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Abstract. In this study, Frattini supplement subgroup and Frattini sup-
plemented group are defined by Frattini subgroup. By these definitions,
it’s shown that finite abelian groups are Frattini supplemented and ev-
ery conjugate of a Frattini supplement of a subgroup is also a Frattini

supplement. A group action of a group is defined over the set of Frattini
supplements of a normal subgroup of the group by conjugation and in this
study new characterization of primitivity of groups has obtained in terms

of Frattini supplemented groups by this action. Moreover, Frat-series of
a group is defined based on Frattini supplements of normal subgroups of
the group and it is shown that subgroups and factor groups of groups
with Frat-series also have Frat-series under some special conditions. Fur-

thermore, we determined a characterization of soluble groups which have
Frat-series.
Keywords: Frattini subgroup, primitive group, group actions.
MSC(2010): Primary: 20D25; Secondary: 20B15, 58E40.

1. Introduction

In module theory, Rad-supplemented modules were defined as proper gener-
alizations of supplemented modules. Over a ring with identity, a unitial module
M is called Rad-supplemented if every submodule N of M has Rad-supplement
in M , i.e. N +K = M and N ∩K ≤ Rad(K) for some submodule K of M ,
where Rad(K) is the intersection of all maximal submodules of K. Hausen
studied supplemented and amply supplemented groups in terms of nilpotency
by using Frattini subgroup in [3]. We investigated the properties of these groups
in a similar way with [3].

2. Preliminaries

The Frattini subgroup of an arbitrary group G is defined to be the intersec-
tion of all the maximal subgroups, with the stipulation that it will equal to G if
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G has no maximal subgroup. This subgroup, which is evidently characteristic,
is written as Frat(G) [1].

The Frattini subgroup has the remarkable property that it is the set of all
nongenerators of the group; here an element g is called a nongenerator of G if
G = ⟨g,X⟩ always implies that G = ⟨X⟩ when X is a subset of G [1].

A subgroup H of a group G is supplemented in G if there is a subgroup K
of G such that G = HK. If H ∩K = {1} then K is said to be a complement
of H in G [1].

The derived subgroup of G is defined as [G,G] = ⟨[a, b]|a, b ∈ G⟩ where
[a, b] = a−1b−1ab, and is written as G′ .

This study is based on the following definition.

Definition 2.1. Let G be a group and N ⊴ G. The subgroup S of G is called
a Frattini supplement of N in G if G = NS and N ∩ S ≤ Frat(S). Clearly
G is Frattini supplement of Frat(G) in G. If every N ⊴ G has a Frattini
supplement in G, then G is said to be Frattini supplemented.

Example 2.2. Let G be a group. If G = Frat(G) then G is Frattini supple-
mented.

Example 2.3. G itself is Frattini supplement of 1G since G = 1GG and 1G ∩
G ≤ Frat(G). So the Frattini supplement of 1G is G.

Example 2.4. Let G be a group in which every subgroup is normal, and N
be a minimal normal subgroup of G. Then G is a Frattini supplement of N .

Example 2.5. For the generalized quaternion group Q2n = ⟨x, y | x2n−1

= 1,

y2 = x2n−2

, y−1xy = x−1⟩ (n ≥ 3), ⟨y⟩ is a Frattini supplement of the normal
subgroup ⟨x⟩ in Q2n .

Example 2.6. Let G be a finite abelian group. Then G is Frattini supple-
mented.

Example 2.7. Let G = Q8 be the group of Hamilton quaternions. It is easy
to see that ⟨i⟩ , ⟨j⟩, and ⟨k⟩ are Frattini supplement of each other and G is a
Frattini supplement of {1,−1} in G, since every subgroup is normal.

3. Frattini supplemented groups

Proposition 3.1. Let G be a finite group and Nbe a normal subgroup of G.
If S is a Frattini supplement of N in G then S is a minimal supplement of N
in G.

Proof. Since S is a Frattini supplement of N in G, then G = NS and N ∩S ≤
Frat(S). Let K be a Frattini supplement of N in G and K ≤ S. Hence
G = NK. SinceN∩S ⊴ S, if we intersect with S, we get S = S∩G = S∩NK =
K(N ∩ S) = ⟨K,N ∩ S⟩. Finally, we have S = K, since N ∩ S ≤ Frat(S). □
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Proposition 3.2. Let G be a finite group. If G is a Frattini supplement of G′

then G is nilpotent.

Proof. Since G is a Frattini supplement of G′, G = G′G and G′ = G ∩ G′ ≤
Frat(G), then G is nilpotent according to [1]. □

Theorem 3.3. Let G be a group, H be a finite normal subgroup of G and
G = HK for some K ≤ G. If K is minimal, then K is a Frattini supplement
of H in G.

Proof. Assume that K is not a Frattini supplement of H in G. Then H ∩K ≰
Frat(K) and for a maximal subgroup M of K, H ∩ K ≰ M . So we have
M < (H ∩ K)M ≤ K which implies that K = (H ∩ K)M = HM ∩ K, and
so K ≤ HM . Since G = HK, for every g ∈ G, we have g ∈ HM . Hence
G = HM , which is a contradiction. Therefore, K is a Frattini supplement of
H in G. □

Proposition 3.1 and Theorem 3.3 could be merged for finite groups.

Corollary 3.4. Let G be a finite group, and N ⊴ G. Then S is a Frattini
supplement of N in G if and only if S is a minimal supplement of N .

Theorem 3.5. Let G be a finite group, N ⊴ G, H be a Frattini supplement
of N in G and K ≤ H. Then for K ⊴ G, H/K is a Frattini supplement of
NK/K.

Proof. Since H is a Frattini supplement of N , G = NH and H ∩ N ≤
Frat(H). It is easy to see that G/K = NH/K = (NK/K)(H/K) and
(H/K) ∩ (NK/K) ≤ (H ∩N)K/K ≤ (Frat(H))K/K by modular law. Then
we have (Frat(H))K/K
≤ Frat(H/K) by [1], since G is finite. □

Theorem 3.6. Let G be a finite group, N ⊴ G, S be a Frattini supplement of
N in G and H be a subgroup of G such that S ≤ H. Then N ∩H has a Frattini
supplement in H.

Proof. Obviously N ∩ H ⊴ H. Since S is a Frattini supplement of N in G,
G = NS and S ∩ N ≤ FratS. So we have G = NS, which implies that
H = G ∩ H = (NS) ∩ H = (N ∩ H)S and (H ∩ N) ∩ S = H ∩ (N ∩ S) ≤
H ∩ Frat(S) ≤ Frat(S). Hence N ∩H has a Frattini supplement in H. □

Theorem 3.7. Let G be an abelian group N,K ≤ G and let N be a Frattini
supplemented group. If a Frattini supplement X of NK in G satisfies X ∩Y =
{1} for every Frattini supplement Y of the normal subgroups of N then K has
a Frattini supplement in G.

Proof. Since X is a Frattini supplement of NK in G, G = (NK)X and
NK∩X ≤ Frat(X). Now consider the subgroup N∩(KX) ≤ N. For a Frattini
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supplement Y ofN∩(KX), N = (N∩(KX))Y and (N∩(KX))∩Y ≤ Frat(Y ).
Therefore Y ∩ KX ≤ Frat(Y ). First G = (NK)X = [(N ∩ KX)Y ]KX =
(N ∩ KXY )KX = NKX ∩ KXY = G ∩ KXY . Therefore G = K(XY ).
It is easy to see that K ∩ XY ≤ [(NK) ∩ X][Y ∩ KX]. Hence K ∩ XY ≤
[(NK)∩X][Y ∩KX] ≤ (Frat(X))(Frat(Y )). Let xy ∈ (Frat(X))(Frat(Y )) ,
for some x ∈ Frat(X), y ∈ Frat(Y ) and let XY = ⟨xy,A⟩ for some A ⊆ XY.
Since G is an abelian group XY = ⟨xy,A⟩ = {(xy)n

∏
(xiyi)

εi | xi ∈ X, yi ∈ Y,
εi = ±1, n ∈ Z} = {(xn

∏
xεi
i )(yn

∏
yεii ) | xi ∈ X, yi ∈ Y, εi = ±1, n ∈ Z} ≤

⟨x,Xi⟩ ⟨y, Yi⟩ , where Xi =
∪
{xi}, Yi =

∪
{yi}, xi and yi are elements of X

and Y respectively. Hence XY = ⟨x,Xi⟩ ⟨y, Yi⟩. Since X ∩ Y = {1}, we have
X = ⟨x,Xi⟩ and Y = ⟨y, Yi⟩ . Then we have X = ⟨Xi⟩ and Y = ⟨Yi⟩.
Finally XY = ⟨Xi⟩ ⟨Yi⟩ ≤ ⟨A⟩ which implies that XY = ⟨A⟩ . Therefore,
xy ∈ Frat(XY ) and XY is a Frattini supplement of K in G. □

Proposition 3.8. Let G be a group, N ⊴ G and S be the Frattini supplement
of N in G and Frat(G) is finite. For K ⊴ G, if K ≤ Frat(G) then S is a
Frattini supplement of NKin G. In particular, if G has no maximal subgroup
then S is a Frattini supplement of NK in G for every K ⊴ G.

Proof. G = NS and N ∩ S ≤ Frat(S) since S is a Frattini supplement of
N in G , so for K ⊴ G, G = NKS = (NK)S. Now we must show that
NK ∩ S ≤ Frat(S). Suppose that NK ∩ S ≰ Frat(S). So NK ∩ S ≰ M ,
for some maximal subgroup M of S and then S = ⟨NK ∩ S,M⟩. Hence S =
⟨NK ∩ S,M⟩ implies G = NS = N ⟨NK ∩ S,M⟩ ≤ N⟨NK,M⟩ = ⟨K,N,M⟩.
Therefore G = ⟨K,N,M⟩ and then G = NM since K ≤ Frat(G). But we
have S = M by minimality of S from Proposition 3.1, which is a contradiction.
Therefore NK ∩ S ≤ Frat(S) and S is a Frattini supplement of NK in G. In
particular, if G has no maximal subgroup then G = Frat(G) and obviously, S
is a Frattini supplement of NK in G for every K ⊴ G. □

Corollary 3.9. Let G be a group, N ⊴ G and S be the Frattini supplement
of N in G and Frat(G) is finite. If K ≤ Frat(G) then K ∩ S ≤ Frat(S) for
K ⊴ G.

Proof. It’s obvious since K ∩ S ≤ NK ∩ S ≤ Frat(S) by Proposition 3.8. □

4. Primitivity for Frattini supplemented groups

If G is a group and N ⊴ G, then the Frattini supplement set of N can be
defined. Consider the set ΣN = {S ≤ G | G = NS,N ∩ S ≤ Frat(S)}. One
can assume G is a Frattini supplemented to ensure that ΣN ̸= ∅.

Corollary 4.1. Let G be a Frattini supplemented group and N ⊴ G. If G ∈ ΣN

then ΣN = {G}.

Proof. Since G is minimal by Proposition 3.1, then ΣN = {G}. □
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Theorem 4.2. Let G and H be groups, N ⊴ G and S be a Frattini supplement
of N in G. If φ : G → H is an isomorphism then φ(S) is a Frattini supplement
of φ(N) in H. In particular, if σ ∈ Aut(G) then σ(S) is a Frattini supplement
of σ(N) in G and if T ∈ ΣN then for every g ∈ G, T g ∈ ΣN .

Proof. Since S is a Frattini supplement of N in G, we have G = NS and
N ∩S ≤ Frat(S). If φ : G → H is an isomorphism and N ⊴ G then φ(N) ⊴ H
and obviously H = φ(G) = φ(NS) ≤ φ(N)φ(S) which implies that H =
φ(N)φ(S). Now we show that φ(N)∩φ(S) ≤ Frat(φ(S)). Firstly, if a ∈ φ(N)∩
φ(S) then a = φ(n) = φ(s) for some n ∈ N , and s ∈ S. So a = φ(n) = φ(s)
which implies that φ(n) = φ(s), and so φ(n)(φ(s))−1 = 1H . It follows that
φ(n)φ(s−1) = 1H , thus φ(ns−1) = 1H . Therefore, ns−1 ∈ Ker(φ) and n = s,
since φ is an isomorphism and Ker(φ) = 1G. Hence n = s ∈ N ∩ S and we
have a = φ(n) = φ(s) ∈ φ(N ∩S). So φ(N)∩φ(S) ≤ φ(N ∩S) ≤ φ(Frat(S)).
Now we will show that φ(Frat(S)) ≤ Frat(φ(S)). Let φ(a) ∈ φ(Frat(S))
for some a ∈ Frat(S) and let φ(S) = ⟨φ(a), X⟩ for any X ⊆ φ(S). If X ⊆
φ(S) then X = φ(A) for some A ⊆ S. Since φ is an isomorphism φ(S) =
⟨φ(a), φ(A)⟩ ≤ φ(⟨a,A⟩). Therefore, φ(S) = φ(⟨a,A⟩) and so S = ⟨a,A⟩. Since
a ∈ Frat(S), we have S = ⟨A⟩. It follows from S = ⟨A⟩ that φ(S) = φ(⟨A⟩) ≤
⟨φ(A)⟩ = ⟨X⟩ which implies that S = ⟨X⟩, and so φ(a) ∈ Frat(φ(S)). Hence
φ(Frat(S)) ≤ Frat(φ(S)). Finally, φ(N) ∩ φ(S) ≤ Frat(φ(S)) and φ(S) is a
Frattini supplement of φ(N) inG. In particular, it is obvious that if σ ∈ Aut(G)
then σ(S) is a Frattini supplement of σ(N) in G, since σ is an isomorphism. If
T ∈ ΣN then for every σ ∈ Inn(G) and for every g ∈ G, σ(T ) = T g will be a
Frattini supplement of N in G. □
Example 4.3. For the group S3, ⟨(12)⟩ is a Frattini supplement of A3 in S3.
Anyone can easily see that every conjugate of ⟨(12)⟩ in S3 is also a Frattini
supplement of A3 in S3.

Let G be a Frattini supplemented group and N ⊴ G. Consider the set
defined above ΣN = {S ≤ G | G = NS, N ∩ S ≤ Frat(S)}. By Theorem 4.2,
a group action might be defined as:

The function G× ΣN −→ ΣN , (g, S) → Sg, then G acts on ΣN .
Using Cayley-like representation by this action we have the function g :

ΣN → ΣN , S → Sg is well-defined so the morphism φ : G → Sym(ΣN ),
g → g−1 is closed, well defined and a homomorphism. Before Theorem 4.4,
consider the transitivity of ΣN . It may not be found g ∈ G, such that Sg = T
for every pair of S, T ∈ ΣN . Hence, let us take the subset AN of ΣN such that
AN = {Sg|S ∈ ΣN , g ∈ G}. Obviously G acts transitively on AN .

Theorem 4.4. Let G be a Frattini supplemented group, N ⊴ G, G /∈ ΣN and
S be maximal in G for every S ∈ ΣN . Then G acts primitively on the set AN .

Proof. Since S ∈ ΣN is a maximal subgroup of G and S ≤ NG(S) ≤ G, we
have S = NG(S) or NG(S) = G. First, consider the case S = NG(S). For
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some g ∈ G \ S, we have Sg ̸= S, since S < G. Then |AN | ≥ 2. Now for
the subgroup GS = {g ∈ G | Sg = S}, it is obvious that GS = NG(S) = S.
Therefore, GS is a maximal subgroup of G and so G is primitive by [2]. Now
consider the second case, when NG(S) = G. Then S ⊴ G and so, for every
g ∈ G, we have Sg = S. Then |AN | = 1. Hence AN is a trivial block for G and
G is primitive. □

5. Frat-series

Definition 5.1. Let G be a group and 1 = G0 < G1 < · · · < Gn = G be
a normal series of G. If Gi has a Frattini supplement Si in Gi+1 for every
1 ≤ i ≤ n, then G is said to have a Frat-series.

Let G be a group which has a Frat- series, Gi−1 be a term of the series and
Si−1 be a Frattini supplement of Gi−1 in Gi. If G has a subgroup H such that
Si−1 ≤ H for every 1 ≤ i ≤ n then H has a Frat-series. In particular ⟨{Si}⟩
has a Frat-series.

Proof. Let 1 = G0 < G1 < · · · < Gn = G be a Frat-series of G. Consider
the intersection of H with terms of the series in hypothesis. Obviously 1 =
H ∩ G0 < H ∩ G1 < · · · < H ∩ Gn = H is a normal series of H. Since Si−1

is a Frattini supplement of Gi−1 in Gi and Si−1 ≤ H, we have Gi ∩ H =
(Gi−1Si−1) ∩ H = (Gi−1 ∩ H)Si−1. Moreover, (Gi−1 ∩ H) ∩ Si−1 = (Gi−1 ∩
Si−1) ∩H ≤ FratSi−1 ∩H ≤ FratSi−1. So H has a Frat-series. In particular
for H = ⟨{Si}⟩ we conclude that ⟨{Si}⟩ has a Frat-series. □

Theorem 5.2. Let G be a group that has a Frat-series, Gi−1 be a term of the
series and Si−1 be a finite Frattini supplement of Gi−1 in Gi. If N is a normal
subgroup of G such that N ⊴ Si−1, then G/N has a Frat-series.

Proof. Let 1 = G0 < G1 < · · · < Gn = G be a Frat-series of G. One can easily
see that the series 1 = N/N = G0N/N ≤ G1N/N ≤ ... ≤ GnN/N = G/N
which is obtained from the Frat-series of G, is a normal series of G/N . Since
Si−1 is a finite Frattini supplement of Gi−1 in Gi for every 1 ≤ i ≤ n, G/N
has a Frat-series by Theorem 3.5. □

Theorem 5.3. Let G be a group and 1 = G0 < G1 < · · · < Gn = G be a Frat-
series of G and σ ∈ Aut(G). Then 1 = σ(G0) < σ(G1) < · · · < σ(Gn) = G is
also a Frat-series of G.

Proof. First, we will show that 1 = σ(G0) < σ(G1) < · · · < σ(Gn) = G is
a normal series of G. It is obvious that σ(Gi) < σ(Gi+1) for every i. Also,
it is easy to see that σ(Gi) ⊴ G. Since 1 = G0 < G1 < · · · < Gn = G is
a Frat-series of G, then there exists Si ≤ Gi+1 such that Gi+1 = GiSi and
Gi ∩ Si ≤ Frat(Si) for every i. Furthermore, the restriction of σ to Gi+1 is an
isomorphism from Gi+1 to σ(Gi+1) and σ(Si) is a Frattini supplement of σ(Gi)
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in σ(Gi+1) by Theorem 4.2. Finally, 1 = σ(G0) < σ(G1) < · · · < σ(Gn) = G is
a Frat-series of G. □
Theorem 5.4. Let G be a group, 1 = G0 < G1 < · · · < Gn = G be a Frat-
series of G, Gi−1be a term of the series and Si−1 ⊴ G be a Frattini supplement
of Gi−1 in Gi for every 1 ≤ i ≤ n−1 and Sn−1⊴G be a complement of Gn−1 in
G. If Si−1 is a complement of Gi−1 in Gi then Gi−1 has a Frattini supplement
in Gi+1.

Proof. Since Gi+1 and Gi are terms of the Frat-series of G, we have Gi+1 =

Gi−1(Si−1Si), 1 = Gi−1 ∩ Si−1 ≤ Frat(Si−1), and 1 = Gi ∩ Si ≤ Frat(Si) for
some Si−1, Si ⊴ G. Let a be an element of Gi−1 ∩ (Si−1Si). Then a = xy
for some x ∈ Si−1 and y ∈ Si. Therefore a = xy implies that y = x−1a ∈
Si−1Gi−1 = Gi−1Si−1 = Gi and then y ∈ Gi ∩ Si = 1. So we have a = x ∈
Gi−1 ∩ Si−1 = 1 and a = 1. Hence 1 = Gi−1 ∩ (Si−1Si) ≤ Frat(Si−1Si).
Therefore Si−1Si is a Frattini supplement of Gi−1 in Gi+1. □
Theorem 5.5. Let 1 = G0 < G1 < · · · < Gn = G be Frat-series of G. If
S

′

i ≤ Gi for every 0 ≤ i < n where Si is a Frattini supplement of Gi in Gi+1

then G is soluble.

Proof. Since 1 = G0 < G1 < · · · < Gn = G is a Frat-series of G, then
Gi+1 = GiSi and Gi ∩ Si ≤ Frat(Si) for every i. Now, we will show that

the Frat-series of G is also a derived series. Consider the element [x, y] of S
′

i .

So [x, y] ∈ Gi and then S
′

i ≤ Gi ∩ Si since S
′

i ≤ Si. Hence, for every [x, y]

∈ S
′

i , [x, y](Gi ∩ Si) = Gi ∩ Si. Therefore x−1y−1xy(Gi ∩ Si) = Gi ∩ Si

and so xy(Gi ∩ Si) = yx(Gi ∩ Si) and we obtain x(Gi ∩ Si)y(Gi ∩ Si) =
y(Gi ∩ Si)x(Gi ∩ Si) for every x, y ∈ Gi. Therefore the factor Si/Gi ∩ Si is
abelian. Since Si/Gi ∩ Si ≃ GiSi/Gi = Gi+1/Gi, we have Gi+1/Gi is abelian.
So, 1 = G0 < G1 < · · · < Gn = G is a derived series of G and G is soluble. □

Acknowledgements

The authors appreciate the comments and valuable suggestions of the editor
and the reviewer. Their advice helped to improve the clarity and presentation
of this paper.

References

[1] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
[2] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
[3] J. Hausen, Supplemented nilpotent groups, Rend. Sem. Mat. Univ. Padova 65 (1981),

no. 3, 35–46.

(Yıldız Aydın) Faculty f Arts and Sciences, Department of Mathematics, Ondokuz
Mayis University, Samsun, Turkey.

E-mail address: yildizaydin60@hotmail.com

(Ali Pancar) Faculty f Arts and Sciences, Department of Mathematics, Ondokuz
Mayis University, Samsun, Turkey.

E-mail address: apancar@omu.edu.tr


	1. Introduction
	2. Preliminaries
	3. Frattini supplemented groups
	4. Primitivity for Frattini supplemented groups
	5. Frat-series
	Acknowledgements
	References

