
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 43 (2017), No. 3, pp. 781–787

.

Title:

.

Unmixed r-partite graphs

.

Author(s):

.

R. Jafarpour-Golzari and R. Zaare-Nahandi

.

Published by the Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 43 (2017), No. 3, pp. 781–787
Online ISSN: 1735-8515

UNMIXED r-PARTITE GRAPHS

R. JAFARPOUR-GOLZARI AND R. ZAARE-NAHANDI∗

(Communicated by Amir Daneshgar)

Abstract. Unmixed bipartite graphs have been characterized by Ravin-
dra and Villarreal independently. Our aim in this paper is to characterize
unmixed r-partite graphs under a certain condition, which is a general-
ization of Villarreal’s theorem on bipartite graphs. Also, we give some

examples and counterexamples in relevance to this subject.
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1. Introduction

In the sequel, we use [4] as a reference for terminology and notation on graph
theory.

Let G be a simple finite graph with vertex set V (G) and edge set E(G).
A subset C of V (G) is said to be a vertex cover of G if every edge of G, is
adjacent with some vertices in C. A vertex cover C is called minimal, if there
is no proper subset of C which is a vertex cover. A graph is called unmixed,
if all minimal vertex covers of G have the same number of elements. A subset
H of V (G) is said to be independent, if G has not any edge {x, y} such that
{x, y} ⊆ H. A maximal independent set of G, is an independent set I of G,
such that for every H ⫌ I, H is not an independent set of G. Notice that C
is a minimal vertex cover if and only if V (G) \ C is a maximal independent
set. A graph G is called well-covered if all the maximal independent sets of
G have the same cardinality. Therefore, a graph is unmixed if and only if it
is well-covered. The minimum cardinality of all minimal vertex covers of G is
called the covering number of G, and the maximum cardinality of all maximal
independent sets of G is called the independence number of G. For determining
the independence number see [6]. For relation between unmixedness of a graph
and other graph properties see [1, 5, 9, 12].
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Well-covered graphs were introduced by Plummer. See [7] for a survey on
well-covered graphs and properties of them. For an integer r ≥ 2, a graph G is
said to be r-partite, if V (G) can be partitioned into r disjoint parts such that
for every {x, y} ∈ E(G), x and y do not lie in the same part. If r = 2, 3, G is
said to be bipartite and tripartite, respectively. Let G be an r-partite graph.
For a vertex v ∈ V (G), let N(v) be the set of all vertices u ∈ V (G) where {u, v}
is an edge of G. Let G be a bipartite graph, and let e = {u, v} be an edge
of G. Then Ge is the subgraph induced on N(u) ∪ N(v). If G is connected,
the distance between x and y where x, y ∈ V (G), denoted by d(x, y), is the
length of the shortest path between x and y. A set M ⊆ E(G) is said to be
a matching of G, if for any two {x, y}, {x′, y′} ∈ M , {x, y} ∩ {x′, y′} = ∅. A
matching M of G is called perfect if for every v ∈ V (G), there exists an edge
{x, y} ∈ M such that v ∈ {x, y}. A clique in G is a set Q of vertices such that
for every x, y ∈ Q, if x ̸= y, x, y lie in an edge. An r-clique is a clique of size r.

Unmixed bipartite graphs have already been characterized by Ravindra and
Villarreal in a combinatorial way independently [8,11]. Also these graphs have
been characterize by an algebraic method [10].

In 1977, Ravindra gave the following criteria for unmixedness of bipartite
graphs.

Theorem 1.1 ([8]). Let G be a connected bipartite graph. Then G is unmixed
if and only if G contains a perfect matching F such that for every edge e =
{x, y} ∈ F , the induced subgraph Ge is a complete bipartite graph.

Villarreal in 2007, gave the following characterization of unmixed bipartite
graphs.

Theorem 1.2 ( [11, Theorem 1.1]). Let G be a bipartite graph without iso-
lated vertices. Then G is unmixed if and only if there is a bipartition V1 =
{x1, . . . , xg}, V2 = {y1, . . . , yg} of G such that: (a) {xi, yi} ∈ E(G), for all
i, and (b) if {xi, yj} and {xj , yk} are in E(G), and i, j, k are distinct, then
{xi, yk} ∈ E(G).

H. Haghighi in [3] gives the following characterization of unmixed tripartite
graphs under certain conditions.

Theorem 1.3 ([3, Theorem 3.2]). Let G be a tripartite graph which satisfies
the condition (∗). Then the graph G is unmixed if and only if the following
conditions hold:

(1) If {ui, xq}, {vj , yq}, {wk, zq} ∈ E(G), where no two vertices of {xq, yq, zq}
lie in one of the tree parts of V (G) and i, j, k, q are distinct, then the set
{ui, vj , wk} contains an edge of G.

(2) If {r, xq}, {s, yq}, {t, zq} are edges of G, where r and s belong to one
of the three parts of V (G) and t belongs to another part, then the set {r, s, t}
contains an edge of G (Here r and s may be equal.)
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In the above theorem, he has considered condition (∗) as:
being a tripartite graph with partitions

U = {u1, . . . un}, V = {v1, . . . vn},W = {w1, . . . wn},

in which {ui, vi}, {ui, wi}, {vi, wi} ∈ E(G), for all i = 1, . . . , n.
Also, to simplify the notations, he has used {xi, yi, zi} and {ri, si, ti} as two

permutations of {ui, vi, wi}.
We give a characterization of unmixed r-partite graphs under certain con-

dition which we name it (∗). (See Theorem 2.3.)
In both Theorems 1.1 and 1.2 in an unmixed connected bipartite graph,

there is a perfect matching, with cardinality equal to the cardinality of a min-

imal vertex cover, i.e. |V (G)|
2 . An unmixed graph with n vertices such that its

independence number is n
2 , is said to be very well-covered. The unmixed con-

nected bipartite graphs are contained in the class of very well-covered graphs.
A characterization of very well-covered graphs is given in [2].

2. A generalization

By the following proposition, bipartition in connected bipartite graphs is
unique.

Proposition 2.1. Let G be a connected bipartite graph with bipartition {A,B},
and let {X,Y } be any bipartition of G. Then {A,B} = {X,Y }.

Proof. Let x ∈ A be an arbitrary vertex of G. Then x ∈ X or x ∈ Y . Without
loss of generality let x be in X. Let a ∈ A. Then d(x, a) is even. Then a and
x are in the same part (of partition {X,Y }). Then A ⊆ X, and by the same
argument we have X ⊆ A. Therefore A = X, and then {A,B} = {X,Y }. □

The above fact for bipartite graphs, is not true in case of tripartite graphs,
as shown in the following example.

..

a1

.

a2

.

a3

.

a4

.

a5

.

a6

In the above graph there are two different tripartitions:

{{a1, a2, a3}, {a4, a5}, {a6}},

and

{{a1, a2}, {a4, a5}, {a3, a6}}.
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A natural question refers to find criteria which characterize a special class
of unmixed r-partite (r ≥ 2) graphs.

In the above two characterizations of bipartite graphs, having a perfect
matching is essential in both proofs. This motivates us to impose the fol-
lowing condition.
We say a graph G satisfies the condition (∗) for an integer r ≥ 2, if G can
be partitioned to r parts Vi = {x1i, . . . , xni}, (1 ≤ i ≤ r), such that for all
1 ≤ j ≤ n, {xj1, . . . , xjr} is a clique.

Lemma 2.2. Let G be a graph which satisfies (∗) for r ≥ 2. If G is unmixed,
then every minimal vertex cover of G contains (r− 1)n vertices. Moreover the

independence number of G is n = |V (G)|
r

Proof. Let C be a minimal vertex cover of G. Since for every 1 ≤ j ≤ n, the
vertices xj1, . . . , xjr are in a clique, C must contain at least r − 1 vertices in
{xj1, . . . , xjr}. Therefore C contains at least (r − 1)n vertices. By hypothesis∪r−1

i=1 Vi is a minimal vertex cover with (r − 1)n vertices, and G is unmixed.
Then every minimal vertex cover of G contains exactly (r− 1)n elements. The
last claim can be concluded from the fact that the complement of a minimal
vertex cover, is an independent set. □

Now we are ready for the main theorem. By the notation x ∼ y, we mean
the vertices x and y are adjacent.

Theorem 2.3. Let G be an r-partite graph which satisfies the condition (∗)
for r. Then G is unmixed if and only if the following condition hold:
For every 1 ≤ q ≤ n, if there is a set {xk1s1 , . . . , xkrsr} such that

xk1s1 ∼ xq1, . . . , xkrsr ∼ xqr,

then the set {xk1s1 , . . . , xkrsr} is not independent.

Proof. Let G be an arbitrary r-partite graph which satisfies condition (∗) for
r.

Let G be unmixed. We prove that the mentioned condition holds. Assume
the contrary. Let

xk1s1 ∼ xq1, . . . , xkrsr ∼ xqr,

but the set {xk1s1 , . . . , xkrsr} is independent. Then there is a maximal indepen-
dent set M , such that M contains this set. Since M is maximal, C = V (G)\M
is a minimal vertex cover of G. Since the set {xk1s1 , . . . , xkrsr} is contained in
M , then its elements are not in C, and since C is a cover of G, then all vertices
xqi, (1 ≤ i ≤ r) are in C. But by Lemma 2.2, every minimal vertex cover,
contains n− 1 vertices of clique q th, a contradiction.

Conversely, let the condition hold. We have to prove that G is unmixed.
We show that all minimal vertex covers of G, intersect the set {xq1, . . . , xqr}
in exactly r − 1 elements (for every 1 ≤ q ≤ n). Let C be a minimal vertex
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cover and q be arbitrary. Since C is a vertex cover and {xq1, . . . , xqr} is a
clique, then C intersects this set at least in r − 1 elements. Let the contrary.
Let the cardinality of C ∩ {xq1, . . . , xqr} be r. Attending to minimality of
C, for every 1 ≤ i ≤ r, N(xqi) contains at least one element, distinct from
the elements of {xq1, . . . , xqr}\{xqi}, which is not in C, because we can not
remove xqi from cover. Let this element be xkisi where si ̸= i and ki ̸= q.
Then xkisi /∈ C and {xkisi , xqi} is in E(G). There are at least two elements
i and j such that 1 ≤ i < j ≤ r and si ̸= sj , because xqi can not choose its
adjacent vertex from the part i. Therefore the set {xk1s1 , . . . , xkrsr} contains
at least two elements. Then by hypothesis, at least two elements, say a and b
of {xk1s1 , . . . , xkrsr} are adjacent by an edge. Now C is a cover but a and b
are not in C, a contradiction. □

Remark 2.4. Villarreal’s theorem (Theorem 1.2) for bipartite graphs, and also
Haghighi’s theorem (Theorem 1.3) for tripartite graphs, are special cases of
Theorem 2.3 (where r = 2, and r = 3).

3. Examples and counterexamples

In this section, we give examples of two classes of unmixed graphs, and an
example which shows that it is not necessary that an unmixed r-partite graph
satisfies condition (∗).

Example 3.1. By Theorem 2.3, the following 4-partite graphs are unmixed.

..

t2

.

x2

.

y2

.

z2

.

y1

.

x1

.

t1

.

z1

.

x2

.

y2

.

t2

.

z2

.

x1

.

y1

.

z1

.

t1

In each of the above graphs, there are two complete graphs of order 4 and
some edges between them.

For r > 4, also r = 3, using two complete graphs of order r, we can construct
r-partite unmixed graphs which are natural generalization of the above graphs.

Example 3.2. For every n, n ≥ 3, the complete graph Kn, is an n-partite
graph which satisfies condition (∗). By Theorem 2.3, Kn is unmixed.
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Theorem 2.3 does not characterize all unmixed r-partite graphs. More pre-
cisely, condition (∗) is not valid for all unmixed graphs. In the following, we
give an example of an unmixed r-partite graph which does not satisfy condition
(∗).

Example 3.3. The following graph is a 4-partite graph with partition {y1},
{y2, y4}, {y3}, and {y5, y6}. This graph does not satisfy condition (∗) because
6 is not a multiple of 4.

..

y1

.

y2

.

y3

.

y4

.

y5

.

y6

We show that this graph is unmixed. Let C be an arbitrary minimal vertex
cover of G. We show that C is of size 4.

Since C is a cover, it selects at least one element of {y4, y6}. Now we consider
the following cases:
Case 1: y6 ∈ C and y4 /∈ C. In this case, since C is a vertex cover, y1, y3, y5 ∈
C. Now {y1, y3, y5, y6} is a vertex cover of G, and since C is minimal, C =
{y1, y3, y5, y6}.
Case 2: y4 ∈ C and y6 /∈ C. In this case, y2, y3 ∈ C, and at least one vertex of
{y1, y5} and by minimality, only one is in C. Now since {y2, y3, y4, yi}, where
i ∈ {1, 5} is one of two vertices y1 and y5, is a cover of G, by minimality of C,
C = {y2, y3, y4, yi}.
Case 3: y4, y6 ∈ C. In this case, at least one of two vertices y1, y5 and by
minimality of C, only one is in C. Now if y5 ∈ C, y3 should be in C (because
the edge {y1, y3} should be covered). Also y2 ∈ C (because the edge {y1, y2}
should be covered). Now {y2, y3, y5, y4, y6} is a cover, and since C is minimal,
C = {y2, y3, y5, y4, y6}, which is a contradiction because y6 can be removed. If
y1 ∈ C, at least one of y2 and y3, and by minimality only one, is in C. Now
since {y1, y4, y6, yj}, where j ∈ {2, 3} is one of two vertices y2 and y3, is a
vertex cover, by minimality of C, C = {y1, y4, y6, yj}.
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