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ABSTRACT. In this paper, we introduce the notion of strongly k—spaces
(with the weak (=finest) pre-topology generated by their strongly com-
pact subsets). We characterize the strongly k—spaces and investigate the
relationships between preclosedness, locally strongly compactness, pre-
first countableness and being strongly k—space.
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1. Introduction

In [1], Arens introduced a category of Hausdorff spaces called k—spaces with
the property that each subset which intersects every compact set in a closed set
is itself a closed set. The concept of a k—space or a compactly generated space
is widely encountered in the literature, [9,10,20,22,23]. The Hausdorff property
is imposed to guarantee that compact subsets are closed, [20]. However, the
definition of a k—space disagreeing the requirement of Hausdorff property has
been preferred in [14,17,21].

In this paper, we give the necessary and sufficient conditions for a space X
to be a strongly k—space which need not be pre-Hausdorff. Our fundamental
aim is to define a strongly k—space generated by its strongly compact subsets.
The strong version of compactness was introduced in [2] in terms of preopen
sets defined by [11]. A space X is called strongly compact if every preopen
cover of X has a finite subcover, [2, 12]. It is proved in [7] that a space X is
strongly compact if and only if each infinite subset of X has a pre-limit point.
Besides, in [16, Proposition (3.6)], it is observed that the pre-irresolute image
of a strongly compact space is strongly compact.
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2. Preliminaries

Let (X, 7) be a topological space and A be a subset of the topological space
X. The closure of A and the interior of A are denoted by cl(A) and int (A),
respectively. Also, the power set of X is denoted by exp(X). Let us recall the
basic notions which will be needed in the next section.

A subset S of (X, 1) is called preopen if S C int (cl(S)) and the family of
preopen sets is denoted by pr and called the pre-topology on X, [11]. A subset
F of (X,7) is called preclosed if its complement is a preopen or equivalently
cl(int (F)) C F, [13]. For example, a dense subset of (X, 7) is a preopen set.
In [11], it is proved that an arbitrary union of preopen sets is preopen.

For A C X, it is denoted by cl,; A (preclosure of A) the intersection of all
preclosed sets containing A, i.e., the smallest preclosed set containing A and
by int,, A (preinterior of A) the union of preopen sets contained in A, i.e., the
biggest preopen set contained in A. Thus, int,, A =J{S: S C Aand S € pr}
and cl,, A=N{F:AC Fand X — F € pr}, [L1].

Let = be a point of the space X and U C X, U is called a pre-neighborhood
of x in X if there exists S € pr such that x € S C U, [19].

A class B, of preopen sets containing x is called a pre-local base at x, if
there exists S, € B, with € S, C S, for each preopen set S containing z, [3].

A pre-topological space (X,pr) is said to be a pre-first countable space if
there exists a countable pre-local base at every z € X, [3].

Let A be a subset of a topological space X. A point x € X is called a
pre-limit point of A if every preopen set S C X containing x contains a point
of A other than z, [3].

Let (X,pr) and (Y,p7’) be two pre-topological spaces, then a function f :
(X, pr) — (Y, pr’) is said to be pre-irresolute iff =1 (S) € pr for all S € pr/, [7].
A function f : (X,pr) — (Y,p7’) is called precontinuous if the preimage of
every open subset of Y is a preopen subset of X, [15].

A sequence {x, }, . is said to be pre-converges to a point x of X if {z,.}, oy
is eventually in every preopen set containing z, [18].

A space X is called strongly compact if every preopen cover of X has a finite
subcover, [12]. A topological space X is strongly compact if and only if it is
compact and every infinite subset of X has nonempty interior, [6]. Let f be a
pre-irresolute surjection from X onto Y. If X is strongly compact, then Y is
strongly compact, [12].

A space X is said to be locally strongly compact at € X iff  has a neigh-
borhood which is strongly compact in X. Also, X is called locally strongly
compact if for each x € X there exists a preopen neighborhood U of = with
strongly compact cl, U.
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3. Strongly k—spaces

In this section, our aim is to define and study strongly k—spaces by using
the concepts of preopen sets and strongly compact sets.

Definition 3.1. A pre-topological space is a strongly k—space (strongly com-
pactly generated space) if the following holds:

A subset A C X is preopen whenever A N K is preopen in K for every
strongly compact subset K C X.

Equivalently, A C X is preclosed if and only if AN K is preclosed in K for
every strongly compact subset K C X.

Example 3.2. Any strongly compact space is a strongly k—space.
Example 3.3. Let X = {a,b,c,d} and
T={2,X,{a},{d},{a,b},{a,d},{c,d},{a,b,d},{a,c,d}}.

Then (X, 7) is a topological space such that pr = 7. Every subset K C X
is strongly compact (K being a finite set). It is easy to verify that X is a
strongly k—space since A is preopen in X when A N K is preopen in K for
each subspace K of X. On the other hand, it can be seen that X is a strongly
k—space because it is strongly compact.

According to a theorem of Cohen [4], we give the relation between locally
strongly compact spaces and strongly k—spaces in the following theorem.

Theorem 3.4. A space is a strongly k—space iff it is a quotient space of a
locally strongly compact space.

Proof. Let (X,pr) be a strongly k—space and g be the family of all strongly
compact subsets of X. The disjoint union of all K € p with the relative topol-
ogy inherited from the space X is a locally strongly compact space. Let us

denote it by Y = |J K. Then an identity mapping f : Y — X can be defined
Kep
such that K € p corresponds to the strongly compact subset K of X. Let

pTy be a generalized quotient pre-topology on X. We need to verify that the
quotient pre-topology generated by this mapping coincides with the original
pre-topology on X. It is clear that, pr C pry. Then we have to prove that
pTs C pT to show the space X is coincident with the quotient space of space
Y. Hence, let A € pry. Since X is a strongly k—space, if AN K is preopen in
K then A € pr. Let us show AN K is preopen in K for all strongly compact
K C X. Considering A € pry, f~1(A) is preopen subset in Y. The inter-
section of a strongly compact set and a preopen set is preopen in its induced
pre-topology, that is, f~! (A)NK is a preopen subset in K. Besides f~! (A)NK
is a subset of K C Y, it is a subset of K C X such that f~1 (A)NK = ANK.
Hence AN K is preopen in K, namely, A € pr.



Strongly k—spaces 730

Conversely, let Y be a locally strongly compact space and f : Y — X be the
generalized quotient mapping. Since f : Y — X is a surjective function the
quotient pre-topology on X is the collection of subsets of X that have preopen
inverse images under f. In other words, the quotient pre-topology is the finest
pre-topology on X for which f is a pre-irresolute function. Let A be a non-
empty subset of X such that K N A is preopen in K for every strongly compact
K C X. Then we need to verify that A is preopen in X to show X is a strongly
k—space. Since Y is locally strongly compact, for each y € Y there exists a
preopen neighborhood U of y with strongly compact cl,,U. By the fact that f is
pre-irresolute, f (cl, U) is strongly compact. According to the assumption that
intersection of A and each compact set of X is relatively preopen, the subset
AN f(cl,rU) is preopen in f (cl,;U). The set f~' (A) Ncl, U is preopen in
cl,. U, since f is pre-irresolute. Moreover, f~* (A)NU is preopen in U. On the

other hand, Y = |J U and the subsets U are preopen sets. Thus f~1 (4) is
yeU
preopen in Y. Consequently, A is preopen in X and this completes the proof.

O

To express the relation between strongly k—space and preclosedness, we need
to give the following lemmas.

Lemma 3.5. Let F' C A providing that (X, p7) is a pre-topological space and
A C X. The set F is preclosed in the subspace A iff there is a preclosed set H
in the space X such that F = AN H.

Proof. Let F be a preclosed subset in the subspace A. Then A\ F is a preopen
subset in the subspace A. Thus, there is a preopen subset S in X such that
A\F = ANS. That is, F = AN(X \ ). Then, the set H = X \ S is preclosed
in X and F=ANH.

Conversely, let H be a preclosed set in X such that F = AN H. Then,
A\F =AnN(X\ H). The set A\ F is preopen in A since X \ H is preopen in
X. Thus, F is preclosed in the subspace A. O

Lemma 3.6. Let (X,p7) be a pre-topological space, the subset A be preclosed
in X and I C A. The set F is preclosed in the subspace A iff the set F' is
preclosed in the subspace X .

Proof. Since F' is preclosed in the subspace A, from Lemma 3.5, there is a
preclosed set H in the space X such that F' = ANH. Since the subsets A and H
are preclosed, it can be written such that A D cl (int (A)) and H D cl(int (H)).
Then AN H D cl(int (4)) Necl(int (H)) D cl(int (AN H)), that is, AN H is
preclosed. Converse of the assertion is obvious. O

Theorem 3.7. A preclosed (preopen) subspace of a strongly k—space is a
strongly k—space.
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Proof. Let F be a preclosed subspace of a strongly k—space X and the in-
tersection of H C F and every strongly compact set L C F be preclosed in
L. We need to show that H is preclosed in F. Suppose that K denotes any
strongly compact subset in X. The intersection of the preclosed subset F' and
the strongly compact subset K is strongly compact in X. Moreover, F N K
is a strongly compact subset of F' with respect to subspace pre-topology. If
we denote FFN K = L, then H N L is preclosed in F. By the fact that F' is
preclosed, it is seen from the Lemma 3.6 that H N L is preclosed in X. Under
the assumption that X is a strongly k—space, H is preclosed in X. This gives
us H is preclosed in F', too. O

The proof for a preopen subspace is identical.

Theorem 3.8. A space is a strongly k—space if and only if each point has a
pre-neighborhood whose interior of closure is a strongly k—space.

Proof. Suppose that every point x in X has a pre-neighborhood whose interior
of closure is a strongly k-space. To prove that X is a strongly k-space, we have
to indicate that A is a preopen set in K whenever A N K is preopen for every
strongly compact set K. Suppose x € A. By hypothesis, any pre-neighborhood
of x € X is U such that int (cl (U)) is a strongly k—space. For every strongly
compact L C int (cl(U)), (ANint(cl(U))) N L = AN L is a preopen set.
Therefore, A Nint (cl(U)) is preopen in int (cl (U)). Namely, A Nint (cl (U)) C
int (cl (ANint (c1(U)))) C int(cl(A)) Nint (c1(U)). A is a preopen due to
x € int (cl (A)) when z € ANint (cl(U)), that is, A C int (cl (A4)).

Conversely, let X be a strongly k—space and U be any pre-neighborhood of
any point z in X. Obviously, int (cl (U)) is preopen. Then the proof is obvious
from Theorem 3.7. |

Theorem 3.9. A space is a strongly k—space if there exists a strongly compact
set K such that x € int (cl (AN K)) for each subset A and x € A.

Proof. Suppose that the intersection of A and every strongly compact set of X
is preopen. Let K be any strongly compact set such that z € int (cl (4 N K))
for x € A. By hypothesis, AN K C int (cl (AN K)) C int (cl (4)) Nint (cl (K)),
then z € int (cl(A4)). Thus A is preopen, that is, X is a strongly k—space. O

Theorem 3.10. A locally strongly compact space is a strongly k—space.

Proof. Let A C X. Suppose that the intersection of A and every strongly
compact set of X is preopen. For any point z in A, there is a strongly com-
pact pre-neighborhood K of x since X is locally strongly compact. AN K C
int (c1 (AN K)) because AN K is preopen. Thus there is a pre-neighborhood
K such that z € int (cl1(ANK)). Then the proof is obvious from Theorem
3.9. ]
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Example 3.11. The collection ¢ = {(—o0, a) : a € R} U{R, &} establishes a
topology (left-ray topology) and so a pre-topology on R. Since the sets of the
form (—o0, a] are compact and every infinite subsets of them has nonempty
preinterior, these sets are strongly compact. Then (R, () is a locally strongly
compact space because there exists a strongly compact neighborhood (—oo, ]
for each point z € R. By virtue of Theorem 3.10, (R, () is a strongly k—space,
too. The set of rational numbers Q is a preopen but not open subset of R. By
considering Theorem 3.7, Q is a strongly k—space. But Q is not compact and
so not strongly compact.

Now, to express the relation between being pre-first countable and being
strongly k—space we need to give the following lemmas:

Lemma 3.12. Let pre-topological space (X,pt) be a pre-first countable space.
For a point x € X and a subset A C X, x € cl,-A iff there is a sequence
{Zn}en which pre-converges to x in A.

Proof. Let = € clp,;A and X be a pre-first countable space. Then the point
r € X has a countable pre-neighborhood basis {U,},y which reduce one
within the other without loss of generality. For all n € N, U, N A # () because
r € clp A If it is chosen z,, € U, N A, it is constituted a sequence {z,},y
in A. It is clear that the sequence {x,}, .y that is constituted in this way
pre-converges to the point x.

Conversely, let it be given a sequence {z,}, .y in A such that < z,, >— .
By the definition of pre-convergence, for every pre-neighborhood U of x there
is at least one ng € N such that z,, € U for every n > ng. Thus =, € U N A.
Namely z € cl, A. O

Lemma 3.13. Let (X, p7) be a pre-topological space. If {x,}, oy 15 a sequence
which consists of elements of X and pre-converges to point x in X, K = {z} U
{zn, : n € N} is a strongly compact set.

Proof. Let the family 2 = {.S; : i € I} be a preopen cover of K. Since z € K C
\J S;, there exists at least one ig € I such that = € S;,. On the other hand,
i€l

considering the sequence {x,}, . which pre-converges to the point x, there is

an ng € N such that z,, € U, for every n > ng. Let us choose a S, € Q such
’I’Lofl

that x,, € S,, for each n < ng. In this case, x,, € |J S; for n < ng. Then K C
i=1

no—1 B
Siy U ( U Si). In other words, the family {S;,} U{S;:i=1,2,...,n0 — 1}
i=1

is a finite preopen subcover of the preopen cover Q = {S; : i € I'}. Thus K =
{z} U{z, : n € N} is a strongly compact set. O

Theorem 3.14. A pre-first countable space is a strongly k—space.
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Proof. Let x € clp;A. By Lemma 3.12, there is a sequence {z,},y which
pre-converges to x in A. If it is chosen K = {z} | {x, : n € N}, it was proven
that K is strongly compact in Lemma 3.13. Since K is strongly compact for
every x € X, X is locally strongly compact. The result follows from Theorem
3.10. O

Definition 3.15. A subspace A of a space X has property (*) if whenever
S C A and SNK is preopen (or preclosed) in AN K for each strongly compact
set K in X, then S is preopen (or preclosed) in A.

Theorem 3.16. A subspace A of a space X is a strongly k—space iff A has
property (*) and AN K is a strongly k—space for each strongly compact set K
m X.

Proof. Let a subspace A of X be a strongly k—space. Suppose S C A meets
each strongly compact set K C X in a preopen set in AN K. Then, SN K is
a preopen in AN K. By the hypothesis, S is a preopen in A. Also, AN K is
preopen subset of A for every strongly compact set K. By Theorem 3.7, AN K
is strongly k—space.
Conversely, let SNK C ANK be preopen for S C A and every strongly compact
set K C A. Assume that ANL is a strongly k—space for every strongly compact
L C X, and M C AN L is the strongly compact set. Then M N L is a strongly
compact subset. By hypothesis, S N (M N L) is preopen in A for the strongly
compact set M N L. Therefore, SN L is preopen in AN L. Hence, S is preopen
in A. This verifies that A is a strongly k—space.

|
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