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Abstract. The paper concerns interesting problems related to the field
of Complex Analysis, in particular, Nevanlinna theory of meromorphic
functions. We have studied certain uniqueness problem on differential

polynomials of meromorphic functions sharing a small function. Outside,
in this paper, we also consider the uniqueness of q− shift difference -
differential polynomials of meromorphic functions sharing small function
or a set in the complex plane. Our results generalize some previous results

in this trend.
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1. Introduction and main results

A meromorphic function means meromorphic in the whole complex plane.
We assume that the reader is used to the standard notations and fundamental
results of Nevanlinna theory. Let f, g be two meromorphic function in C and
a ∈ C ∪ {∞}. We say that f and g share a− CM if f − a and g − a have the
same zeros with multiplicities. Furthermore, if f − a and g − a have the same
zeros without counting multiplicities, then we say that f and g share a− IM.

Let m and p be positive integers. We denote by N (m(r, a; f) (N (m(r,
1

f − a
))

the reduced counting function of a-point of f whose multiplicities are not less

than m, and Nm)(r, a; f) (Nm)(r,
1

f − a
)) the reduced counting function of
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a-point of f whose multiplicities are at most m.

Np(r,
1

f − a
) = N(r,

1

f − a
) +N (2(r,

1

f − a
) + · · ·+N (p(r,

1

f − a
), a ∈ C;

N2(r, f) = N(r, f) +N (2(r, f).

We define

δp(0, f) = 1− lim sup
r→∞

Np(r, 1/f)

T (r, f)
;

δp)(0, f) = 1− lim sup
r→∞

Np)(r, 1/f)

T (r, f)
.

We denote by the set of small functions of f in C by Mf (C). When f is an
entire function, we replace Mf (C) by Af (C). We say that f , g ∈ M(C) share
a function α CM if f −α and g−α have the same zeros with multiplicities. If
f − α and g − α have the same zeros without counting multiplicities, then we
say that f , g ∈ M(C) share a function α IM.

Let S be a subset of C∪ {∞} and Ef (S) =
∪

a∈S{z : f(z) = a}, where each
point is counted according to its multiplicity. If we do not count the multiplicity
then the set

∪
a∈S{z : f(z) = a} is denoted by Ef (S). If Ef (S) = Eg(S) then

we say that f and g share the set S−CM. On the other hand, if Ef (S) = Eg(S)
then we say that f and g share the set S− IM. We see that if S = {a}, then f
and g share the set S −CM implies f and g share a−CM, and f and g share
the set S − IM implies f and g share a− IM.

In 2014, L. R. Jie et al. ([5]) proved the following result.

Theorem 1.1. Let f(z) and g(z) be two transcendental meromorphic func-
tions, and let n, k and m be three positive integers with n > 4m + 9k + 14.
Let P (z) = amzm + am−1z

m−1 + · · · + a1z + a0 or P (z) ≡ c0, where a0 ̸=
0, a1, . . . , am−1, am ̸= 0, c0 ̸= 0 are complex constants. If [fnP (f)](k) and
[gnP (g)](k) share a(z)− IM , then

(i) When P (z) = amzm + am−1z
m−1 + · · ·+ a1z+ a0, one of the following

two cases hold:
(i1) f(z) = tg(z) for a constant t such that td = 1, where d =

(n+m, . . . , n+m− i, . . . , n), am−i ̸= 0 for some i = 0, 1, . . . ,m.
(i2) f and g satisfy the algebraic equation R(f, g) = 0, where R(w1,

w2) = wn
1 (amwm

1 + am−1w
m−1
1 + · · ·+ a0)−wn

2 (amwm
2 + am−1w

m−1
2 +

· · ·+ a0).
(ii) When P (z) ≡ c0, f(z) = tg(z) for constant t such that tn = 1.
(iii) [fnP (f)](k)[gnP (g)](k) = a2(z).

Furthermore, if max{χ1, χ2} < 0, where

χ1 =
2m

n+m− 2k
+

m+ 1

n+m+ 2k
+

2k +m

n+m+ k
+1−δk)(0, P (f))−δk−1)(0, P (f)),
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χ2 =
2m

n+m− 2k
+

m+ 1

n+m+ 2k
+

2k +m

n+m+ k
+1−δk)(0, P (g))−δk−1)(0, P (g)),

then the statement (iii) is not happening.

In this paper, we improve Theorem 1.1. Namely, we prove

Theorem 1.2. Let f(z) and g(z) be two transcendental meromorphic functions
whose zeros and poles are of multiplicities at least s, p respectively, where s, p
are positive integers and α(z) ∈ Mf (C) ∩ Mg(C) be non-identically zero; let
n, m, v and k ⩾ 2 be four positive integers satisfying

n ⩾ k + 1;

n+m >
4k + 7

p
+ 2{m+

k + 2

s
}+ 3{m+

k + 1

s
};

and let

P (z) = amzm + am−1z
m−1 + · · ·+ a1z + a0 = (z − b1)

m1 . . . (z − bv)
mvQ(z),

where mi ⩾ k + 1 for i = 1, . . . , v, v ⩾ 1 +
1

p
, m = degQ +

∑v
i=1 mi, where

a0 ̸= 0, a1, . . . , am−1, am ̸= 0 are complex constants. If [fnP (f)](k) and
[gnP (g)](k) share α(z) − IM , then either f(z) ≡ tg(z) for a constant t such
that td = 1, where d = (n + m, . . . , n + m − i, . . . , n), am−i ̸= 0 for some
i = 0, 1, . . . ,m, or f and g satisfy the algebraic equation R(f, g) = 0, where
R(w1, w2) = wn

1 (amwm
1 + am−1w

m−1
1 + · · · + a0) − wn

2 (amwm
2 + am−1w

m−1
2 +

· · ·+ a0).

Remark 1.3. Theorem 1.2 is an improvement of Theorem 1.1 when the poly-
nomial P (z) has the form

P (z) = amzm + am−1z
m−1 + · · ·+ a1z + a0 = (z − b1)

m1 . . . (z − bv)
mvQ(z),

where mi ⩾ k + 1 for i = 1, . . . , v, v ⩾ 1 +
1

p
, and m = degQ +

∑v
i=1 mi.

Indeed, if we take s = p = 1, we see n > 4m + 9k + 14, and we get Theorem
1.1. In the case n > 4m+ 9k + 14, then the statements of Theorem 1.2 is true
without the condition max{χ1, χ2} < 0.

Next, we consider the uniqueness of q-shift difference polynomials of mero-
morphic functions. In 2015, Q. Zhao and J. Zhang [15] proved the following
results.

Theorem 1.4. Let f(z) be a transcendental meromorphic function with zero
order, and let n, k be positive integers. If n > k+5, then (fn(z)f(qz+c))(k)−1
has infinitely many zeros.

Theorem 1.5. Let f(z) and g(z) be transcendental entire functions with zero
order, and let n, k be positive integers. If n > 2k + 5, and (fn(z)f(qz + c))(k)

and (gn(z)g(qz + c))(k) share z or 1 − CM, then f ≡ tg for a constant t with
tn+1 = 1.
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Theorem 1.6. Let f(z) and g(z) be transcendental entire functions with zero
order, and let n, k be positive integers. If n > 5k+11, and (fn(z)f(qz + c))(k)

and (gn(z)g(qz + c))(k) share z or 1 − IM, then f ≡ tg for a constant t with
tn+1 = 1.

In 2013, Z. Huang ([3]) obtained the following result.

Theorem 1.7. Let f(z) be a transcendental meromorphic (resp. entire) func-
tion of zero order and q be a nonzero complex constant, and let P (z) = anz

n +
an−1z

n−1+· · ·+a1z+a0 be a nonconstant polynomial with constant coefficients
a0, a1, . . . , an−1, an ̸= 0, and m be the number of distinct zeros of P (z). Then
for n > 2m+ 3 (resp. n > m), P (f(z))f(qz)− a(z) has infinitely many zeros,
where a(z) ̸≡ 0 is a small function of f.

Theorem 1.8. Let f(z) and g(z) be two nonconstant meromorphic (resp. en-
tire) functions of zero order and q be a nonzero complex constant, and let
P (z) = anz

n + an−1z
n−1 + · · · + a1z + a0 be a nonconstant polynomial with

constant coefficients a0, a1, . . . , an−1, an ̸= 0, and m be the number of distinct
zeros of P (z). If n > 3m + 4 (resp. n > 2m + 1) and P (f(z))f(qz) and
P (g(z))g(qz) share 1,∞− CM, then one of the following two results holds:

(1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = LCM{λj :
j = 0, 1, . . . , n} denotes the lowest common multiple of λj (j = 0, 1, . . . ,
n), and

λj =

{
j + 1 if aj ̸= 0,

n+ 1 if aj = 0.

(2) f(z) and g(z) satisfy algebraic equation R(f(z), g(z)) = 0, where

R(w1, w2) = P (w1)w1(qz)− P (w2)w2(qz).

Remark 1.9. In the proof of Theorem 1.7 and Theorem 1.8, Z. Huang used the
inequality N(r, P (f)) ≤ mT (r, f)+S(r, f), where P (z) is polynomial with m−
distinct zero points. We see that the inequality is very weak. Indeed, we have
the equality N(r, P (f)) = N(r, f).

Thus, Theorem 1.7 and Theorem 1.8 may be improved in the case of mero-
morphic functions as follows.

Theorem 1.10. Let f(z) be a transcendental meromorphic function of zero
order and q be a nonzero complex constant, and let P (z) = anz

n + an−1z
n−1 +

· · ·+a1z+a0 be a nonconstant polynomial with constant coefficients a0, a1, . . . ,
an−1, an ̸= 0, and m be the number of distinct zeros of P (z). Then for n ≥
m+5, P (f(z))f(qz)−a(z) has infinitely many zeros, where a(z) ̸≡ 0 is a small
function of f.

Theorem 1.11. Let f(z) and g(z) be two nonconstant meromorphic functions
of zero order and q be a nonzero complex constant, and let P (z) = anz

n +
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an−1z
n−1+· · ·+a1z+a0 be a nonconstant polynomial with constant coefficients

a0, a1, . . . , an−1, an ̸= 0, and m be the number of distinct zeros of P (z). If
n ≥ 2m+6 and P (f(z))f(qz) and P (g(z))g(qz) share 1,∞−CM, then one of
the following two results holds:

(1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = LCM{λj :
j = 0, 1, . . . , n} denotes the lowest common multiple of λj (j = 0, 1, . . . ,
n), and

λj =

{
j + 1 if aj ̸= 0,

n+ 1 if aj = 0.

(2) f(z) and g(z) satisfy algebraic equation R(f(z), g(z)) = 0, where

R(w1, w2) = P (w1)w1(qz)− P (w2)w2(qz).

In 2014, X. Qi and L. Yang ([8]) gave the following result.

Theorem 1.12. Let S1 = {ω | ωn + aωn−m + b = 0}, where n ≥ 2m + 4,
and m ≥ 2 are integers such that n and n−m have no common factors, S2 =
{∞}, and let a, b be two non-zero constants such that the algebraic equation
ωn + aωn−m + b = 0 has no multiple roots. Suppose f is a non-constant zero
order meromorphic function such that Ef(z)(Sj) = Ef(qz)(Sj) for j = 1, 2, and
q ∈ C \ {0}, then f(z) = f(qz), |q| = 1.

Now, connecting Theorem 1.4 to Theorem 1.8, we prove some results for
uniqueness of q-shift difference-differential of meromorphic functions sharing
the small function a(z) or sets for higher derivative. Our results are given in
the following.

Theorem 1.13. Let f(z) be a transcendental meromorphic (resp. entire) func-
tion of zero order, q and c be complex constants, q ̸= 0 and k be a positive
integer, and let P (z) = anz

n+an−1z
n−1+ · · ·+a1z+a0 be a nonconstant poly-

nomial with constant coefficients a0, a1, . . . , an−1, an ̸= 0, and m be the number
of distinct zeros of P (z). Then for n ≥ m(k+1)+ 5 (resp. n ≥ m(k+1)+ 3),
(P (f(z))f(qz + c))(k) − a(z) has infinitely many zeros, where a(z) ̸≡ 0 is a
small function of f.

Remark 1.14. In Theorem 1.13, when m = 1, we get Theorem 1.4. Thus,
Theorem 1.13 is an extension of Theorem 1.4.

Theorem 1.15. Let f(z) be a transcendental meromorphic function of zero
order, q and c be complex constants, q ̸= 0 and k be a positive integer, and let
P (z) = anz

n + an−1z
n−1 + · · · + a1z + a0 be a nonconstant polynomial with

constant coefficients a0, a1, . . . , an−1, an ̸= 0, and m be the number of distinct

zeros of P (z). Then for n ≥ 3

2
m + 3, (P (f(z))f(qz + c))(k) − 1 has infinitely

many zeros.
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Remark 1.16. In Theorem 1.15, when m = 1, we get the improvement of
Theorem 1.4. Futhermore, the number n is independent of k.

Theorem 1.17. Let f(z) and g(z) be two transcendental meromorphic (resp.
entire) functions of zero order, q and c be complex constants, q ̸= 0, k be a
positive integer, a(z) ̸≡ 0 be a meromorphic (resp. entire) small function and
let P (z) = anz

n + an−1z
n−1 + · · · + a1z + a0 be a nonconstant polynomial

with constant coefficients a0, a1, . . . , an−1, an ̸= 0, and m be the number of the
distinct zeros of P (z). If n ≥ 2m(k + 1) + 2k + 6 (resp. n ≥ 2m(k + 1) + 4)
and (P (f(z))f(qz+ c))(k) and (P (g(z))g(qz+ c))(k) share a(z), ∞−CM, then
one of the following two results holds:

(1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = LCM{λj : j =
0, 1, . . . , n} denotes the lowest common multiple of λj (j = 0, 1, . . . , n),
and

λj =

{
j + 1 if aj ̸= 0,

n+ 1 if aj = 0.

(2) f(z) and g(z) satisfy algebraic equation R(f(z), g(z)) = 0, where

R(w1, w2) = P (w1)w1(qz + c)− P (w2)w2(qz + c).

We see that Theorem 1.17 is a supplement of Theorem 1.8 for differential
polynomial and an extension of Theorem 1.5 for meromorphic functions.

Theorem 1.18. Let f(z) and g(z) be two transcendental meromorphic func-
tions of zero order, q and c be complex constants, q ̸= 0, k be a positive
integer, a(z) ̸≡ 0 be a meromorphic (resp. entire) small function and let
P (z) = anz

n+an−1z
n−1+ · · ·+a1z+a0 be a nonconstant polynomial with con-

stant coefficients a0, a1, . . . , an−1, an ̸= 0, and m be the number of distinct zeros
of P (z). If n ≥ 2m(k+2)+3m(k+1)+8k+21 and (P (f(z))f(qz+ c))(k) and
(P (g(z))g(qz + c))(k) share a(z) − IM, then one of the following three results
holds:

(1) (P (f(z))f(qz + c))(k).(P (g(z))g(qz + c))(k) ≡ a2(z).

(2) f(z) ≡ tg(z) for a constant t such that td = 1, where d = LCM{λj : j =
0, 1, . . . , n} denotes the lowest common multiple of λj (j = 0, 1, . . . , n),
and

λj =

{
j + 1 if aj ̸= 0,

n+ 1 if aj = 0.

(3) f(z) and g(z) satisfy algebraic equation R(f(z), g(z)) = 0, where

R(w1, w2) = P (w1)w1(qz + c)− P (w2)w2(qz + c).

We see that Theorem 1.18 is an extension of Theorem 1.6 for meromorphic
functions. By an argument as in Theorem 1.12, we will prove Theorem 1.19
below.
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Theorem 1.19. Let S1 = {ω | ωn + aωn−m + b = 0}, where n ≥ 2m + 4,
m ≥ 2 are integers such that n and n − m have no common factors, S2 =
{∞}, and let a, b be two non-zero constants such that the algebraic equation
ωn + aωn−m + b = 0 has no multiple roots. Suppose f is a non-constant zero
order meromorphic function such that Ef(z)(Sj) = Ef(qz+c)(Sj) for j = 1, 2,
and q ∈ C \ {0}, then f(z) = f(qz + c).

Theorem 1.20. Let S1 = {ω | ωn + aωn−m + b = 0}, where n ≥ 2m + 4,
m ≥ 2 are integers such that n and n−m have no common factors, let a, b be
two non-zero constants such that the algebraic equation ωn + aωn−m + b = 0
has no multiple roots, S2 = {∞}, and let q and c be two constants complex,
q ̸= 0. Suppose f is a transcendental zero order meromorphic function such
that E(f l)(k)(z)(Sj) = E(f l)(k)(qz+c)(Sj) for j = 1, 2, where l ≥ 4, k are positive

integers, then f(z) = tf(qz + c), tl = 1.

We see that Theorem 1.20 is a supplement of Theorem 1.12 for derivative
with order k.

2. Some lemmas

Lemma 2.1 ([4]). Let f be a non-constant meromorphic function, and let p
and k be two positive integers. Then

Np(r,
1

f (k)
) ⩽ T (r, f (k))− T (r, f) +Np+k(r,

1

f
) + S(r, f);

Np(r,
1

f (k)
) ⩽ kN(r, f) +Np+k(r,

1

f
) + S(r, f).

Lemma 2.2 ([12]). Let f and g be two non-constant meromorphic functions,
and let a(z) (a ̸≡ 0,∞) be a small function of both f and g. If f and g share
a(z)− IM , one of the following three cases holds:

(i) T (r, f) ⩽N2(r, f) +N2(r,
1

f
) +N2(r, g) +N2(r,

1

g
)

+ 2(N(r,
1

f
) +N(r, f)) + (N(r,

1

g
) +N(r, g))

+ S(r, f) + S(r, g),

and similar inequality for T (r, g);

(ii) f ≡ g;
(iii) fg ≡ a2.

Lemma 2.3. Let f and g be two transcendental meromorphic functions, and
let k be a positive integer. If f (k) and g(k) share α(z)− IM and

(2k + 4)Θ(∞, f) + δk+2(0, f) + 2δk+1(0, f) + (2k + 3)Θ(∞, g) + δk+2(0, g)

+ δk+1(0, g) > 4k + 11.
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then f ≡ g or f (k)g(k) = α(z)2, where α(z) is a small function of f and g.
Furthermore, in the case k = 1, the statement of this lemma holds when f ′ and
g′ are non-constant meromorphic functions.

Proof. Since f (k) and g(k) share a(z) − IM , by Lemma 2.2, we suppose that
the inequality is true. Thus

T (r, f (k)) ⩽N2(r, f
(k)) +N2

(
r,

1

f (k)

)
+N2(r, g

(k)) +N2

(
r,

1

g(k)

)
+ 2(N

(
r,

1

f (k)

)
+N

(
r, f (k))

)
+

(
N(r,

1

g(k)

)
+N

(
r, g(k))

)
+ S(r, f) + S(r, g),(2.1)

and

T (r, g(k)) ⩽N2(r, f
(k)) +N2(r,

1

f (k)
) +N2(r, g

(k)) +N2

(
r,

1

g(k)

)
+ 2(N

(
r,

1

g(k)

)
+N(r, g(k))) +

(
N

(
r,

1

f (k)

)
+N(r, f (k))

)
+ S(r, f) + S(r, g).(2.2)

From (2.1), by using Lemma 2.1, we have

T (r, f (k)) ⩽N2(r, f
(k)) + T (r, f (k))− T (r, f) +Nk+2(r,

1

f
) +N2(r, g

(k))

+ kN(r, g) +Nk+2(r,
1

g
) + 2

(
kN(r, f) +Nk+1(r,

1

f
) +N(r, f)

)
+

(
kN(r, g) +Nk+1(r,

1

g
) +N(r, g)

)
+ S(r, f) + S(r, g).

Hence,

T (r, f) ⩽(2k + 4)N(r, f) +Nk+2(r,
1

f
) + 2Nk+1(r,

1

f
) + (2k + 3)N(r, g)

+Nk+2(r,
1

g
) +Nk+1(r,

1

g
) + S(r, f) + S(r, g).(2.3)

Similarly, from (2.2), we obtain

T (r, g) ⩽(2k + 4)N(r, g) +Nk+2(r,
1

g
) + 2Nk+1(r,

1

g
) + (2k + 3)N(r, f)

+Nk+2(r,
1

f
) +Nk+1(r,

1

f
) + S(r, f) + S(r, g).(2.4)

Without loss of generality, we suppose that there exists a set I with an
infinite measure such that T (r, g) ⩽ T (r, f) for r ∈ I. Therefore, from (2.3), we
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see that

T (r, f) ⩽(2k + 4)(1−Θ(∞, f))T (r, f) + (1− δk+2(0, f))T (r, f)

+ 2(1− δk+1(0, f))T (r, f) + (2k + 3)(1−Θ(∞, g))T (r, f)

+ (1− δk+2(0, g))T (r, f) + (1− δk+1(0, g))T (r, f) + S(r, f).(2.5)

Thus, we obtain

((2k + 4)Θ(∞, f) + δk+2(0, f) + 2δk+1(0, f) + (2k + 3)Θ(∞, g) + δk+2(0, g)

+ δk+1(0, g)− (4k + 11))T (r, f) ⩽ S(r, f)

for r ∈ I, which contradicts

(2k + 4)Θ(∞, f) + δk+2(0, f) + 2δk+1(0, f) + (2k + 3)Θ(∞, g) + δk+2(0, g)

+ δk+1(0, g) > 4k + 11.

By Lemma 2.2, we have f (k) ≡ g(k) or f (k)g(k) = α(z)2. If f (k) ≡ g(k), then
f(z) = g(z)+P (z), where P (z) is a polynomial of degree at most k− 1. In the
case k = 1, we have f = g + c, where c is a constant. If P (z) ̸≡ 0, then by the
Second Main Theorem for small function, we have

T (r, f) ⩽ N(r, f) +N(r,
1

f
) +N(r,

1

f − P (z)
) + S(r, f)

⩽ N(r, f) +Nk+2(r,
1

f
) +Nk+2(r,

1

g
) + S(r, f)

⩽ (3− (Θ(∞, f) + δk+2(0, f) + δk+2(0, g)))T (r, f) + S(r, f)(2.6)

From (2.6), we get

(Θ(∞, f) + δk+2(0, f) + δk+2(0, g)− 2)T (r, f) ⩽ S(r, f)(2.7)

for r ∈ I.
On the other hand, from the condition

(2k + 4)Θ(∞, f) + δk+2(0, f) + 2δk+1(0, f) + (2k + 3)Θ(∞, g) + δk+2(0, g)

+ δk+1(0, g) > 4k + 11

for r ∈ I, we conclude that

Θ(∞, f) + δk+2(0, f) + δk+2(0, g) > (4k + 11)− (4k + 9) = 2.

From (2.7), we get the contradiction. Thus, we obtain P (z) ≡ 0, that is, f ≡ g.
this completes the proof.

□

Lemma 2.4 ([11]). Let f(z) be a nonconstant meromorphic function of zero
order. Then on a set of lower logarithmic density 1, we have

T (r, f(qz + c)) = (1 + o(1))T (r, f) +O(log r),

where q ∈ C \ {0} and c are complex constants
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Lemma 2.5 ([11]). Let f(z) be a nonconstant meromorphic function of zero
order. Then on a set of lower logarithmic density 1, we have

N(r, f(qz + c)) = (1 + o(1))N(r, f) +O(log r),

where q ∈ C \ {0} and c are complex constants.

Lemma 2.6 ([2]). Let f be a transcendental meromorphic function in the
complex plane, k ≥ 1 be an integer, and ε > 0. Then we have

(1− ε)T (r, f) ≤ N(r,
1

f
) +N(r,

1

f (k) − 1
) + S(r, f).

3. Proof of Theorem 1.2

Proof. Set P (z) = (z − b1)
m1 . . . (z − bv)

mvQ(z), where mi ⩾ k + 1 for i =

1, . . . , v, v ⩾ 1 +
1

p
, and m = degQ +

∑v
i=1 mi. Let F = fnP (f), and G =

gnP (g). By hypothesis, we get that F (k) and G(k) share α(z)− IM . We have

δk+2(0, G) = 1− lim sup
r→∞

Nk+2(r,
1

G
)

T (r,G)

= 1− lim sup
r→∞

Nk+2(r,
1

gnP (g)
)

(n+m)T (r, g)

⩾ 1− lim sup
r→∞

(k + 2)N(r,
1

g
) +mT (r, g)

(n+m)T (r, g)

⩾ 1− lim sup
r→∞

k + 2

s
T (r, g) +mT (r, g)

(n+m)T (r, g)

= 1−
m+

k + 2

s
n+m

.(3.1)

Similarly, we have

δk+2(0, F ) ⩾ 1−
m+

k + 2

s
n+m

.(3.2)
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δk+1(0, G) = 1− lim sup
r→∞

Nk+1(r,
1

G
)

T (r,G)

= 1− lim sup
r→∞

Nk+1(r,
1

gnP (g)
)

(n+m)T (r, g)

⩾ 1− lim sup
r→∞

(k + 1)N(r,
1

g
) +mT (r, g)

(n+m)T (r, g)

⩾ 1− lim sup
r→∞

k + 1

s
T (r, g) +mT (r, g)

(n+m)T (r, g)

= 1−
m+

k + 1

s
n+m

.(3.3)

Similarly, we obtain

δk+1(0, F ) ⩾ 1−
m+

k + 1

s
n+m

,(3.4)

and

Θ(∞, G) = 1− lim sup
r→∞

N(r,G)

T (r,G)

= 1− lim sup
r→∞

N(r, g)

(n+m)T (r, g)

⩾ 1− lim sup
r→∞

1

p
N(r, g)

(n+m)T (r, g)

⩾ 1− lim sup
r→∞

1

p
T (r, g)

(n+m)T (r, g)

= 1− 1

p(n+m)
.(3.5)

Also similarly,

Θ(∞, F ) ⩾ 1− 1

p(n+m)
.(3.6)
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By Lemma 2.3, we obtain

(2k + 4)Θ(∞, F ) + δk+2(0, F ) + 2δk+1(0, F ) + (2k + 3)Θ(∞, G)

+ δk+2(0, G) + δk+1(0, G)

=(4k + 7)
(
1− 1

p(n+m)

)
+ 2

(
1−

m+
k + 2

s
n+m

)

+ 3

(
1−

m+
k + 1

s
n+m

)
.(3.7)

From m+ n >
4k + 7

p
+ 2{m+

k + 2

s
}+ 3{m+

k + 1

s
} and (3.7), we get

(2k + 4)Θ(∞, F ) + δk+2(0, F ) + 2δk+1(0, F ) + (2k + 3)Θ(∞, G) + δk+2(0, G)

+ δk+1(0, G) > 4k + 11.

Hence, we get F ≡ G or F (k)G(k) ≡ (α(z))2. Let F ≡ G, that is

fn(amfm + · · ·+ a0) = gn(amgm + · · ·+ a0).(3.8)

Let h =
f

g
. If h is a constant, then substituting f = hg into (3.8), we obtain

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + · · ·+ a0g

n(hn − 1) = 0,

which implies that hd = 1, where d = (n+m, . . . , n+m− i, . . . , n), am−i ̸= 0
for some i = 0, 1, . . .m. Then f ≡ tg for a constant t such that td = 1. If h
is not constant, from (3.8), we see that f and g satisfy the algebraic equation
R(f, g) = 0, where R(w1, w2) = wn

1 (amwm
1 +am−1w

m−1
1 +· · ·+a0)−wn

2 (amwm
2 +

am−1w
m−1
2 + · · ·+ a0).

Let

F (k)G(k) ≡ (α(z))2.(3.9)

We denote by
∑

the zeros and poles of (α(z))2. We will show that F (k) and
G(k) admit zeros and poles outside of

∑
. Indeed, suppose that all the zeros

and poles of F (k) belong to
∑

. Therefore

N(r, F (k)) +N(r,
1

F (k)
) ⩽ 2T (r, α(z))2,

which implies that

N(r, f) +

v∑
i=1

N(r,
1

f − bi
) ⩽ S(r, f).
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By the Second Main Theorem, we have

(v − 1)T (r, f) ⩽ N(r, f) +
v∑

i=1

N(r,
1

f − bi
) + S(r, f),

then (v − 1)T (r, f) ⩽ S(r, f), which is a contradiction. Hence, F (k) and G(k)

admit zeros and poles outside of
∑

. We suppose that z0 is zero of f of order
s1 which does not belong to

∑
, then z0 is a zeros of [fnP (f)](k). Hence z0 is a

pole of [gnP (g)](k). This will lead to that z0 is pole of g of order p1 ⩾ p. From

(3.9), we have ns1 − k = (n +m)p1 + k, then s1 ⩾ (n+m)p+ 2k

n
. Similarly,

we suppose that zi is a bi point of f of order si, then zi is a pole of g of order

pi, i = 1, . . . , v. Then si ⩾
(n+m)p+ 2k

mi
, i = 1, . . . , v. By the Second Main

Theorem, we obtain

(1 +
1

p
)T (r, f) ⩽ vT (r, f) ⩽ N(r, f) +N(r,

1

f
) +

v∑
i=1

N(r,
1

f − bi
) + S(r, f)

⩽ (
1

p
+

n

(n+m)p+ 2k
+

v∑
i=1

mi

(n+m)p+ 2k
)T (r, f) + S(r, f).

Therefore, (
1−

n+
∑v

i=1 mi

(n+m)p+ 2k

)
T (r, f) ⩽ S(r, f),

which is a contradiction. This implies that equality (3.9) is impossible. □

4. Proof of Theorem 1.13

Proof. First, from Lemma 2.4 and the First Main Theorem, we have

nT (r, f) = T (r, P (f))

= T

(
r, P (f)(z)f(qz + c).

1

f(qz + c)

)
≤ T (r, P (f)(z)f(qz + c)) + T

(
r,

1

f(qz + c)

)
= T (r, P (f)(z)f(qz + c)) + T (r, f) + S(r, f).

This implies

(n− 1)T (r, f) ≤ T (r, P (f)(z)f(qz + c)) + S(r, f).(4.1)
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Take F = P (f)(z)f(qz + c), by the Second Main Theorem for small function,
we have

T (r, F (k)) ≤ N(r, F (k)) +N(r,
1

F (k)
) +N

(
r,

1

F (k) − a(z)

)
+ S(r, f).(4.2)

By Lemma 2.1 we see

N(r,
1

F (k)
) ≤ T (r, F (k))− T (r, F ) +Nk+1(r,

1

F
) + S(r, f).

Thus, (4.2) implies

T (r, F ) ≤ N(r, F (k)) +Nk+1(r,
1

F
) +N

(
r,

1

F (k) − a(z)

)
+ S(r, f).(4.3)

By simple computing, and from Lemma 2.5, we obtain

N(r, F (k)) = N(r, P (f)f(qz + c)) ≤ N(r, f) +N(r, f(qz + c))

≤ 2T (r, f) + S(r, f),

and

Nk+1(r,
1

F
) ≤ (k + 1)N(r,

1

P (f)
) +N

(
r,

1

f(qz + c)

)
≤ (k + 1)mT (r, f) + T (r, f) + S(r, f).

Thus, combining with (4.1) and (4.3), we get

(n− 1)T (r, f) ≤ 3T (r, f) + (k + 1)mT (r, f) +N

(
r,

1

F (k) − a(z)

)
+ S(r, f)

≤ (m(k + 1) + 3)T (r, f) +N

(
r,

1

F (k) − a(z)

)
+ S(r, f).

From n ≥ m(k+1)+ 5, we obtain that (P (f)f(qz+ c))(k) − a(z) has infinitely
many zeros. □

5. Proof of Theorem 1.15

Proof. Take F (z) = P (f)f(qz + c). Apply ε =
1

3
in Lemma 2.6 for and

transcendental meromorphic function F, to get

2

3
T (r, F ) ≤ N(r,

1

F
) +N

(
r,

1

F (k) − 1

)
+ S(r, F ).(5.1)

From (5.1), we have

2

3
(n− 1)T (r, f) ≤ (m+ 1)T (r, f) +N

(
r,

1

F (k) − 1

)
+ S(r, f).

By n ≥ 3

2
m+3, we see that (P (f)f(qz+c))(k)−1 has infinitely many zeros. □
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6. Proof of Theorem 1.17

Proof. Take F =P (f(z))f(qz+c) andG = P (g(z))g(qz+c). Since (P (f(z))f(qz
+ c))(k) and (P (g(z))g(qz + c))(k) share a(z),∞ − CM, then there exists the
holomorphic function α(z) satisfying

(P (f(z))f(qz + c))(k)

a(z)
− 1

(P (g(z))g(qz + c))(k)

a(z)
− 1

= eα(z),(6.1)

since the function of left side of (6.1) has order zero. Thus, eα(z) ≡ A, where
A ̸= 0 is a constant complex. The equality (6.1) implies

(P (f)f(qz + c))(k) = A(P (g)g(qz + c))(k) + a(z)(1−A).(6.2)

Now, we will prove that A = 1. Conversly, if A ̸= 1, by an argument as in
Theorem 1.13, we have

T (r, F ) ≤ N(r, F ) +Nk+1(r,
1

F
) +N

(
r,

1

F (k) − (1−A)a(z)

)
+ S(r, f)

= N(r, F ) +Nk+1(r,
1

F
) +N(r,

1

G(k)
) + S(r, f)

≤ N(r, F ) +Nk+1(r,
1

F
) + kN(r,G) +Nk+1(r,

1

G
)

+ S(r, f) + S(r, g),(6.3)

since S(r,G) = S(r, g), S(r, F ) = S(r, f). We see

N(r, F ) ≤ 2T (r, f) + S(r, f),

N(r,G) ≤ 2T (r, g) + S(r, g),

Nk+1(r,
1

F
) ≤ (m(k + 1) + 1)T (r, f) + S(r, f),

Nk+1(r,
1

G
) ≤ (m(k + 1) + 1)T (r, g) + S(r, g).(6.4)

Combining (4.1), (6.3) and (6.4), we get

(n− 1)T (r, f) ≤ (m(k + 1) + 3)T (r, f) + (m(k + 1) + 2k + 1)T (r, g)

+ S(r, f) + S(r, g).(6.5)

Similarly, we obtain

(n− 1)T (r, g) ≤ (m(k + 1) + 3)T (r, g) + (m(k + 1) + 2k + 1)T (r, f)

+ S(r, f) + S(r, g).(6.6)

From (6.5) and (6.6), we get

(n− (2m(k + 1) + 2k + 5))(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).
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This contradicts n ≥ 2m(k + 1) + 2k + 6. Thus, we get A = 1. Hence, we have

(P (f)f(qz + c))(k) = (P (g)g(qz + c))(k).

This implies

P (f)f(qz + c) = P (g)g(qz + c) +Q(z),

where Q(z) is a polynomial of degree at most k − 1. Next, we prove Q(z) ≡ 0.
Indeed, if Q(z) ̸≡ 0, by the Second Main Theorem for small function, we have

(n− 1)T (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r, F ) +N(r,
1

F
) +N(r,

1

F −Q(z)
) + S(r, f)

= N(r, F ) +N(r,
1

F
) +N(r,

1

G
) + S(r, f).

Since N(r,
1

F
) ≤ (m + 1)T (r, f) + S(r, f) (because P (z) has m-distinct zero

points). Thus, we deduce that

(n− 1)T (r, f) ≤ (m+ 3)T (r, f) + (m+ 1)T (r, g) + S(r, f) + S(r, g).

This implies

(n−m− 4)T (r, f) ≤ (m+ 1)T (r, g) + S(r, f) + S(r, g).(6.7)

Similarly, we get

(n−m− 4)T (r, g) ≤ (m+ 1)T (r, f) + S(r, f) + S(r, g).(6.8)

From (6.7) and (6.8), we have

(n− 2m− 5)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

This is a contradiction since n ≥ 2m(k+1)+2k+6 ≥ 2m+6. Hence Q(z) ≡ 0.
By an argument as in [3], it is easy to see that f and g satisfy of the following
statements:

(1) f(z) ≡ tg(z) for a constant t such that td = 1, where d = LCM{λj : j =
0, 1, . . . , n} denotes the lowest common multiple of λj(j = 0, 1, . . . , n),
and

λj =

{
j + 1 if aj ̸= 0,

n+ 1 if aj = 0.

(2) f(z) and g(z) satisfy the algebraic equation R(f(z), g(z)) = 0, where

R(w1, w2) = P (w1)w1(qz + c)− P (w2)w2(qz + c).

Note, when f and g are transcendental entire functions, we have N(r, F ) =
N(r,G) = 0. By computing similar to the case of meromorphic functions, it is
easy to get the statements of Theorem 1.17 with n ≥ 2m(k + 1) + 4. □
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7. Proof of Theorem 1.18

Proof. Take F = P (f)f(qz+ c), G = P (g)g(qz+ c). We see that F (k) and G(k)

share a(z)−IM. By Lemma 2.2, and by an argument as in the proof of Lemma
2.3, we have

T (r, F ) ⩽(2k + 4)N(r, F ) +Nk+2(r,
1

F
) + 2Nk+1(r,

1

F
) + (2k + 3)N(r,G)

+Nk+2(r,
1

G
) +Nk+1(r,

1

G
) + S(r, f) + S(r, g),(7.1)

and

T (r,G) ⩽(2k + 4)N(r,G) +Nk+2(r,
1

G
) + 2Nk+1(r,

1

G
) + (2k + 3)N(r, F )

+Nk+2(r,
1

F
) +Nk+1(r,

1

F
) + S(r, f) + S(r, g).(7.2)

□

We have

N(r, F ) ≤ N(r, f) +N(r, f(qz + c))

≤ 2T (r, f) + S(r, f),

Nk+2(r,
1

F
) ≤ Nk+2

(
r,

1

P (f)

)
+N

(
r,

1

f(qz + c)

)
≤ (m(k + 2) + 1)T (r, f) + S(r, f),

Nk+1(r,
1

F
) ≤ Nk+1

(
r,

1

P (f)

)
+N

(
r,

1

f(qz + c)

)
≤ (m(k + 1) + 1)T (r, f) + S(r, f).(7.3)

Similarly, we obtain

N(r,G) ≤ N(r, g) +N(r, g(qz + c))

≤ 2T (r, g) + S(r, g),

Nk+2(r,
1

G
) ≤ Nk+2

(
r,

1

P (g)

)
+N

(
r,

1

g(qz + c)

)
≤ (m(k + 2) + 1)T (r, g) + S(r, g),

Nk+1(r,
1

G
) ≤ Nk+1

(
r,

1

P (g)

)
+N

(
r,

1

g(qz + c)

)
≤ (m(k + 1) + 1)T (r, g) + S(r, g).(7.4)

Combining (7.1) and (7.4), we get

(n− (2m(k + 2) + 3m(k + 1) + 8k + 20))(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).
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This contradicts n ≥ 2m(k+2)+3m(k+1)+8k+21. Thus, we have F (k)G(k) ≡
a2(z) or F (k) = G(k). By an argument as in Theorem 1.17 and [3], it is easy to
see that f and g satisfy one of the following two statements:

(1) (2) f(z) ≡ tg(z) for a constant t such that td = 1, where d = LCM{λj :
j = 0, 1, . . . , n} denotes the lowest common multiple of λj (j = 0, 1, . . . ,
n), and

λj =

{
j + 1 if aj ̸= 0,

n+ 1 if aj = 0.

(2) f(z) and g(z) satisfy the algebraic equation R(f(z), g(z)) = 0, where

R(w1, w2) = P (w1)w1(qz + c)− P (w2)w2(qz + c).

8. Proof of Theorem 1.20

Proof. Apply Theorem 1.19 to the meromorphic functions (f l)(k)(z) and
(f l)(k)(qz + c), we have

(f l)(k)(z) = (f l)(k)(qz + c).

Thus

f l(z) = f l(qz + c) +Q(z),

where Q(z) is a polynomial with degree at most l − 1. If Q(z) ̸≡ 0, by the
Second Main Theorem for small function and Lemma 2.4, we have

lT (r, f) = T (r, f l)

≤ N(r, f l) +N(r,
1

f l
) +N

(
r,

1

f l −Q(z)

)
+ S(r, f)

= N(r, f l) +N(r,
1

f l
) +N

(
r,

1

f l(qz + c)

)
+ S(r, f)

≤ 3T (r, f) + S(r, f).

This contradicts l ≥ 4. Thus, Q(z) ≡ 0. This implies

f l(z) = f l(qz + c),

and then f(z) = tf(qz + c), tl = 1.
□
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