν

∫
Rn

θ(
|x|2

k2
)u△u = −βν

∫
Rn

θ(
|x|2

k2
)|∇u|2 − βν

∫
Rn

2x

k2
· θ′( |x|

2

k2
)u∇u.

(3.26)
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Note that

| −βν

∫
Rn

2x

k2
·θ′( |x|

2

k2
)u∇u |

≤C

∫
k≤|x|≤

√
2k

|x|
k2

|u||∇u|

≤C

k

∫
k≤|x|≤

√
2k

|u||∇u|

≤C

k

∫
Rn

|u||∇u|

≤C

k
∥ u ∥∥ ∇u ∥ .(3.27)

For the second term on the right-hand side of (3.25), by (1.4), we have

−β

∫
Rn

θ(
|x|2

k2
)h(u)u ≤ βC0

∫
Rn

θ(
|x|2

k2
) | u |2 .(3.28)

For the third term on the right-hand side of (3.25), we have

β

∫
Rn

θ(
|x|2

k2
)fu ≤| β

∫
|x|≥k

θ(
|x|2

k2
)fu |

≤ β(

∫
|x|≥k

|f |2) 1
2 (

∫
Rn

θ(
|x|2

k2
)|u|2) 1

2 (0 ≤ θ ≤ 1)

≤ β

2(λ− C0)

∫
|x|≥k

|f |2 + β(λ− C0)

2

∫
Rn

θ(
|x|2

k2
)|u|2.(3.29)

Similarly, we can obtain

| α
∫
Rn

θ(
|x|2

k2
)gυ |≤ α

2δ

∫
|x|≥k

|g|2 + αδ

2

∫
Rn

θ(
|x|2

k2
)|υ|2.(3.30)

From (3.25)-(3.30), we get that

d

dt

∫
Rn

θ(
|x|2

k2
)(β|u|2 + α|υ|2) + β(λ− C0)

∫
Rn

θ(
|x|2

k2
)|u|2 + αδ

∫
Rn

θ(
|x|2

k2
)|υ|2

≤ C

k
∥ u ∥∥ ∇u ∥ +

β

λ− C0

∫
|x|≥k

|f |2 + α

δ

∫
|x|≥k

|g|2.

(3.31)
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Since 0 < σ < min{λ − C0, δ}, we can find ε0 > 0 such that 0 < σ + ε0 <
min{λ− C0, δ}. It follows from (3.31) that

d

dr
(e(σ+ε0)r

∫
Rn

θ(
|x|2

k2
)(β|u|2 + α|υ|2))

= (σ + ε0)e
(σ+ε0)r

∫
Rn

θ(
|x|2

k2
)(β|u|2 + α|υ|2) + e(σ+ε0)r d

dr

∫
Rn

θ(
|x|2

k2
)(β|u|2 + α|υ|2)

≤ C

k
e(σ+ε0)r ∥ u ∥∥ ∇u ∥ +

βe(σ+ε0)r

λ− C0

∫
|x|≥k

|f |2 + αe(σ+ε0)r

δ

∫
|x|≥k

|g|2.

(3.32)

Integrating (3.32) on [τ, s] with τ ≤ s ≤ t, we get that

(3.33)

e(σ+ε0)s

∫
Rn

θ(
|x|2

k2
)(β|u(s)|2 + α|υ(s)|2)

≤ e(σ+ε0)τ

∫
Rn

θ(
|x|2

k2
)(β|uτ |2 + α|υτ |2) +

C

k

∫ s

τ

e(σ+ε0)r ∥ u ∥∥ ∇u ∥ dr

+
β

λ− C0

∫ s

τ

e(σ+ε0)r

∫
|x|≥k

|f |2dr + α

δ

∫ s

τ

e(σ+ε0)r

∫
|x|≥k

|g|2dr.

Multiplying (3.33) with e(2λ−σ−ε0)s−2λt, we have

e−2λ(t−s)

∫
Rn

θ(
|x|2

k2
)(β|u(s)|2 + α|υ(s)|2)

≤ e−2λte(2λ−σ−ε0)se(σ+ε0)τ

∫
Rn

θ(
|x|2

k2
)(β|uτ |2 + α|υτ |2) +

Ce−2λte(2λ−σ−ε0)s

k

×
∫ t

τ

e(σ+ε0)r ∥ u ∥∥ ∇u ∥ dr +
βe−2λte(2λ−σ−ε0)s

λ− C0

∫ t

τ

e(σ+ε0)r

∫
|x|≥k

|f |2dr

+
αe−2λte(2λ−σ−ε0)s

δ

∫ t

τ

e(σ+ε0)r

∫
|x|≥k

|g|2dr.

Integrating the above inequality with respect to s over [τ, t], we obtain

(3.34)∫ t

τ

e−2λ(t−s)

∫
Rn

θ(
|x|2

k2
)(β|u(s)|2 + α|υ(s)|2)ds

≤ e−(σ+ε0)(t−τ)

2λ− σ − ε0
(β ∥ uτ ∥2 +α ∥ υτ ∥2) + Ce−(σ+ε0)t

(2λ− σ − ε0)k

∫ t

τ

e(σ+ε0)s ∥ u ∥∥ ∇u ∥ ds

+
βe−(σ+ε0)t

(2λ− σ − ε0)(λ− C0)

∫ t

τ

e(σ+ε0)s

∫
|x|≥k

|f(s)|2ds

+
αe−(σ+ε0)t

(2λ− σ − ε0)δ

∫ t

τ

e(σ+ε0)s

∫
|x|≥k

|g(s)|2ds.
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Now we bound each term on the right-hand side of (3.34). First, since
(uτ , υτ ) ∈ D0(τ), by (3.12), for any t ∈ R we have

e−(σ+ε0)(t−τ)

2λ− σ − ε0
(β ∥ uτ ∥2 +α ∥ υτ ∥2) → 0, as τ → −∞.(3.35)

Note that

∫ t

τ

e(σ+ε0)s ∥ u ∥∥ ∇u ∥ ds ≤ 1

2

∫ t

τ

e(σ+ε0)s ∥ u ∥2 ds+
1

2

∫ t

τ

e(σ+ε0)s ∥ ∇u ∥2 ds.

(3.36)

By (3.10), we get that

∥ u(s) ∥2 ≤ 1

β
e−σ(s−τ)(β ∥ uτ ∥2 +α ∥ υτ ∥2) + e−σs

λ− C0

∫ s

−∞
eσν ∥ f(ν) ∥2 dν

+
αe−σs

βδ

∫ s

−∞
eσν ∥ g(ν) ∥2 dν, s ∈ [τ, t].(3.37)

Then, we have

(3.38)∫ t

τ

e(σ+ε0)s ∥ u(s) ∥2 ds

≤ 1

β
(β ∥ uτ ∥2 +α ∥ υτ ∥2)eστ

∫ t

τ

eε0sds+
1

λ− C0

∫ t

τ

eε0sds

∫ t

−∞
eσν ∥ f(ν) ∥2 dν

+
α

βδ

∫ t

τ

eε0sds

∫ t

−∞
eσν ∥ g(ν) ∥2 dν

≤ eε0t

βε0
eστ (β ∥ uτ ∥2 +α ∥ υτ ∥2) + eε0t

ε0(λ− C0)

∫ t

−∞
eσν ∥ f(ν) ∥2 dν

+
αeε0t

βδε0

∫ t

−∞
eσν ∥ g(ν) ∥2 dν

< ∞, ∀τ ≤ t,

which along with (3.12), for any t ∈ R and any ε > 0, there exists k1 ∈ N such
that

lim
τ→−∞

sup(
Ce−(σ+ε0)t

2(2λ− σ − ε0)k

∫ t

τ

e(σ+ε0)s ∥ u(s) ∥2 ds) < ε, k ≥ k1, (uτ , υτ ) ∈ D0(τ).

(3.39)

Reasoning as above, from (3.14), there exists k2 ∈ N such that

lim
τ→−∞

sup(
Ce−(σ+ε0)t

2(2λ− σ − ε0)k

∫ t

τ

e(σ+ε0)s ∥ ∇u(s) ∥2 ds) < ε, k ≥ k2, (uτ , υτ ) ∈ D0(τ).

(3.40)
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For the third term and the last term on the right-hand side of (3.4), it follows
from assumption (A) that there exists k3 ∈ N such that

∫ t

−∞
eσs

∫
|x|≥k

| f(s) |2 ds < ε,

∫ t

−∞
eσs

∫
|x|≥k

| g(s) |2 ds < ε, k ≥ k3.

(3.41)

Combining (3.34)-(3.41), letting k > max{k1, k2, k3}, and taking into account
that∫ t

τ

e−2λ(t−s)

∫
|x|≥2k

(|u(s)2 + |υ(s)|2)ds ≤
∫ t

τ

e−2λ(t−s)

∫
Rn

θ(
|x|2

k2
)(|u(s)|2 + |υ(s)|2)ds,

we get the result. □

As the proof of Lemma 4 in [19], we have the following result.

Lemma 3.5. Assume that (1.4)-(1.5) hold and f, g ∈ Lloc(R,H). If (uτn , υτn)
→ (uτ , υτ ) weakly in H×H, then there exist subsequences {uτnj

} of {uτn} and

{υτnj
} of {υτn} such that

U(t, τ)(uτnj
, υτnj

) → U(t, τ)(uτ , υτ ) weakly in H ×H, for all τ ≤ t.

And for all τ ≤ T ,

U(·, τ)(uτnj
, υτnj

) → U(·, τ)(uτ , υτ ) weakly in L2(τ, T ;H ×H),

P1U(·, τ)uτnj
→ P1U(·, τ)uτ weakly in L2(τ, T ;H1(Rn)),

∂

∂·
P1U(·, τ)uτnj

→ ∂

∂·
P1U(·, τ)uτ weakly in L2(τ, T ;H−1),

where P1 is the canonical projection from Hilbert space E × F to E.

Theorem 3.6. Assume that (1.4)-(1.5) hold and f, g ∈ Lloc(R,H) satisfy (3.2)
with 0 < σ < min{λ−C0, δ,

2λ
r+1} and assumption (A). Then the process U(t, τ)

corresponding to problem (1.1)-(1.3) possesses a unique pullback D-attractor
AD = {A(t) : t ∈ R} in H ×H.

Proof. By the proof of Lemma 3.2, we obtain that D̂0 = {D0(t)}t∈R defined
by (3.13) is a pullback D-absorbing set for the process U(t, τ). To prove the
result, by Theorem 2.5, we only need to prove that for any t ∈ R, any sequences
τn → −∞, and all (uτn , υτn) ∈ D0(τn), the sequence {U(t, τ)(uτn , υτn)} is
precompact in H ×H.

From (3.13) we know that for any t ∈ R, there exists τD̂0
(t) ≤ t such that

U(t, τ)D0(τ) ⊂ D0(t), ∀ τ ≤ τD̂0
(t).

Then for every k ∈ Z+, there exists τD̂0
(k, t) ≤ t− k such that

U(t− k, τ)D0(τ) ⊂ D0(t− k), ∀ τ ≤ τD̂0
(k, t).(3.42)
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Since for any t ∈ R, k ≥ 0, D0(t − k) is a bounded subset in H × H, by a
diagonal procedure, we can select {τn′ , (uτn′ , υτn′ )} ⊂ {τn, (uτn , υτn)}, which
τn′ is a decreasing sequence, such that for every k ≥ 0, there exists a sequence
ωk = (uk, υk) ⊂ H ×H such that

U(t− k, τn′)(uτn′ , υτn′ ) → ωk weakly in H ×H.(3.43)

Thus, it follows from Lemma 3.5 that

ω0 = (u0, υ0) = lim
n′ (H×H)ω

U(t, τn′)(uτn′ , υτn′ )

= lim
n′ (H×H)ω

U(t, t− k)U(t− k, τn′)(uτn′ , υτn′ )

= U(t, t− k) lim
n′ (H×H)ω

U(t− k, τn′)(uτn′ , υτn′ )

= U(t, t− k)ωk, for all k ≥ 0,(3.44)

where lim(H×H)ω
denotes the weak limit in H × H. The equality (3.44) also

implies that

(β
1
2P1U(t, τn′)(uτn′ , υτn′), α

1
2P2U(t, τn′)(uτn′ , υτn′))→ (β

1
2 u0, α

1
2 υ0) weakly inH×H,

where Pi (i = 1, 2) is the canonical projection. By the lower semi-continuity
of the norm, we get that

∥(β 1
2u0, α

1
2 υ0) ∥H×H

≤ lim
n′→∞

inf ∥ (β
1
2P1U(t, τn′)(uτn′ , υτn′ ), α

1
2P2U(t, τn′)(uτn′ , υτn′ )) ∥H×H .

(3.45)

If we can also prove

(3.46)

lim
n′→∞

sup ∥ (β
1
2P1U(t, τn′)(uτn′ , υτn′ ), α

1
2P2U(t, τn′)(uτn′ , υτn′ )) ∥H×H

≤∥ (β
1
2u0, α

1
2 υ0) ∥H×H ,

then we can get that

(β
1
2P1U(t, τn′)(uτn′ , υτn′), α

1
2P2U(t, τn′)(uτn′ , υτn′))→ (β

1
2 u0, α

1
2 υ0) strongly inH×H,

which implies that

U(t, τn′)(uτn′ , υτn′ ) → (u0, υ0) strongly in H ×H,

and the result will be proved.
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By (3.5), for all τ ≤ t and all (uτ , υτ ) ∈ H ×H, we have

(3.47)

β ∥ P1U(t, τ)(uτ , υτ ) ∥2 +α ∥ P2U(t, τ)(uτ , υτ ) ∥2

= e−2λ(t−τ)(β ∥ uτ ∥2 +α ∥ υτ ∥2) + 2α(λ− δ)

∫ t

τ

e−2λ(t−s)∥ P2U(s, τ)(uτ , υτ ) ∥2ds

−2βν

∫ t

τ

e−2λ(t−s)∥∇P1U(s, τ)(uτ , υτ )∥2ds− 2β

∫ t

τ

e−2λ(t−s)⟨h(P1U(s, τ)(uτ , υτ )),

P1U(s, τ)(uτ , υτ )⟩ds+ 2β

∫ t

τ

e−2λ(t−s)⟨f, P1U(s, τ)(uτ , υτ )⟩ds

+2α

∫ t

τ

e−2λ(t−s)⟨g, P2U(s, τ)(uτ , υτ )⟩ds.

Then for all k ≥ 0, τn′ ≤ t− k, we obtain

(3.48)

β ∥ P1U(t, τn′)(uτn′ , υτn′ ) ∥2 +α ∥ P2U(t, τn′)(uτn′ , υτn′) ∥2

= β||P1U(t, t− k)U(t−k, τn′)(uτn′ , υτn′ )||2+α||P2U(t, t−k)U(t−k, τn′)(uτn′ , υτn′)||2

= e−2λk(β ∥ P1U(t−k, τn′)(uτn′ , υτn′ ) ∥2 +α ∥ P2U(t− k, τn′)(uτn′ , υτn′ ) ∥)2

+ 2α(λ− δ)

∫ t

t−k

e−2λ(t−s) ∥ P2U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) ∥2 ds

− 2βν

∫ t

t−k

e−2λ(t−s) ∥ ∇P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) ∥2 ds

− 2β

∫ t

t−k

e−2λ(t−s)⟨h(P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ )), P1U(s, t− k)U(t− k,

τn′)(uτn′ , υτn′ )⟩ds

+ 2β

∫ t

t−k

e−2λ(t−s)⟨f, P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ )⟩ds

+ 2α

∫ t

t−k

e−2λ(t−s)⟨g, P2U(s, t− k)U(t− k, τ)(uτ , υτ )⟩ds

= I1 + I2 + I3 + I4 + I5 + I6.

We now estimate I1 − I6 one by one. First, from (3.42), we have

U(t− k, τn′)(uτn′ , υτn′ ) ∈ D0(t− k) for any τn′ ≤ τD̂0(k,t)
, k ≥ 0.(3.49)

Then we have

lim
n′→∞

sup I1

= lim
n′→∞

(e−2λk(β||P1U(t− k, τn′)(uτn′ , υτn′ )||2 + α||P2U(t− k, τn′)(uτn′ , υτn′ )||2))

≤ e−2λkδ1(R(t− k))2, k ≥ 0,

(3.50)
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where δ1 = max{α, β}. For I2, since U(t− k, τn′)(uτn′ , υτn′ )
→ ωk weakly in H×H, and it follows, from Lemma 3.5, that P2U(s, t−k)U(t−
k, τn′)(uτn′ , υτn′ ) → P2U(s, t − k)ωk weakly in L2(t − k, t;H). Then we can
deduce that∫ t

t−k

e−2λ(t−s) ∥ P2U(s, t− k)ωk ∥2 ds

≤ lim
n′→∞

inf

∫ t

t−k

e−2λ(t−s) ∥ P2U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) ∥2 ds.

Thus, by the fact that λ < δ we have

lim
n′→∞

sup I2 ≤ 2α(λ− δ)

∫ t

t−k

e−2λ(t−s) ∥ P2U(s, t− k)ωk ∥2 ds.(3.51)

Similarly, reasoning as above, we have ∇P1U(s, t−k)U(t−k, τn′)(uτn′ , υτn′ ) →
∇P1U(s, t− k)ωk weakly in L2(t− k, t;H). Then,∫ t

t−k

e−2λ(t−s) ∥ ∇P1U(s, t− k)ωk ∥2 ds

≤ lim
n′→∞

inf

∫ t

t−k

e−2λ(t−s) ∥ ∇P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) ∥2 ds.

Thus,

lim
n′→∞

sup I3 ≤ −2βν

∫ t

t−k

e−2λ(t−s) ∥ ∇P1U(s, t− k)ωk ∥2 ds.

(3.52)

Now, we estimate I4 by decomposing Rn into a bounded domain and its
complement to overcome the lack of compactness of Sobolev imbeddings. Note
that

− 2β

∫ t

t−k

e−2λ(t−s)⟨h(P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ )), P1U(s, t− k)

◦ U(t− k, τn′)(uτn′ , υτn′ )⟩ds

= −2β

∫ t

t−k

e−2λ(t−s)

∫
|x|≥m

h(P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ))P1U(s, t− k)

◦ U(t− k, τn′)(uτn′ , υτn′ )dxds

− 2β

∫ t

t−k

e−2λ(t−s)

∫
|x|≤m

h(P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ))P1U(s, t− k)

◦ U(t− k, τn′)(uτn′ , υτn′ )dxds.

By Lemma 3.4, for any ε ≥ 0, there exists τ̃ ≤ t, m̃ ∈ N and ñ ∈ N such that∫ t

τn′

e−2λ(t−s)

∫
|x|≥m

| P1U(s, τn′)(uτn′ , υτn′ ) |2 dxds < ε,
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for τn′ ≤ min{τ̃ , t − k}, m ≥ m̃, n′ > ñ and (u0nj
, υ0nj

) ∈ D0(τn′). Without

loss of generality, we can choose ñ large enough such that τn′ ≤ min{τ̃ , t− k}
for all n′ ≥ ñ.

Combining (1.4) and (1.5), we have |h(u)| ≤ C(|u| + |u|r+1), and then we
can deduce that for n′ ≥ ñ, m ≥ m̃, and (uτn′ , υτn′ ) ∈ D0(τn′), there holds∫ t

t−k

e−2λ(t−s)

∫
|x|≥m

h(P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ))P1U(s, t− k)

◦U(t− k, τn′)(uτn′ , υτn′ )ds

≤C

∫ t

τn′

e−2λ(t−s)

∫
|x|≥m

| P1U(s, τn′)(uτn′ , υτn′ ) |2 dxds+ C

∫ t

t−k

e−2λ(t−s)

×
∫
|x|≥m

| P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) |r+1| P1U(s, τn′)(uτn′ , υτn′ ) | dxds

≤ εC + C(

∫ t

t−k

e−2λ(t−s)

∫
|x|≥m

| P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) |2(r+1) dxds)
1
2

×(

∫ t

τn′

e−2λ(t−s)

∫
|x|≥m

| P1U(s, τn′)(uτn′ , υτn′ ) |2 dxds)
1
2

≤ εC + εC(

∫ t

t−k

e−2λ(t−s)

∫
|x|≥m

| P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) |2(r+1) dxds)
1
2

≤ εC + εC(

∫ t

t−k

e−2λ(t−s) ∥ P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ ) ∥
2(r+1)

H1 ds)
1
2 .

Let Ωm = {x ∈ Rn| |x| ≤ m}, and note that

U(t− k, τn′)(uτn′ , υτn′ ) → ωk weakly in H ×H.

From Lemma 3.5, we get that

P1U(·, t− k)U(t−k, τn′)(uτn′ , υτn′) → P1U(·, t− k)ωkweakly in L2(t−k, t;H1(Ωm)),

∂

∂·P1U(·, t− k)U(t− k, τn′)uτn′→
∂

∂·P1U(·, t− k)ωk weakly in L2(t−k, t;H−1(Ωm)).

By the compactness result in [11], we have

P1U(·, t−k)U(t− k, τn′)(uτn′ , υτn′ )→ P1U(·, t−k)ωk strongly in L2(t−k, t;L2(Ωm).

Thus, for m ≥ m̃ we have

(3.53)

lim
n′→∞

sup I4≤−2β

∫ t

t−k

e−2λ(t−s)

∫
|x|≤m

h(P1U(s, t− k)ωk)P1U(s, t− k)ωkds

+ε lim
n′→∞

sup(

∫ t

t−k

e−2λ(t−s)||P1U(s, τn′)(uτn′ , υτn′ )||
2(r+1)
H1 ds)

1
2 + ε.
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By Lemma 3.5 and (3.43), we have

(3.54)

2β

∫ t

t−k

e−2λ(t−s)⟨f(s), P1U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ )⟩ds

→ 2β

∫ t

t−k

e−2λ(t−s)⟨f(s), P1U(s, t− k)ωk⟩ds, n′ → ∞,

and

(3.55)

2α

∫ t

t−k

e−2λ(t−s)⟨g(s), P2U(s, t− k)U(t− k, τn′)(uτn′ , υτn′ )⟩ds

→ 2α

∫ t

t−k

e−2λ(t−s)⟨g(s), P2U(s, t− k)ωk⟩ds, n′ → ∞.

Considering (3.50)-(3.55) and letting m → ∞, we get from (3.48) that

(3.56)

lim
n′→∞

sup(β ∥ P1U(t, τn′)(uτn′ , υτn′ ) ∥2 +α ∥ P2U(t, τn′)(uτn′ , υτn′ ) ∥2)

≤ e−2λkδ1(R(t− k))2 + 2α(λ− δ)

∫ t

t−k

e−2λ(t−s) ∥ P2U(s, t− k)ωk ∥2 ds

− 2βν

∫ t

t−k

e−2λ(t−s) ∥ ∇P1U(s, t− k)ωk ∥2 ds

− 2β

∫ t

t−k

e−2λ(t−s)

∫
Rn

h(P1U(s, t− k)ωk)P1U(s, t− k)ωkds

+ 2β

∫ t

t−k

e−2λ(t−s)⟨f(s), P1U(s, t− k)ωk)⟩ds

+ 2α

∫ t

t−k

e−2λ(t−s)⟨g(s), P2U(s, t− k)ωk)⟩ds

+ ε lim
n′→∞

sup(

∫ t

t−k

e−2λ(t−s) ∥ P1U(s, τn′)(uτn′ , υτn′ ) ∥
2(r+1)

H1 ds)
1
2 + ε.

Combining (3.44) and (3.47), we can obtain

(3.57)

∥ (β
1
2 u0, α

1
2 υ0) ∥2H×H=∥ (β

1
2P1U(t, t− k)ωk, α

1
2P2U(t, t− k)ωk) ∥2

= e−2λk(β ∥ uk ∥2 +α ∥ υk ∥2) + 2α(λ− δ)

∫ t

t−k

e−2λ(t−s) ∥ P2U(s, t− k)ωk ∥2ds

− 2βν

∫ t

t−k

e−2λ(t−s) ∥ ∇P1U(s, t− k)ωk ∥2 ds
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− 2β

∫ t

t−k

e−2λ(t−s)⟨h(P1U(s, t− k)ωk), P1U(s, t− k)ωk)⟩ds

+ 2β

∫ t

t−k

e−2λ(t−s)⟨f(s), P1U(s, t− k)ωk)⟩ds

+ 2α

∫ t

t−k

e−2λ(t−s)⟨g(s), P2U(s, t− k)ωk)⟩ds.

By (3.56) and (3.57), we can deduce that

(3.58)

lim
n′→∞

sup(β ∥ P1U(t, τn′)(uτn′ , υτn′ ) ∥2 +α ∥ P2U(t, τn′)(uτn′ , υτn′ ) ∥2)

≤ e−2λkδ1(R(t− k))2 + (β ∥ u0 ∥2 +α ∥ υ0 ∥2)− e−2λk(β ∥ uk ∥2 +α ∥ υk ∥2)

+ε lim
n′→∞

sup(

∫ t

t−k

e−2λ(t−s) ∥ P1U(s, τn′)(uτn′ , υτn′ ) ∥
2(r+1)

H1 ds)
1
2 + ε.

Finally, we only need to prove that for any t ∈ R,

lim
n′→∞

sup(

∫ t

t−k

e−2λ(t−s) ∥ P1U(s, τn′)(uτn′ , υτn′ ) ∥
2(r+1)
H1 ds)

1
2 < +∞.

From (3.21) we get that

∥ P1U(s, τn′)(uτn′ , υτn′ ) ∥
2(r+1)
H1

≤ Ce−σ(r+1)s(eστn′ (β ∥ uτn′ ∥2 +α ∥ υτn′ ∥2))r+1

+ Ce−σ(r+1)s(

∫ t

−∞
eσs(∥ f(s) ∥2 + ∥ g(s) ∥2)ds)r+1.

Then we can easily obtain that for 0 < σ < min{λ, 2λ
r+1},∫ t

τn′

e−2λ(t−s) ∥ P1U(s, τn′)(uτn′ , υτn′ ) ∥
2(r+1)

H1 ds

≤ C[(eστn′ (β||uτn′ ||2 + α||υτn′ ||2))r+1 + (

∫ t

−∞
eσs(∥ f(s) ∥2 + ∥ g(s) ∥2)ds)r+1]

×
∫ t

−∞
e−2λ(t−s)e−σ(r+1)sds

≤ Ce−σ(r+1)t

2λ− σ(r + 1)
[(eστn′ (β ∥ uτn′ ∥2 +α ∥ υτn′ ∥2))r+1 + (

∫ t

−∞
eσs(∥ f(s) ∥2

+ ∥ g(s) ∥2)ds)r+1].
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Since (uτn′ , υτn′ ) ∈ D0(τn′), by (3.13), we have

(3.59)

lim
n′→∞

sup(

∫ t

τn′

e−2λ(t−s) ∥ P1U(s, τn′)(uτn′ , υτn′ ) ∥
2(r+1)
H1 ds)

1
2

≤ 2Ce−
σ(r+1)t

2√
2λ− σ(r + 1)

(

∫ t

−∞
eσs(∥ f(s) ∥2 + ∥ g(s) ∥2)ds)

r+1
2

< ∞.

By (3.58) and (3.59), we can get

(3.60)

lim
n′→∞

sup(β ∥ P1U(t, τn′)(uτn′ , υτn′ ) ∥2 +α ∥ P2U(t, τn′)(uτn′ , υτn′ ) ∥2)

≤ e−2λkδ1(R(t− k))2 + (β ∥ u0 ∥2 +α ∥ υ0 ∥2)− e−2λk(β ∥ uk ∥2 +α ∥ υk ∥2)

+ ε
2Ce−

σ(r+1)t
2√

2λ− σ(r + 1)
(

∫ t

−∞
eσs(∥ f(s) ∥2 + ∥ g(s) ∥2)ds)

r+1
2 + ε.

Note that

e−2λk(R(t− k))2

=
2e−σte−(2λ−σ)k

γ
(

β

λ− C0

∫ t−k

−∞
eσs ∥ f(x, s) ∥2 ds+

α

δ

∫ t−k

−∞
eσs ∥ g(x, s) ∥2 ds)

→ 0, as k → ∞.

Letting ε → 0 and k → ∞ in (3.60) and considering (3.1), we get (3.46). This
completes the proof. □

Remark 3.7. In this paper, we only get the existence of pullback D-attractor
for system (1.1)-(1.3). For more information on pullback D-attractor obtained
in Theorem 3.6 such as dimension, regularity and inner structure, we leave
them for future study.
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