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Abstract. In this note, we consider the concentration function problem
for a continuous action of a locally compact group G on a locally compact
Hausdorff space X. We prove a necessary and sufficient condition for the
concentration functions of a spread-out irreducible probability measure µ

on G to converge to zero.
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1. Introduction

In [5], Mukherjea proved a limit theorem of convolution powers of a proba-
bility measure µ on a locally compact group G. He showed that the convolution
powers (µn) converge to zero in the weak* topology σ(M(G), C0(G)), when G
is non-compact and µ is adapted (i.e. the group generated by the support of µ
is dense in G). The concentration function problem concerns the conditions on
G or µ under which the sequence

Fn(K) = sup
x∈G

µn(Kx−1)

converge to zero for every compact set K ⊂ G.
In [3], Hofmann–Mukherjea partially answered this problem; namely they

proved that the above sequence converges to zero, when G is non-compact and
µ is irreducible (i.e. the semigroup generated by the support of µ is dense in
G). They moreover conjectured it to be true for all such G and µ. After the
theory of totally disconnected groups had been developed, in [4], Jaworski–
Rosenblatt–Willis used the theory to prove Hofmann–Mukherjea’s conjecture
in full generality.
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This note is a result of our attempt to understand the main properties in the
above setup that forces the convergence. In order to single out those properties
of the group responsible for the result to hold, we consider the problem in
a more general setting; we consider the problem in the setting of continuous
group actions.

Suppose G acts on a locally compact Hausdorff space X by homeomor-
phisms. For an x ∈ X and a compact K ⊆ X, denote Kx := {t ∈ G : tx ∈ K}.
We define concentration functions of a probability measure µ on G by

(1.1) Fn(K) = sup
x∈X

µn(Kx) (K ⊆ X is compact )

The main result of this paper proves that when µ is irreducible and spread-
out, the convergence of concentration functions of µ to zero is equivalent to the
lack of µ-stationary measures on the space X.

Recall that the probability measures ν on theG-spaceX is called µ-stationary
if for all ϕ ∈ Cc(X), the space of continuous functions on X with compact sup-
port, we have ∫

X

∫
G

ϕ(tx) dµ(t) dν(x) =

∫
X

ϕ(x)dν(x) .

If µ is an irreducible probability measure on G, then G has a µ-stationary
measure if and only if G is compact. Hence, our result really shows that
non-existence of stationary measures is that property of non-compact locally
compact groups which yields to the convergence of concentration functions to
zero.

Before stating our main result, let us recall some definitions. In the following,
for probability measures µ and ν on G, µ ∗ ν denotes the convolution measure,
which is the probability measure on G determined by∫

G

f(r) dµ ∗ ν(r) =

∫
G

∫
G

f(ts) dµ(t) dν(s) (f ∈ Cc(G)) .

The n-th iterated convolution power µ ∗ · · · ∗µ (n times) is denoted by µn. For
ϕ ∈ Cb(X), the space of bounded continuous functions on X, we define the
function µ ∗ ϕ ∈ Cb(X) by

µ ∗ ϕ(x) :=

∫
G

ϕ(tx) dµ(t) .

Observe that ∥µ ∗ ϕ∥∞ ≤ ∥ϕ∥∞. A probability measure µ on G is said to be
spread-out if some convolution power µn is nonsingular with repeat to the Haar
measure.

The main result of this note is the following.

Theorem 1.1. Let G be a locally compact group, and let µ be an irreducible
and spread-out probability measure on G. Suppose α : G ↷ X is a continuous
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action of G on a locally compact Hausdorff space X. Then the following are
equivalent:

1. For every compact K ⊂ X,

Fn(K) −→ 0 ;

2. The space X admits no µ-stationary probability measure.

2. Proof of the main result

For the proof of our theorem we need the following lemma which we believe
should be known to the experts.

Lemma 2.1. Let µ be an irreducible and spread-out probability measure on the
locally compact group G. Then there exists k ∈ N such that

lim
n

∥µn+k − µn ∥1 = 0 .

Proof. Since µ is spread-out, there existsm ∈ N such that them-th convolution
power µm can be decomposed as µm = f + ν, where 0 ̸= f ∈ L1(G)+ and
ν ∈M(G)+. Let S ⊆ G be the support of f (i.e., the complement of the union
of all open subsets of G on which f is almost everywhere zero). Consider the
continuous function t 7→

∫
S
f(t−1r) dµ(r), since µ is irreducible there exists

k ∈ N such that

∫
S

µk ∗ f(r) dµ(r) =

∫
S

∫
G

f(t−1r) dµk(t) dµ(r)

=

∫
G

∫
S

f(t−1r) dµ(r) dµk(t) > 0.

It follows that if S′ ⊆ G denotes the support of µk ∗f , then S∩S′ ̸= ∅. This
implies

∥ f − µk ∗ f ∥1 < ∥ f ∥1 + ∥µk ∗ f ∥1 ≤ 2 ∥f∥1,

and therefore

∥µm − µm+k ∥1 = ∥ f + ν − (f + ν) ∗ µk ∥1
≤ ∥ f − f ∗ µk ∥1 + ∥ ν − ν ∗ µk ∥1
< 2 ∥ f ∥1 + 2 ∥ ν ∥1 = 2 .

Hence the result follows from Foguel’s 0-2 law [2, Theorem I]. □

Proof of Theorem 1.1. (1) ⇒ (2) : Suppose for the sake of contradiction that
λ is a nonzero µ-stationary measure on X. Since λ is regular, we may find a
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compact subset K ⊆ X such that λ(K) > 0. Moreover, since λ is µ-stationary
we have

Fn(K) = sup
x∈X

µn(Kx) ≥
∫
X

µn(Kx) dλ(x)

=

∫
X

∫
G

⊮K(tx) dµn(t) dλ(x)

=

∫
X

1K(x) dλ(x)

= λ(K) .

Hence the concentration functions (Fn) do not converge to zero.
(2) ⇒ (1): Fix a probability measure ν on X. For ϕ ∈ Cb(X) and n ∈ N, set

a(ϕ)n :=

∫
X

∫
G

ϕ(tx)dµn(t) dν(x) ,

and consider the sequence (a
(ϕ)
n ) ∈ ℓ∞(N). Note that a

(µ∗ϕ)
n = a

(ϕ)
n+1.

Now, let F be a shift invariant positive linear functional on ℓ∞(N) that
extend the limit (c.f. [1, Theorem 7.1]). Define a positive linear functional Λ

on Cb(X) by Λ(ϕ) = F ( (a
(ϕ)
n ) ).

If Λ is not zero on Cc(X), then Riesz representation theorem implies that
there exists a probability measure λ on X such that

∫
X
ϕdλ = Λ(ϕ) for ϕ ∈

Cc(X). Since Λ is bounded on Cc(X), it can be extended to a bounded linear

map on C0(X) = Cc(X), which still equals to integration with respect to λ.
Hence

∫
X
ϕdλ = Λ(ϕ) for ϕ ∈ C0(X). Moreover, since F is shift invariant, it

follows ∫
X

∫
G

ϕ(tx) dµ(t) dλ(x) = Λ(µ ∗ ϕ) = F ( (a(µ∗ϕ)n ) )

= F ( (a
(ϕ)
n+1) ) = F ( (a(ϕ)n ) )

= Λ(ϕ) =

∫
X

ϕ(x) dλ(x),

which shows that λ is µ-stationary. But since by the assumption X does not
admit a µ-stationary probability measure, we conclude that Λ is zero on C0(X).

From the properties of F (c.f. [1, Theorem 7.1]), it then follows for ϕ ∈
C0(X)+ that

0 ≤ lim inf
n

∫
X

∫
G

ϕ(tx) dµn(t) dν(x) ≤ F ( (a(ϕ)n ) ) = Λ(ϕ) = 0 .

This implies there is a subnet (µni) of (µn) such that

(2.1) lim
i

∫
X

∫
G

ϕ(tx) dµni(t) dν(x) = 0 .



767 Moakhar

Now, given any finite collections ν1, ν2, . . . , νm1 ∈ Prob(X) and ϕ1, ϕ2, . . . ,

ϕm2 ∈ C0(X)+, by applying (2.1) to ν =
1

m1

m1∑
m=1

νm and ϕ =

m2∑
m′=1

ϕm′ we get

lim
i

∫
X

∫
G

ϕm′(tx) dµni(t) dνm(x) = 0

for all 1 ≤ m ≤ m1 and 1 ≤ m′ ≤ m2. Hence, we can construct a subnet (µnj )
of (µn) such that (2.1) holds for all ϕ ∈ C0(X) and ν ∈ Prob(X). Moreover,
for s ∈ N, replacing ϕ by µs ∗ ϕ in (2.1), we conclude

(2.2) lim
j

∫
X

∫
G

ϕ(tx) dµnj+s(t) dν(x) = 0

for all ϕ ∈ C0(X) and ν ∈ Prob(X).
Now fix ψ ∈ Cc(X)+. Since the sequence (∥µn ∗ ψ∥∞) is positive and

decreasing, it has a limit. We claim that this limit is zero.
To prove the claim, suppose for the sake of contradiction that ∥µn ∗ ψ∥∞ >

α > 0 for all n ∈ N. Then for every n ∈ N there is a probability measure
νn ∈ Prob(X) such that∫

X

∫
G

ψ(tx) dµn(t) dνn(x) > α .

Since ∥µn ∗ νn∥1 ≤ 1, it follows from the Banach–Alaoglu Theorem there is a
subnet (µni ∗ νni), and a measure ρ on X such that∫

X

ϕ(x) dµni ∗ νni(x) −→
∫
X

ϕ(x) dρ(x)

for all ϕ ∈ Cc(X). Therefore, if we let k ∈ N be as in Lemma 2.1, we get∣∣∣∣ ∫
X

∫
G

ϕ(tx)dµk(t)dρ(x) −
∫
X

ϕ(x)dρ(x)

∣∣∣∣ = lim
i

∣∣∣∣ ∫
X

ϕ(x)dµni+k ∗ νni(x)

−
∫
X

ϕ(x) dµni ∗ νni(x)

∣∣∣∣
= lim

i

∣∣∣∣ ∫
X

ϕ(x) d
[
µni+k ∗ νni − µni ∗ νni

]
(x)

∣∣∣∣
≤ ∥ϕ∥∞ lim

i
∥µni+k − µni ∥1.

= 0,
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for all ϕ ∈ Cc(X). Hence for every m ∈ N,∫
X

∫
G

ψ(tx) dµmk(t) dρ(x) =

∫
X

∫
G

ψ(tx) dµ(m−1)k(t) dµk ∗ ρ(x)

=

∫
X

∫
G

ψ(tx) dµ(m−1)k(t) dρ(x)

=
...

=

∫
X

ψ(x) dρ(x)

> α .

On the other hand, by (2.2) we can find an nj0 large enough so that
∫
X

∫
G
ψ(tx)

dµnj0+s(t) dν(x) < α/2, for every s = 1, . . . , k. But nj0 + s0 = km for some
1 ≤ s0 ≤ k and m ∈ N, and therefore

α <

∫
X

∫
G

ψ(tx) dµmk(t) dρ(x) =

∫
X

∫
G

ψ(tx) dµnj0+s0(x) dρ(x) < α/2 .

This contradiction proves the claim.
To finish the proof, take a compactK ⊂ X. Applying the Urysohn’s Lemma,

we can construct ϕ ∈ Cc(X) such that ϕ = 1 on K, and therefore

sup
x∈X

µn(Kx) = sup
x∈X

∫
G

1K(tx) dµn(t)

≤ sup
x∈X

∫
G

ϕ(tx) dµn(t)

which tends to zero by the claim. □
Remark 2.2. If G is compact, then every continuous action of G on any locally
compact space admits stationary probability measures. In fact, let ω be the
Haar probability measure onG. Then it is easily seen that for any ν ∈ Prob(X),
the convolution ω ∗ ν is a µ-stationary measure for all µ ∈ Prob(G).

On the other hand, if X is compact, it is well-known that any continuous
action of a locally compact group G on X admits stationary measures.

But there also exist examples of continuous actions G ↷ X admitting sta-
tionary measures, and neither G nor X is compact. For example, let G =
SL(2,R) and X = G/Γ, where Γ = SL(2,Z), and consider the action G↷ X.
It is well-known that Γ is a non-uniform lattice in G, i.e. the homogeneous
space X is non-compact and X has a G-invariant probability measure. Note
that this action is transitive, hence both ergodic and minimal.
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