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ABSTRACT. In this study, Frattini supplement subgroup and Frattini sup-
plemented group are defined by Frattini subgroup. By these definitions,
it’s shown that finite abelian groups are Frattini supplemented and ev-
ery conjugate of a Frattini supplement of a subgroup is also a Frattini
supplement. A group action of a group is defined over the set of Frattini
supplements of a normal subgroup of the group by conjugation and in this
study new characterization of primitivity of groups has obtained in terms
of Frattini supplemented groups by this action. Moreover, Frat-series of
a group is defined based on Frattini supplements of normal subgroups of
the group and it is shown that subgroups and factor groups of groups
with Frat-series also have Frat-series under some special conditions. Fur-
thermore, we determined a characterization of soluble groups which have
Frat-series.
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1. Introduction

In module theory, Rad-supplemented modules were defined as proper gener-
alizations of supplemented modules. Over a ring with identity, a unitial module
M is called Rad-supplemented if every submodule N of M has Rad-supplement
in M,ie. N+ K =M and NN K < Rad(K) for some submodule K of M,
where Rad(K) is the intersection of all maximal submodules of K. Hausen
studied supplemented and amply supplemented groups in terms of nilpotency
by using Frattini subgroup in [3]. We investigated the properties of these groups
in a similar way with [3].

2. Preliminaries

The Frattini subgroup of an arbitrary group G is defined to be the intersec-
tion of all the maximal subgroups, with the stipulation that it will equal to G if
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G has no maximal subgroup. This subgroup, which is evidently characteristic,
is written as Frat(G) [1].

The Frattini subgroup has the remarkable property that it is the set of all
nongenerators of the group; here an element g is called a nongenerator of G if
G = (g, X) always implies that G = (X) when X is a subset of G [1].

A subgroup H of a group G is supplemented in G if there is a subgroup K
of G such that G = HK. If HN K = {1} then K is said to be a complement
of Hin G [1].

The derived subgroup of G is defined as [G,G] = ([a,b]|a,b € G) where
[a,b] = a=1b~Lab, and is written as G’ .

This study is based on the following definition.

Definition 2.1. Let G be a group and N < G. The subgroup S of G is called
a Frattini supplement of N in G if G = NS and NN S < Frat(S). Clearly
G is Frattini supplement of Frat(G) in G. If every N < G has a Frattini
supplement in G, then G is said to be Frattini supplemented.

Example 2.2. Let G be a group. If G = Frat(G) then G is Frattini supple-
mented.

Example 2.3. G itself is Frattini supplement of 14 since G = 1¢G and 1¢ N
G < Frat(G). So the Frattini supplement of 14 is G.

Example 2.4. Let G be a group in which every subgroup is normal, and N
be a minimal normal subgroup of G. Then G is a Frattini supplement of N.

Example 2.5. For the generalized quaternion group Qon = (z,y | 22" =1,
g2 =227 y~lzy =271 (n > 3), (y) is a Frattini supplement of the normal
subgroup (x) in Qan.

Example 2.6. Let G be a finite abelian group. Then G is Frattini supple-
mented.

Example 2.7. Let G = Qg be the group of Hamilton quaternions. It is easy
to see that (i), (j), and (k) are Frattini supplement of each other and G is a
Frattini supplement of {1,—1} in G, since every subgroup is normal.

3. Frattini supplemented groups

Proposition 3.1. Let G be a finite group and Nbe a normal subgroup of G.
If S is a Frattini supplement of N in G then S is a minimal supplement of N
n G.

Proof. Since S is a Frattini supplement of N in G, then G = NS and NNS <
Frat(S). Let K be a Frattini supplement of N in G and K < S. Hence
G = NK. Since NNS < S, if we intersect with S, we get S = SNG = SNNK =
K(NNS)=(K,NnNnS). Finally, we have S = K, since N NS < Frat(S). O
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Proposition 3.2. Let G be a finite group. If G is a Frattini supplement of G’
then G is nilpotent.

Proof. Since G is a Frattini supplement of G', G = G'G and G' = GN G’ <
Frat(G), then G is nilpotent according to [1]. O

Theorem 3.3. Let G be a group, H be a finite normal subgroup of G and
G = HK for some K < G. If K is minimal, then K is a Frattini supplement
of H in G.

Proof. Assume that K is not a Frattini supplement of H in G. Then HNK £
Frat(K) and for a maximal subgroup M of K, HNK ¢ M. So we have
M < (HN K)M < K which implies that K = (H N K)M = HM N K, and
so K < HM. Since G = HK, for every g € G, we have ¢ € HM. Hence
G = HM, which is a contradiction. Therefore, K is a Frattini supplement of
H in G. 0

Proposition 3.1 and Theorem 3.3 could be merged for finite groups.

Corollary 3.4. Let G be a finite group, and N < G. Then S is a Frattini
supplement of N in G if and only if S is a minimal supplement of N.

Theorem 3.5. Let G be a finite group, N I G, H be a Frattini supplement
of N in G and K < H. Then for K < G, H/K is a Frattini supplement of
NK/K.

Proof. Since H is a Frattini supplement of N, G = NH and HN N <
Frat(H). It is easy to see that G/K = NH/K = (NK/K)(H/K) and
(H/IK)N(NK/K) < (HNN)K/K < (Frat(H))K/K by modular law. Then
we have (Frat(H))K/K

< Frat(H/K) by [1], since G is finite. O

Theorem 3.6. Let G be a finite group, N < G, S be a Frattini supplement of
N in G and H be a subgroup of G such that S < H. Then NN H has a Frattini
supplement in H.

Proof. Obviously N N H < H. Since S is a Frattini supplement of N in G,
G = NS and SN N < FratS. So we have G = NS, which implies that
H=GnNnH=(NS)NH=(NNnH)Sand ( HNN)NS=HN(NNS) <
H N Frat(S) < Frat(S). Hence N N H has a Frattini supplement in H. O

Theorem 3.7. Let G be an abelian group N, K < G and let N be a Frattini
supplemented group. If a Frattini supplement X of NK in G satisfies XNY =
{1} for every Frattini supplement Y of the normal subgroups of N then K has
a Frattini supplement in G.

Proof. Since X is a Frattini supplement of NK in G, G = (NK)X and
NKNX < Frat(X). Now consider the subgroup NN(K X) < N. For a Frattini
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supplement Y of NN(KX), N = (NN(KX))Y and (NN(KX))NY < Frat(Y).
Therefore Y N KX < Frat(Y). First G = (NK)X = [NNKX)Y|KX =
(NNKXY)KX = NKX N KXY = GNKXY. Therefore G = K(XY).
It is easy to see that K N XY < [(NK) N X][Y N KX]. Hence K N XY <
(NK)NX]YNKX] < (Frat(X))(Frat(Y)). Let zy € (Frat(X))(Frat(Y)) ,
for some x € Frat(X), y € Frat(Y) and let XY = (xy, A) for some A C XY.
Since G is an abelian group XY = (zy, A) = {(zy)" [[(z;y:)% | z; € X, y; €Y,
ei=xl,neZ} ={(a"[1z;)W"[lv;") | zi € X,ys € Y,e; = £1,n € Z} <
(2, X;) (y, Ys) , where X; = U{=:}, Vi = U{wi}, 2; and y; are elements of X
and Y respectively. Hence XY = (x, X;) (y,Y:). Since X NY = {1}, we have
X = (z,X;) and Y = (y,Y;). Then we have X = (X;) and Y = (Y;).
Finally XY = (X;)(Y;) < (A) which implies that XY = (A). Therefore,
xy € Frat(XY) and XY is a Frattini supplement of K in G. O

Proposition 3.8. Let G be a group, N < G and S be the Frattini supplement
of N in G and Frat(G) is finite. For K < G, if K < Frat(G) then S is a
Frattini supplement of NKin G. In particular, if G has no mazimal subgroup
then S is a Frattini supplement of NK in G for every K 1 G.

Proof. G = NS and NN S < Frat(S) since S is a Frattini supplement of
N in G, sofor K 4 G, G = NKS = (NK)S. Now we must show that
NK NS < Frat(S). Suppose that NK NS £ Frat(S). So NKNS £« M,
for some maximal subgroup M of S and then S = (NK NS, M). Hence S =
(NKNS, M) impliess G=NS=N (NKNS,M) < N(NK,M) = (K,N,M).
Therefore G = (K, N, M) and then G = NM since K < Frat(G). But we
have S = M by minimality of S from Proposition 3.1, which is a contradiction.
Therefore NK NS < Frat(S) and S is a Frattini supplement of NK in G. In
particular, if G has no maximal subgroup then G = F'rat(G) and obviously, S
is a Frattini supplement of NK in G for every K < G. O

Corollary 3.9. Let G be a group, N < G and S be the Frattini supplement
of N in G and Frat(G) is finite. If K < Frat(G) then KNS < Frat(S) for
K <@G.

Proof. Tt’s obvious since K NS < NK NS < Frat(S) by Proposition 3.8. O

4. Primitivity for Frattini supplemented groups

If G is a group and N < G, then the Frattini supplement set of N can be
defined. Consider the set ¥y ={S <G |G = NS, NNS < Frat(S)}. One
can assume G is a Frattini supplemented to ensure that Xy # (.

Corollary 4.1. Let G be a Frattini supplemented group and N < G. IfG € ¥y
then ¥y = {G}.

Proof. Since G is minimal by Proposition 3.1, then ¥x = {G}. O
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Theorem 4.2. Let G and H be groups, N < G and S be a Frattini supplement
of NinG. If o : G — H is an isomorphism then ¢(S) is a Frattini supplement
of o(N) in H. In particular, if o € Aut(G) then o(S) is a Frattini supplement
of o(N) in G and if T € Xy then for every g € G, T9 € Xy

Proof. Since S is a Frattini supplement of N in G, we have G = NS and
NNS < Frat(S). If ¢ : G — H is an isomorphism and N < G then ¢(N) < H
and obviously H = ¢(G) = ¢p(NS) < ¢(N)p(S) which implies that H =
©(N)(S). Now we show that o(N)Np(S) < Frat(p(S)). Firstly, if a € p(N)N
©(S) then a = p(n) = ¢(s) for some n € N, and s € S. So a = p(n) = p(s)
which implies that ¢(n) = ¢(s), and so @(n)(p(s))~! = 1z. It follows that
o(n)p(s™1) = 1y, thus ¢(ns™1) = 1. Therefore, ns~! € Ker(p) and n = s,
since ¢ is an isomorphism and Ker(¢) = 1. Hence n = s € NN S and we
have a = p(n) = ¢(s) € p(NNS). So p(N)N(S) < o(NNS) < p(Frat(S)).
Now we will show that p(Frat(S)) < Frat(p(S)). Let ¢(a) € o(Frat(S))
for some a € Frat(S) and let ¢(5) = (p(a), X) for any X C ¢(S). If X C
©(S) then X = ¢(A) for some A C S. Since ¢ is an isomorphism ¢(S5) =
(p(a), p(A)) < p({a, A)). Therefore, p(S) = ¢({a, A)) and so S = (a, A). Since
a € Frat(S), we have S = (A4). Tt follows from S = (A) that ¢(S) = p((4)) <
(p(A)) = (X) which implies that S = (X), and so ¢(a) € Frat(p(S)). Hence
e(Frat(S)) < Frat(p(S)). Finally, o(N) Ne(S) < Frat(¢(S)) and ¢(5) is a
Frattini supplement of ¢(N) in G. In particular, it is obvious that if o € Aut(G)
then ¢ (5) is a Frattini supplement of o(N) in G, since o is an isomorphism. If
T € ¥ then for every o € Inn(G) and for every g € G, o(T) = TY will be a
Frattini supplement of N in G. (|

Example 4.3. For the group Ss3, ((12)) is a Frattini supplement of A3 in Ss.
Anyone can easily see that every conjugate of ((12)) in S3 is also a Frattini
supplement of A3 in S3.

Let G be a Frattini supplemented group and N < G. Consider the set
defined above ¥y = {S < G |G = NS, NNS < Frat(S)}. By Theorem 4.2,
a group action might be defined as:

The function G x ¥y — Xy, (g,5) — 59, then G acts on Xy.

Using Cayley-like representation by this action we have the function g :
YXny = XN, S — 59 is well-defined so the morphism ¢ : G — Sym(Zy),
g — g~ !is closed, well defined and a homomorphism. Before Theorem 4.4,
consider the transitivity of Xy. It may not be found g € G, such that S9 =T
for every pair of S,T € X . Hence, let us take the subset Ay of ¥y such that
An ={59|S € En,g € G}. Obviously G acts transitively on Ay.

Theorem 4.4. Let G be a Frattini supplemented group, N < G, G ¢ ¥ n and
S be mazximal in G for every S € ¥. Then G acts primitively on the set Ay .

Proof. Since S € Yy is a maximal subgroup of G and S < Ng(S) < G, we
have S = Ng(S) or Ng(S) = G. First, consider the case S = Ng(S). For
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some g € G\ S, we have S9 # S, since S < G. Then |Ay| > 2. Now for
the subgroup Gg = {g € G | §9 = S}, it is obvious that Gg = Ng(S) = S.
Therefore, Gg is a maximal subgroup of G and so G is primitive by [2]. Now
consider the second case, when Ng(S) = G. Then S < G and so, for every
g € G, we have S9 = S. Then |Ay| = 1. Hence Ay is a trivial block for G and
G is primitive. O

5. Frat-series

Definition 5.1. Let G be a group and 1 = Gy < G; < -+ < G, = G be
a normal series of G. If G; has a Frattini supplement S; in G;4; for every
1 < i < n, then G is said to have a Frat-series.

Let G be a group which has a Frat- series, G;_1 be a term of the series and
S;—1 be a Frattini supplement of G;_; in G;. If G has a subgroup H such that
Si—1 < H for every 1 < i < n then H has a Frat-series. In particular ({S;})
has a Frat-series.

Proof. Let 1 = Gy < Gy < --- < G, = G be a Frat-series of G. Consider
the intersection of H with terms of the series in hypothesis. Obviously 1 =
HNGyo < HNGy < ---< HNG, = H is a normal series of H. Since S;_1
is a Frattini supplement of G;_; in G; and S;_1 < H, we have G, N H =
(Gi_lSi_l) NH = (Gi—l N H)Si_l. Moreover, (Gi—l n H) NS,_1 = (Gi—l n
Si—1)NH < FratS;—1 N H < FratS;—1. So H has a Frat-series. In particular
for H = ({S;}) we conclude that ({S;}) has a Frat-series. O

Theorem 5.2. Let G be a group that has a Frat-series, G;_1 be a term of the
series and S;_1 be a finite Frattini supplement of G;_1 in G;. If N is a normal
subgroup of G such that N < S;_1, then G/N has a Frat-series.

Proof. Let 1 = Gy < Gy < -+ < G, = G be a Frat-series of G. One can easily
see that the series 1 = N/N = GoN/N < G4N/N < ... < G,N/N = G/N
which is obtained from the Frat-series of G, is a normal series of G/N. Since
S;—1 is a finite Frattini supplement of G;_1 in G; for every 1 < i < n, G/N
has a Frat-series by Theorem 3.5. O

Theorem 5.3. Let G be a group and 1 =Gy < Gy < --- < G, = G be a Frat-
series of G and 0 € Aut(G). Then 1 = o(Gy) < 0(G1) < --- < 0(Gyp) =G is
also a Frat-series of G.

Proof. First, we will show that 1 = 0(Gy) < 0(G1) < -+ < 0(Gp) = G is
a normal series of G. It is obvious that o(G;) < o0(G;y1) for every i. Also,
it is easy to see that o(G;) 9 G. Since 1 = Gg < Gy < - < G, =G is
a Frat-series of GG, then there exists 5; < G471 such that G;+1 = G;S5; and
G;NS; < Frat(S;) for every i. Furthermore, the restriction of o to G;41 is an
isomorphism from G;;1 to 0(G;41) and o(S;) is a Frattini supplement of o(G;)
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in 0(Gi+1) by Theorem 4.2. Finally, 1 = 0(Gp) < 0(G1) < --- < 0(Gp) =G is
a Frat-series of G. O

Theorem 5.4. Let G be a group, 1 = Go < G1 < --- < G,, = G be a Frat-
series of G, G;_1be a term of the series and S;—_1 < G be a Frattini supplement
of Gi_1 in G; for everyl <i <n—1and S,_14G be a complement of G,,—1 in
G. If S;—1 is a complement of G;_1 in G; then G;_1 has a Frattini supplement
m Gi+1-

Proof. Since G;+1 and G; are terms of the Frat-series of G, we have Gi41 =
Gi_l(Si_lsi), 1= Gi—l N Si—l < FTCLt(SZ‘_l), and 1 = Gi N Sz < Frat(Si) for
some S;_1,5; < G. Let a be an element of G;—1 N (S;-15;). Then a = xy
for some 2 € S;_; and y € S;. Therefore a = zy implies that y = 27 'a €
S;i1Gi—1 = G;_1S;-1 = G; and then y € G; NS; = 1. So we have a =z €
Gi—l N Si—l =1 and a = 1. Hence 1 = Gi—l N (Si_lsi) S Fmt(Si_lSi).
Therefore S;-15; is a Frattini supplement of G;_1 in G;41. O

Theorem 5.5. Let 1 = Gy < G; < -+ < Gy, = G be Frat-series of G. If
S; < G; for every 0 < i < n where S; is a Frattini supplement of G; in G;41
then G is soluble.

Proof. Since 1 = Gy < G; < -+ < G, = G is a Frat-series of G, then
Git1 = G;S; and G; N S; < Frat(S;) for every i. Now, we will show that
the Frat-series of G is also a derived series. Consider the element [z, y] of S;.
So [z,y] € G; and then S; < G; N S; since S; < S;. Hence, for every [z,y]
€S, [x,y(GinS;) = G;NS;. Therefore z 'y tay(G; N S;) = G; N S,
and so zy(G; N S;) = yx(G; N S;) and we obtain x(G; N S;)y(G; N S;)
y(Gi N S;))z(G; N S;) for every z,y € G;. Therefore the factor S;/G; NS; is
abelian. Since SZ/Gl nS; ~ G'ZSl/Gz = Gi+1/Gi, we have Gi+1/Gi is abelian.
So,1 =Gy <G <--- <G, =G is a derived series of G and G is soluble. [
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