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Abstract. In this paper, we prove some theorems related to properties
of generalized symmetric hybrid mappings in Banach spaces. Using Ba-
nach limits, we prove a fixed point theorem for symmetric generalized

hybrid mappings in Banach spaces. Moreover, we prove some weak con-
vergence theorems for such mappings by using Ishikawa iteration method
in a uniformly convex Banach space.
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1. Introduction

Let C be a nonempty, closed convex subset of a real Banach space E. The
self mapping T of C is called nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for all
x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x. We denote by
F (T ) the set of fixed points of T .

There exist some iteration processes which are often used to approximate
a fixed point of a nonexpansive mapping: Picard iteration, Krasnoselskii iter-
ation, Halpern iteration, Mann iteration and Ishikawa iteration. During the
recent years, Mann and Ishikawa iterative schemes [6, 8] have been studied by
a number of authors.

Let E be a nonempty closed convex subset of a Banach space. In 1953, for
a self mapping T of E, Mann [8] defined the following iteration procedure:

(1.1)

{
x0 ∈ C chosen arbitrarily,

xn+1 = αnxn + (1− αn)Txn,
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where 0 ≤ αn ≤ 1 for all n ∈ N ∪ {0}.
Let K be a closed convex subset of a Hilbert space H. In 1974, for a

Lipschitzian pseudocontractive self mapping T of K, Ishikawa [6] defined the
following iteration procedure:

(1.2)


x0 ∈ C chosen arbitrarily,

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn,

where 0 ≤ βn ≤ αn ≤ 1 for all n ∈ N∪{0} and he proved strong convergence of
the sequence {xn} generated by the above iterative scheme if limn→∞ βn = 1
and

∑∞
n=1(1−αn)(1−βn) = ∞. Taking βn = 1 for all n ≥ 0 in (1.2), Ishikawa

iteration process reduces to Mann iteration process.
In general, to gain the convergence in Mann and Ishikawa iteration processes,

we must assume that underlying the space E has elegant properties. For ex-
ample, Reich [10] proved that if E is a uniformly convex Banach space with a
Fréchet differentiable norm and if {αn} is such that

∑∞
n=1 αn(1 − αn) = ∞,

then the Mann iteration scheme converges weakly to a fixed point of T . How-
ever, we know that the Mann iteration process is weakly convergent even in a
Hilbert space [4]. Also, Tan and Xu [16] proved that if E is a uniformly con-
vex Banach space which satisfies Opial’s condition or whose norm is Fréchet
differentiable and if {αn} and {βn} are such that

∑∞
n=1 αn(1 − αn) diverges,∑∞

n=1 αn(1−βn) converges and lim supβn < 1, then Ishikawa iteration process
converges weakly to a fixed point of T .

It easy to see that process (1.2) is more general than the process (1.1). Also,
for a Lipschitz pseudocontractive mapping in a Hilbert space, process (1.1) is
not known to converge to a fixed point while the process (1.2) is convergent. In
spite of these facts, researchers are interested to study the convergence theorems
by process (1.1), because the formulation of process (1.1) is simpler than that of
(1.2). If {βn} satisfies suitable conditions, we can gain a convergence theorem
for process (1.2) on a convergence theorem for process (1.1).

In recent years, many authors have proved weak or strong convergence the-
orems for some nonlinear mappings by using various iteration processes in the
framework of Hilbert spaces and Banach spaces, see, [1, 9, 11,14].

Let C be a nonempty, closed convex subset of a real Banach space E. A
mapping S from C into E is called symmetric generalized hybrid [15] if there
exist α, β, γ, δ ∈ R such that

(1.3)
α∥Sx− Sy∥2 + β(∥x− Sy∥2 + ∥Sx− y∥2) + γ∥x− y∥2

+ δ(∥x− Tx∥2 + ∥y − Sy∥2) ≤ 0,

for all x, y ∈ C. We call such a mapping an (α, β, γ, δ)-symmetric generalized
hybrid mapping.



619 Moradlou and Alizadeh

In this paper, motivated by Takahashi and Yao [14], we prove some theo-
rems related to properties of generalized symmetric hybrid mappings in Banach
spaces. Moreover, we prove a fixed point theorem for symmetric generalized
hybrid mappings in a Banach space . Also, we prove some weak convergence
theorems for symmetric generalized hybrid mappings in a uniformly convex
Banach space.

2. Preliminaries

Let E be a real Banach space with ∥.∥ and dual space E∗. We denote by J
the normalized duality mapping from E into 2E

∗
defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2},

for all x ∈ E, where ⟨., .⟩ denotes the generalized duality pairing between E
and E∗. E is said to be strictly convex if ∥x+y

2 ∥ < 1 for all x, y ∈ E with
∥x∥ = ∥y∥ = 1 and x ̸= y. It is also said to be uniformly convex if for every
ϵ ∈ (0, 2], there exists a δ > 0, such that ∥x+y

2 ∥ < 1 − δ for all x, y ∈ E with
∥x∥ = ∥y∥ = 1 and ∥x− y∥ ≥ ϵ. Furthermore, E is called smooth if the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

,

exists for all x, y ∈ BE = {x ∈ E : ∥x∥ = 1}. It is also said to be uniformly
smooth if the limit (2.1) is attained uniformly for all x, y ∈ E. For more details
see [12].

Denote by l∞ the set of all bounded sequences equipped with supremum
norm. A continuous linear functional µ on l∞ is called a Banach limit if

(i) µ(e) = ∥e∥ = 1, where e = (1, 1, 1, . . .);
(ii) µn(xn) = µn(xn+1) for all x = (x1, x2, . . .) ∈ l∞, where

µn(xn+m) = µ(xm+1, xm+2, xm+3, . . . , xm+n, . . .).

As usual, we denote by µn(xn) the value of µ at x = (x1, x2, . . .). It is well
known that there exists a Banach limit on l∞. Let µ be a Banach limit, then

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn, x = (x1, x2, . . .) ∈ l∞.

Moreover, if xn → a, then µn(xn) = a. For more details we refer readers to [12].
We denote the weak convergence and the strong convergence of {xn} to

x ∈ E by xn ⇀ x and xn → x, respectively.
A Banach space E satisfies the Opial’s condition if for every sequence {xn}

in E such that xn ⇀ x ∈ E, then

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,

for all y ∈ E, y ̸= x.
A self mapping T of C ⊆ E is called: (i) firmly nonexpansive [2], if ∥Tx −

Ty∥2 ≤ ⟨x − y, j⟩ for all x, y ∈ C, where j ∈ J(Tx − Ty); (ii) nonspreading
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[7], if 2∥Tx − Ty∥2 ≤ ∥Tx − y∥2 + ∥Ty − x∥2 for all x, y ∈ E; (iii) hybrid
[13], if 3∥Tx − Ty∥2 ≤ ∥x − y∥2 + ∥Tx − y∥2 + ∥Ty − x∥2 for all x, y ∈ E.
Also, a self mapping T of C with F (T ) ̸= ∅ is called quasi-nonexpansive if
∥x− Ty∥ ≤ ∥x− y∥ for all x ∈ F (T ) and y ∈ C.

It easy to see that:

• a (1, 0,−1, 0)-symmetric generalized hybrid mapping is nonexpansive;
• a (2,−1, 0, 0)-symmetric generalized hybrid mapping is nonspreading;
• a (3,−1,−1, 0)-symmetric generalized hybrid mapping is hybrid.

The following result is given in [12].

Theorem 2.1. Let E be a Banach space and let J be the duality mapping of
E. Then

∥x∥2 − ∥y∥2 ≥ 2⟨x− y, j⟩,
for all x, y ∈ E where j ∈ Jy.

Theorem 2.2 ([5]). Let C be a nonempty closed convex subset of a uniformly
convex Banach space E and T be a self mapping of C. Let {xn} be a bounded
sequence of E and µ be a mean on l∞. If

µn∥xn − Tu∥2 ≤ µn∥xn − u∥2,

for all u ∈ C, then T has a fixed point in C.

Theorem 2.3 ([17]). Let E be a uniformly convex Banach space and let r be
a positive real number. Then there exists a strictly increasing, continuous and
convex function g : [0,∞) −→ [0,∞) such that g(0) = 0 and

∥tx+ (1− t)y∥2 ≤ t∥x∥2 + (1− t)∥y∥2 − t(1− t)g(∥x− y∥)

for all x, y ∈ Br and t with 0 ≤ t ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}.

3. Main results

Theorem 3.1. Let E be a real Banach space, C be a nonempty closed convex
subset of E and T be an (α, β, γ, δ)-symmetric generalized hybrid self mapping
of C such that F (T ) ̸= ∅ and the conditions (1) α+ 2β + γ ≥ 0, (2) α+ β > 0
and (3) δ ≥ 0 hold. Then T is quasi-nonexpansive.

Proof. Since T is an (α, β, γ, δ)-symmetric generalized hybrid self mapping of
C, we have

(3.1)
α∥Tx− Ty∥2 + β(∥x− Ty∥2 + ∥Tx− y∥2) + γ∥x− y∥2

+ δ(∥x− Tx∥2 + ∥y − Ty∥2) ≤ 0,

for all x, y ∈ E. Since F (T ) ̸= ∅, there exists x ∈ E such that x = Tx. So,

α∥x− Ty∥2 + β(∥x− Ty∥2 + ∥x− y∥2) + γ∥x− y∥2 + δ∥y − Ty∥2 ≤ 0,
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for all y ∈ E. Therefore we can conclude that

(3.2) (α+ β)∥x− Ty∥2 + (β + γ)∥x− y∥2 ≤ 0,

for all y ∈ E. It follows from condition (2) and (3.2) that −(β + γ) ≥ 0. So
conditions (1) and (2) imply that

(3.3) 0 ≤ −(β + γ)

α+ β
≤ 1.

Then, form (3.2) and (3.3), we derive that ∥x − Ty∥ ≤ ∥x − y∥, i.e., T is
quasi-nonexpansive. □
Theorem 3.2. Let E be a real Banach space, C be a nonempty subset of E
and ζ, η be nonnegetive real numbers. Then a firmly nonexpansive self mapping
of C is a (2ζ + η,−ζ,−η, 0)-symmetric generalized hybrid mapping.

Proof. Assume that T is a firmly nonexpasive self mapping of C. Then we have

∥Tx− Ty∥2 ≤ ⟨x− y, j⟩,
for all x, y ∈ C and j ∈ J(Tx− Ty). By using Theorem 2.1 we get

∥Tx− Ty∥2 ≤ ⟨x− y, j⟩ ⇐⇒ 0 ≤ 2⟨x− Tx− (y − Ty), j⟩
=⇒ 0 ≤ ∥x− y∥2 − ∥Tx− Ty∥2

⇐⇒ ∥Tx− Ty∥2 ≤ ∥x− y∥2

⇐⇒ ∥Tx− Ty∥ ≤ ∥x− y∥.
Hence for ζ ≥ 0, we have

(3.4) ζ∥Tx− Ty∥ ≤ ζ∥x− y∥.
On the other hand, for all x, y ∈ C and j ∈ J(Tx− Ty) we get

∥Tx− Ty∥2 ≤ ⟨x− y, j⟩
⇐⇒ 0 ≤ 2⟨x− Tx− (y − Ty), j⟩
⇐⇒ 0 ≤ 2⟨x− Tx, j⟩+ 2⟨Ty − y, j⟩
=⇒ 0 ≤ ∥x− Ty∥2 − ∥Tx− Ty∥2 + ∥Tx− y∥2 − ∥Tx− Ty∥2

⇐⇒ 0 ≤ ∥x− Ty∥2 − ∥y − Tx∥2 − 2∥Tx− Ty∥2

⇐⇒ 2∥Tx− Ty∥2 ≤ ∥x− Ty∥2 + ∥y − Tx∥2.
So, for η ≥ 0 we get

(3.5) 2η∥Tx− Ty∥2 ≤ η∥x− Ty∥2 + η∥y − Tx∥2.
Hence, summing both sides of (3.4) and (3.5) we obtain

(ζ + 2η)∥Tx− Ty∥2 ≤ η∥x− Ty∥2 + η∥y − Tx∥2 + ζ∥x− y∥2,
and therefore

(ζ + 2η)∥Tx− Ty∥2 − η(∥x− Ty∥2 + ∥y − Tx∥2)− ζ∥x− y∥2 ≤ 0.
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This yields that T is a (ζ + 2η,−η,−ζ, 0)-symmetric generalized hybrid map-
ping. □

Theorem 3.3. Let C be a nonempty closed convex subset of a real Banach
space E and T be an (α, β, γ, δ)-symmetric generalized hybrid self mapping of
C and the conditions (1) α + 2β + γ ≥ 0, (2) α + β > 0 and (3) δ ≥ 0 hold.
Then the following are equivalent:

(i) F (T ) ̸= ϕ;
(ii) {Tnx} is bounded for some x ∈ C.

Proof. (i) =⇒ (ii): It is obvious.
(ii) =⇒ (i): Since T is an (α, β, γ, δ)-symmetric generalized hybrid self mapping
of C, the inequality (3.1) is satisfied. Let u ∈ C such that {Tnu} is bounded.
Replacing x by Tnu in (3.1), we have

α∥Tn+1u− Ty∥2 + β∥Tnu− Ty∥2

≤ −β∥Tn+1u− y∥2 − γ∥Tnu− y∥2 − δ(∥Tnu− Tn+1u∥2 + ∥y − Ty∥2)
≤ −β∥Tn+1u− y∥2 − γ∥Tnu− y∥2,

for all y ∈ C and all n ∈ N. Since {Tnu} is bounded, by taking a Banach limit
µ on both sides of the last inequlity, we get

µn(α∥Tn+1u− Ty∥2 + β∥Tnu− Ty∥2)
≤ µn(−β∥Tn+1u− y∥2 − γ∥Tnu− y∥2).

So, by using the properties of Banach limit, we have

αµn∥Tnu− Ty∥2 + βµn∥Tnu− Ty∥2

≤ −βµn∥Tnu− y∥2 − γµn∥Tnu− y∥2.

From the last inequality, we can conclude that

(α+ β)µn∥Tnu− Ty∥2 ≤ −(β + γ)µn∥Tnu− y∥2.

Similar to the proof of Theorem 3.1, we derive that

µn∥Tnu− Ty∥2 ≤ µn∥Tnu− y∥2,

for all y ∈ C. So Theorem 2.2 implies that T has a fixed point.
□

Theorem 3.4. Let C be a nonempty closed convex subset of a Banach space
E satisfying Opial’s condition. Assume that T is an (α, β, γ, δ)-symmetric
generalized hybrid self mapping of C such that the conditions (1) α+2β+γ ≥ 0,
(2) α+ β > 0, (3) β ≤ 0 and (4) δ ≥ 0 hold. Then I − T is demiclosed (at 0),
i.e., xn ⇀ u and xn − Txn → 0 imply u ∈ F (T ).
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Proof. Since T is an (α, β, γ, δ)-symmetric generalized hybrid self mapping of C,
the inequality (3.1) is satisfied. Assume that xn ⇀ u and xn−Txn → 0. Since
xn ⇀ u, we can conclude that {xn} is bounded and by limn→∞ ∥xn−Txn∥ = 0,
we obtain that {Txn} is bounded. Substituting x and y by xn and u in (3.1),
respectively, we have

α∥Txn − Tu∥2 + β(∥xn − Tu∥2 + ∥Txn − u∥2) + γ∥xn − u∥2

+ δ(∥xn − Txn∥2 + ∥u− Tu∥2) ≤ 0.

Therefore

α∥Txn − Tu∥2 ≤ −β∥xn − Tu∥2 − β∥Txn − u∥2 − γ∥xn − u∥2,

and hence

α∥Txn − Tu∥2 ≤ −β(∥Txn − xn∥+ ∥xn − u∥)2 − γ∥xn − u∥2

− β(∥xn − Txn∥+ ∥Txn − Tu∥)2.

So, we can conclude that

(3.6)

∥Txn − Tu∥2 ≤ −(β + γ)

α+ β
∥xn − u∥2 − 2β

α+ β
∥xn − Txn∥2

≤ ∥xn − u∥2 − 2β

α+ β
∥xn − Txn∥2.

Assume that Tu ̸= u. So, using boundedness of {xn} and {Txn}, Opial’s
condition and (3.6), we have

(3.7)

lim inf
n→∞

∥xn − u∥2 < lim inf
n→∞

∥xn − Tu∥2

= lim inf
n→∞

∥Txn − Tu∥2

≤ lim inf
n→∞

(∥xn − u∥2 − 2β

α+ β
∥xn − Txn∥2

≤ lim inf
n→∞

∥xn − u∥2,

which is a contradiction. Hence we get Tu = u and therefore I−T is demiclosed.
□

Theorem 3.5. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E satisfying Opial’s condition. Assume that T is an (α, β, γ, δ)-
symmetric generalized hybrid self mapping of C such that
F (T ) ̸= ∅ and the conditions (1) α+2β + γ ≥ 0, (2) α+ β > 0, (3) β ≤ 0 and
(4) δ ≥ 0 hold. Assume that {xn} is a sequence generated by

x1 = x ∈ C,

yn = (1− λn)xn + λnTxn,

xn+1 = (1− γn)xn + γnTyn,
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where 0 ≤ λn ≤ 1, 0 < a ≤ γn ≤ 1 for all n ∈ N and lim infn→∞ λn(1−λn) > 0.
Then xn ⇀ x0 ∈ F (T ).

Proof. Since T is an (α, β, γ, δ)-symmetric generalized hybrid mapping such
that F (T ) ̸= ∅, so by Theorem 3.1, T is quasi-nonexpansive. Then, for all
q ∈ F (T ) and all n ∈ N, we have

(3.8)

∥yn − q∥ = ∥(1− λn)xn + λnTxn − q∥
= ∥(1− λn)(xn − q) + λn∥Txn − q∥
≤ (1− λn)∥xn − q∥ − λn∥xn − q∥
= ∥xn − q∥,

and hence using (3.8), we get

(3.9)

∥xn+1 − q∥ = ∥(1− γn)xn + γnTyn − q∥
≤ (1− γn)∥xn − q∥+ γn∥Tyn − q∥
≤ (1− γn)∥xn − q∥+ γn∥yn − q∥
≤ ∥xn − q∥.

Then, we can conclude that limn→∞ ∥xn − q∥ exists. So, {xn} and {yn} are
bounded. Since T is quasi-nonexpansive, {Txn} and {Tyn} are also bounded.
Let

r = max{sup
n∈N

∥xn − q∥, sup
n∈N

∥Txn − q∥, sup
n∈N

∥yn − q∥, sup
n∈N

∥Tyn − q∥}.

Hence, by Theorem 2.3, there exists a strictly increasing, continuous and convex
function g : [0,∞) −→ [0,∞) such that g(0) = 0 and

∥tx+ (1− t)y∥2 ≤ t∥x∥2 + (1− t)∥y∥2 − t(1− t)g(∥x− y∥),

for all x, y ∈ Br and t with 0 ≤ t ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}. Then,
for all q ∈ F (T ) and n ∈ N, we get

(3.10)

∥yn − q∥2 = ∥(1− λn)xn + λnTxn − q∥2

= ∥(1− λn)(xn − q) + λn(Txn − q)∥2

≤ (1− λn)∥xn − q∥2 + λn∥xn − q∥2

− λn(1− λn)g(∥xn − Txn∥)
= ∥xn − q∥2 − λn(1− λn)g(∥xn − Txn∥),
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and hence

(3.11)

∥xn+1 − q∥2 = ∥(1− γn)xn + γnTyn − q∥2

= ∥(1− γn)(xn − q) + γn(Tyn − q)∥2

≤ (1− γn)∥xn − q∥2 + γn∥yn − q∥2

− γn(1− γn)g(∥xn − Tyn∥)
≤ (1− γn)∥xn − q∥2 + γn∥xn − q∥2

− γnλn(1− λn)g(∥xn − Txn∥)
− γn(1− γn)g(∥xn − Tyn∥)

≤ ∥xn − q∥2 − γnλn(1− λn)g(∥xn − Txn∥).

Since 0 < a ≤ γn ≤ 1, it is easy to see that

∥xn+1 − q∥2 ≤ ∥xn − q∥2 − aλn(1− λn)g(∥xn − Txn∥).

So,

0 ≤ aλn(1− λn)g(∥xn − Txn∥) ≤ ∥xn − q∥2 − ∥xn+1 − q∥2 → 0,

as n → ∞, since lim infn→∞ λn(1− λn) > 0. Therefore

lim
n→∞

g(∥xn − Txn∥) = 0.

From the properties of g, we get

(3.12) lim
n→∞

∥xn − Txn∥ = 0.

Now, we conclude from boundedness of {xn} and reflexivity of E that there
exists a subsequence {xni} of {xn} such that xni ⇀ q ∈ C. So Theorem 3.4
and (3.12) imply that Tq = q. We will prove that the sequence {xn} converges
weakly to some point of F (T ). Suppose that there exist two subsequences
{xni} and {xnj} of {xn} such that xni ⇀ q and xni ⇀ p. Assume that q ̸= p.
We know that limn→∞ ∥xn − q∥ and limn→∞ ∥xn − p∥ exist, since q, p ∈ F (T ).
So, Opial’s condition on E implies that

lim
n→∞

∥xn − q∥ = lim
i→∞

∥xni − q∥ < lim
i→∞

∥xni − p∥ = lim
n→∞

∥xn − p∥

= lim
j→∞

∥xnj − p∥

< lim
j→∞

∥xnj − q∥

= lim
n→∞

∥xn − q∥.

This is a contradiction. Therefore, we obtain q = p. This yields that {xn}
converges weakly to a point of F (T ). □
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Theorem 3.6. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E satisfying Opial’s condition. Suppose that T is a hybrid self
mapping of C with F (T ) ̸= ∅. Assume that {xn} is a sequence generated by

x1 = x ∈ C,

yn = (1− λn)xn + λnTxn,

xn+1 = (1− γn)xn + γnTyn,

where 0 ≤ λn ≤ 1, 0 < a ≤ γn ≤ 1 for all n ∈ N and lim infn→∞ λn(1−λn) > 0.
Then xn ⇀ x0 ∈ F (T ).

Proof. Since T is a hybrid self mapping of C, so T is a (3,−1,−1, 0)-symmetric
generalized hybrid mapping. Therefore by Theorem 3.5, we get the desired
result. □

Remark 3.7. Since nonexpansive mappings are (1, 0,−1, 0)-symmetric general-
ized hybrid mappings and nonspreading mappings are (2,−1, 0, 0)-symmetric
generalized hybrid mappings, then Theorem 3.5 holds for these mappings.
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