
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 3, pp. 683–693

.

Title:

.

Mathematical modeling, analysis and simulation of Ebola epidemics

.

Author(s):

.

T. Wetere Tulu and T. Boping

.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 3, pp. 683–693
Online ISSN: 1735-8515

MATHEMATICAL MODELING, ANALYSIS AND

SIMULATION OF EBOLA EPIDEMICS

T. WETERE TULU∗ AND T. BOPING

(Communicated by Fatemeh Helen Ghane)

Abstract. Mathematical models are the most important tools in epi-

demiology to understand previous outbreaks of diseases and to better
understand the dynamics of how infections spread through populations.
Many existing models closely approximate historical disease patterns.

This article investigates the mathematical model of the deadly disease
with severe and uncontrollable bleeding, Ebola which is currently becom-
ing the headache of the whole world though effort to control is undergoing.
In this paper a new mathematical model of the Ebola epidemic is built.

Besides, the basic reproduction number is calculated and the stability of
both disease free and endemic equilibrium is proved. Finally, numerical
simulations are executed to further consolidate the analysis of the deadly
disease Ebola.

Keywords: Basic reproduction number, global stability, equilibrium,
epidemic model.
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1. Introduction

Ebola is a disease of humans and other primates caused by an Ebola virus.
Symptoms start two days to three weeks after contacting the virus with a fever,
sore throat, muscle pain and headaches [2, 7, 9–11]. Typically, vomiting, diar-
rhea and rash flow, along with decreased functioning of the liver and kidneys.
Around this time, the affected people may begin to bleed within the body and
externally. The virus may be acquired upon contact with blood or bodily fluids
of an infected animal. Spreading through the air has not been documented in
the natural environment. Fruit bats are believed to be a carrier and may spread
the virus without being affected [4, 5, 8, 12, 13, 15, 17]. Once human infection
occurs, the disease may spread between people, as well. Male survivors may
be able to transmit the disease via semen for nearly two months. To make
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the diagnosis, typically other diseases with similar symptoms such as malaria,
cholera and other viral hemorrhagic fevers are first excluded. To confirm the
diagnosis, blood samples are tested for viral antibodies, viral RNA, or the virus
itself. What makes the disease the worst of all is, no specific treatment for it is
yet available. Efforts to help those who are infected are supportive and include
giving either oral rehydration therapy (slightly sweet and salty water to drink)
or intravenous. The disease has a high risk of death, killing between 50% and
90% of those infected with the virus [3, 14]. The disease typically occurs in
tropical regions of sub-Saharan Africa. The countries affected have some with
the world’s lowest literacy rates and Public-health campaigns started too late
as well as didn’t reach enough people besides the fragile health system. These
things create the difficulty to control the disease. It has affected Guinea, Sierra
Leone, Liberia and Nigeria [1, 18]. It is now becoming the worst disease with
the highest fatality rate and is a big headache for the world. It seeks an urgent
solution. According to world health organization there are more than 9000
deaths till now. Efforts are under way to develop a vaccine; however, none yet
exists.

2. Mathematical model

A compartmental model with a closed population was used to describe the
natural history and epidemiology of Ebola. Briefly, the population is divided
into five compartments: Susceptible individuals (S) may become Exposed (E)
after contact with an Ebola infected individual. As one of the basic and the
most important reason for high Ebola spread is the lack of awareness or ed-
ucation for raising healthy literacy and others, we divided the Ebola infected
population into, uneducated infected individuals (IU) and educated infected
individuals (IE) class after the disease incubation period, thereafter capable of
infecting others including nurses, doctors etc. at hospitals and with a chance
of infecting others before being removed from the model (R), or they may re-
cover, at which point they are similarly removed.
The susceptible population is increased by the recruitment of individuals into
the population at the rate λ and may acquire infection after contact with in-
fected uneducated individual at the rate β1 and infected educated individual
at the rate β2. The susceptible individuals are further decreased by the natural
death at the rate µ.
The population of exposed individuals is generated by the infection of suscep-
tible individuals at the rates β1 and β2. This population is further decreased
by development of Ebola disease symptoms at the rate α and natural death at
a rate µ.
The population of uneducated infected individuals is generated at the rate ρ.
It is decreased by death due to Ebola at the rate δ1 and natural death at the
rate µ.
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Figure 1. Compartmental flow of a mathematical model for
Ebola epidemics.

The population of educated infected individuals is generated at the rate (α−ρ)
and decreased by death due to Ebola at the rate δ2 and the natural death at
the rate µ. We assumed the death rate of educated infected individuals δ2 is
less than that of uneducated infected individuals δ1.
Finally, the Ebola infected individuals are recovered /removed at a rate γ and
decreased by the natural death at the rate µ. The system of ordinary differen-
tial equations describing this model is given below.

dS

dt
= λ− β1S(IU )

N
− β2S(IE)

N
− µS(2.1)

dE

dt
=

β1S(IU )

N
+

β2S(IE)

N
− (α+ µ)E(2.2)

dIU
dt

= ρE − (µ+ δ1)IU(2.3)

dIE
dt

= (α− ρ)E − (µ+ δ2)IE(2.4)

dR

dt
= γ(IU + IE)− µR(2.5)

3. Model parameters

TABLE 1. Model parameters for simulation (Source: World Health

Organization, WHO, Ebola 2014)

Parameter Average Value
Total number of population (N) 5000

Recruitment rate (λ) 1100
Death rate due to nature and other (µ) 0.045

Rate of infection, uneducated (ρ) 0.036
Transmission (contact) rate, uneducated (β1) 0.867
Transmission (contact) rate, educated ( β2) 0.133
Death rate due to Ebola, uneducated ( δ1) 0.25
Death rate due to Ebola, educated (δ2) 0.15

Rate of removal (γ) 0.31
Rate of infection (α) 0.052
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4. Basic properties

Since the model monitors changes in the human population, all the variables
and parameters are assumed to be positive for all t ≥ 0.
The model is therefore be analyzed in a suitable feasible region:

D = {S(t), E(t), IU (t), IE(t), R(t) ∈ R5
+}

with initial conditions S(0) ≥ 0, E(0) ≥ 0, IU (0) ≥ 0, IE(0) ≥ 0 and R(0) ≥ 0
is positively invariant for the system (2.1) to (2.5).

5. Positivity of the solution

For the above system it is necessary to prove that all the state variables are
non-negative so that the solutions of the system with positive initial conditions
remain positive for all t > 0. We thus state the following lemma.

Lemma 5.1. If S(0) ≥ 0, E(0) ≥ 0, IU (0) ≥ 0, IE(0) ≥ 0 and R(0) ≥ 0 then
the solutions S(t), E(t), IU (t), IE(t) and R(t) are all positive for all t > 0.

Proof. To get a contradiction, assume that there exists positive reals t1, t2, t3,
t4 and t5 for which the following hold:

(1) S(t1) = 0, S
′
(t1) < 0, and for all 0 ≤ t ≤ t1 one has that E(t) ≥ 0,

IU (t)≥ 0, IE(t)≥ 0 and R(t) ≥ 0;

(2) E(t2) = 0, E
′
(t2) < 0, and for all 0 ≤ t ≤ t2 we have that S(t) ≥ 0,

IU (t) ≥ 0, IE(t) ≥ 0 and R(t) ≥ 0;

(3) IU (t3) = 0, I
′

U (t3) < 0, and for all 0 ≤ t ≤ t3 one has that S(t) ≥ 0,
E(t) ≥ 0, IE(t) ≥ 0 and R(t) ≥ 0;

(4) IE(t4) = 0, I
′

E(t4) < 0, and for all 0 ≤ t ≤ t4 we have that S(t) ≥ 0,
E(t) ≥ 0, IU (t) ≥ 0 and R(t) ≥ 0;

(5) Finally, R(t5) = 0, R
′
(t5) < 0, and for all 0 ≤ t ≤ t5 one has that

S(t) ≥ 0, E(t) ≥ 0, IU (t) ≥ 0 and IE(t) ≥ 0.

The first case contradicts the assumption S
′
(t) = λ > 0 meaning that S(t) ≥ 0,

t ≥ 0. The second case contradicts the fact E
′
(t2)=

β1SIU+β2SIE
N ≥ 0 that is

E(t) ≥ 0, for all t > 0. By the analogous arguments, it can be shown that
IU (t) ≥ 0, IE(t) ≥ 0, R(t) ≥ 0, for all t ≥ 0. Thus, the solutions of S(t), E(t),
IU (t), IE(t) and R(t) remain positive for all t > 0. □

6. Analysis of the model

6.1. Existence of the disease free equilibrium state, E0. At the disease
free equilibrium state we have absence of infection. Thus, all the Ebola infected
classes will be zero and the entire population will comprise of only Ebola free,
susceptible individuals. A disease free equilibrium state of the model above is
unique and exists at the point: E0=(S∗, E∗, I∗U , I

∗
E , R

∗)=(λµ , 0, 0, 0, 0)
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6.2. The basic reproduction number. The basic reproduction number, R0

of the system (2.1) to (2.5) can be obtained by using the next generation matrix
method formulated in [6, 16].
As our population is closed, let X = (E, IU , IE)

T then dX
dt = f(x)−v(x) where:

(6.1) f(x) =

 β1(IU ) + β2(IE)
ρE
0

 ,

and

(6.2) v(x) =

 (α+ µ)E
(µ+ δ1)IU

(µ+ δ2)IE − (α− ρ)E

 .

The Jacobian matrices of f(x) and v(x) evaluated at the disease free equilib-
rium, E0 are:

(6.3) Df(E0) = F =

 0 β1 β2

ρ 0 0
0 0 0

 ,

and

(6.4) Dv(E0) = V =

 α+ µ 0 0
0 µ+ δ1 0

ρ− α 0 µ+ δ2

 .

The model reproduction number, denoted by R0 is thus given by:

R0 =
1

2

[
β2(α− ρ)

(µ+ δ2)(α+ µ)
+

√[ β2(α− ρ)

(µ+ δ2)(α+ µ)

]2
+

4β1ρ

(µ+ δ1)(α+ µ)

]
6.3. Local stability of the disease free equilibrium, E0.

Theorem 6.1. The disease free equilibrium E0 is locally asymptotically stable
for R0 < 1 and unstable otherwise.

Proof. To prove the local stability of the disease free equilibrium, we used the
jacobian stability method. If the eigenvalues of (F-V) have negative real parts
then the disease free equilibrium is locally stable. Using F and V from equa-
tions (6.3) and (6.4):

(6.5) F − V =

 −α− µ β1 β2

ρ −δ1 − µ 0
α− ρ 0 −µ− δ2

 .

Using characteristic equation |(F − V ) − λI| = 0, the following equation is
obtained.
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λ3+
[
(α+3µ+ δ1+ δ2)+ (µ+ δ2)(α+2µ+ δ1)

]
(λ2)+

[
(µ+ δ1)(α+µ)−β1ρ−

β2(α− ρ)
]
(λ) + (µ+ δ2)

[
(µ+ δ1)(α+ µ)− β1ρ

]
+ β2(ρ− α)(µ+ δ1) = 0,

where λ is the eigenvalue in this case. As all the coefficients are positive for
all R0 < 1 then all the eigenvalues are negative. Besides, the product of the
coefficient of λ2 and the coefficient of λ is greater than the constant term
for R0 < 1. Therefore, for R0 < 1 the disease free equilibrium is locally
asymptotically stable. □

6.4. Global stability of the disease free equilibrium.

Theorem 6.2. For system (2.1) to (2.5), the disease free equilibrium is globally
asymptotically stable if R0 < 1

Proof. To prove comparison theorem was used. The rate of change of the
variables (E, IU , IE , R) of the above system can be re-written as:

dE
dt
dIU
dt
dIE
dt
dR
dt

 = (F ′ − V ′)


E
IU
IE
R

− (1− µS

λ
)


0 β1S0

N
β2S0

N 0
P 0 0 0
0 0 0 0
0 0 0 0




E
IU
IE
R


where (F

′
) and (V

′
) are jacobian matrices (of order 4) evaluated at the disease

free equilibrium and S0 = λ
µ . Clearly,

(6.6)


dE
dt
dIU
dt
dIE
dt
dR
dt

 ≤ (F ′ − V ′)


E
IU
IE
R


Since, the eigenvalues of the matrix (F

′ − V
′
) have negative real parts (this

comes from the local stability results in [16, Lemma 1]) then the system (2.1)
to (2.5) is stable whenever R0 < 1. So (E, IU , IE , R) → (0, 0, 0, 0) and S → λ

µ

as t → ∞. By the comparison theorem [6,14] (S,E, IU , IE , R) → E0 as t → ∞.
Therefore, E0 is globally asymptotically stable. □

6.5. Endemic equilibrium.

6.5.1. Existance of the endemic equilibrium. If R0 > 1, the system (2.1)
to (2.5) has a unique endemic equilibrium: E∗(S∗, E∗, I∗U , I

∗
E , R

∗) where:
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S∗ =
N2(µ+ δ1)(µ+ δ2)(α+ µ)

Nβ1ρ(µ+ δ2) +Nβ2(α− ρ)(µ+ δ1)
(6.7)

E∗ =
λ− µ

α+ µ
S∗(6.8)

I∗U =
ρ(α− µ)

(µ+ β1)(µ+ α)
S∗(6.9)

I∗E =
α(α− ρ)

ρ(µ+ δ2)
I∗U(6.10)

R∗ =
γ(I∗U + I∗E)

µ
(6.11)

6.5.2. Local stability of endemic equilibrium. By evaluating the Jacobian
matrices at the endemic equilibrium it can be easily shown (similar to the
method for local stability of disease free equilibrium) that the characteristics
roots of the matrix have negative real parts. Therefore, we say the endemic
equilibrium is locally asymptotically stable.

6.5.3. Global stability of endemic equilibrium. By making change of vari-
ables and using Lyapunov method, define the function:
V = X∗2 + Y ∗2 + Z∗2 +W ∗2 +A∗2 where,

X∗ = S − λN

β1IU + β2IE + µN
(6.12)

Y ∗ = E − β1SIUβ2SIE
N(µ+ α)

(6.13)

Z∗ = IU − ρE

µ+ δ1
(6.14)

W ∗ = IE − (α− ρ)E

µ+ δ2
(6.15)

A∗ = R− γ(IU + IE)

µ
(6.16)

Clearly, V (0, 0, 0, 0, 0)=(0, 0, 0, 0, 0) and V (X,Y, Z,W,A) > 0 for all (X,Y, Z,W,
A) in the region. That is, V is positive definite. Then, the partial derivative of
V about the system gives:

V
′
= 2

[
S − λN

β1IU + β2IE + µN

]
(
dS

dt
) + 2

[
E − β1SIUβ2SIE

N(µ+ α)

]
(
dE

dt
) + 2

[
IU−

PE

µ+ δ1

]
(
dIU
dt

) + 2
[
IE − (α− P )E

µ+ δ2

]
(
dIE
dt

) + 2
[
R− γ(IU + IE)

µ

]
(
dR

dt
)
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where,

dX∗

dt
=

dS

dt
,
dY ∗

dt
=

dE

dt
,
dZ∗

dt
=

dIU
dt

,
dW ∗

dt
=

dIE
dt

,
dA∗

dt
=

dR

dt
then,

V
′
= −2

[(
S − λN

β1IU + β2IE + µN

)2](β1IU + β2IE +Nµ

N

)
− 2

[(
E−

β1SIUβ2SIE
N(µ+ α)

)2]
(α+ µ)− 2

[(
IU − PE

µ+ δ1

)2]
(µ+ δ1)− 2

[(
IE−

(α− P )E

µ+ δ1

)2]
(µ+ δ2)− 2

[(
R− γ(IU + IE)

µ

)2]
(µ) ≤ 0.

Therefore, as V
′
is negative definite, our system is globally asymptotically

stable.

7. Numerical simulation

To illustrate the analytical results obtained above, we give some simulations
using the parameters values of Table 1 in Section 3 above. The results are
given below. Figure 2 shows when R0 = 0.695 < 1, the disease free equilibrium
is globally asymptotically stable. This means the disease dies out. Figure 3
shows when R0 = 1.627 > 1, the endemic equilibrium is globally asymptotically
stable. This means the disease persists in the population.

8. Conclusion

In overall, the dynamical behavior of the formulated Ebola epidemic model
is investigated and the basic reproduction number, which plays a vital role in
controlling the spread of Ebola is calculated. Our new model has the detail
about all compartments and we found it works for the current Ebola outbreak
very well. The parameter values used are all the latest values. When the re-
productive number, R0 < 1 the disease equilibrium is globally asymptotically
stable. The disease free equilibrium is globally asymptotically stable, which im-
plies the disease will die out. From our study we observed that when contact
rate of susceptible is decreasing so does the number of the infected popula-
tion. The biological implication of this is that, the contact rate is playing a
very important role in controlling the spread of Ebola. Hence, isolation of the
Ebola patient and providing great awareness (education) are highly the cru-
cial tools to fight Ebola. When R0 > 1 the Endemic equilibrium is globally
asymptotically stable, that implies Ebola will sustain and lead to epidemic
eventually. Therefore, starting from personal hygiene isolating the patient,
putting on protective gloves, disposal of wastes safely and safe burial practices
are among important things to be taken into consideration. Besides, in order
to prevent epidemics, through the analysis of the model the government must
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Figure 2. When (β1 = 0.333, β2 = 0.11, ρ = 0.035, R0 =
0.695 < 1), the disease free equilibrium E0 is globally asymp-
totically stable.

Figure 3. When (β1 = 0.867, β2 = 0.133, ρ = 0.036, R0 =
1.6275 > 1), the endemic equilibrium E∗ is globally asymptot-
ically stable.
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strictly manage the policy on creating the greatest awareness (education) on
Ebola and carry it out. This in turn helps for health campaigning and raising
health literacy which as seen from our study helps to control the disease. We
finally strongly believe that our study will play its own role in the current effort
of controlling the Ebola outbreak in West Africa.
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