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Abstract. In this paper, we generalize the proximal point algorithm to
complete CAT(0) spaces and show that the sequence generated by the
proximal point algorithm w-converges to a zero of the maximal mono-

tone operator. Also, we prove that if f : X →] − ∞,+∞] is a proper,
convex and lower semicontinuous function on the complete CAT(0) space
X, then the proximal point algorithm w-converges to a zero of the sub-

differential of f , i.e., a minimizer of f . Some strong convergence results
(convergence in metric) are also presented with additional assumptions
on the monotone operator and the convex function f .
Keywords: Hadamard space, maximal monotone operator, proximal

point algorithm, w-convergence, subdifferential.
MSC(2010): Primary: 47H05; Secondary: 47J05, 47J20.

1. Introduction

One of the most important parts in nonlinear and convex analysis is mono-
tone operator theory. It has an essential role in convex analysis, optimization,
variational inequalities, semigroup theory and evolution equations. A zero of a
maximal monotone operator is a solution of variational inequality associated to
the monotone operator also an equilibrium point of an evolution equation gov-
erned by the monotone operator as well as a solution of a minimization problem
for a convex function when the monotone operator is the Fenchel-Moreu sub-
differential of the convex function. Therefore existence and approximation of
a zero of a maximal monotone operator is the center of consideration of many
recent researchers. The most popular method for approximation of a zero of a
maximal monotone operator is the proximal point algorithm, which was intro-
duced by Martinet [25] and Rockafellar [27]. Rockafellar [27] showed the weak
convergence of the sequence generated by the proximal point algorithm to a
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zero of the maximal monotone operator in Hilbert spaces. Güler’s counterex-
ample [15] showed that the sequence generated by the proximal point algorithm
does not necessarily converge strongly even if the maximal monotone operator
is the subdifferential of a convex, proper, and lower semicontinuous function.
For some generalizations in Hilbert spaces, see [5, 7, 11,15,18].

In this paper, we consider the proximal point algorithm in nonlinear version
of Hilbert spaces (i.e., complete CAT(0) spaces) and define maximal monotone
operators on CAT(0) spaces using the duality theory introduced in [2]. Our
results extend the previous results in Hilbert spaces as well as the recent re-
sults on Hadamard manifolds (see for example [23] and references therein) to
complete CAT(0) spaces. Also, it extends a recent work of Bačák [3] to general
maximal monotone operators. The paper is organized as follows.
In Section 2 we give some preliminaries. In Section 3 we study some properties
of the monotone operators and convex lower semicontinuous functions that we
need them in the sequel. Section 4 is devoted to the proximal point algorithm in
Hadamard spaces, in this section, we prove that the proximal point algorithm
w-converges to a zero of the maximal monotone operator in Hadamard spaces.
In Section 4, we approximate a minimizer of a proper, convex, lower semi-
continuous real-valued function on a Hadamard space by the proximal point
algorithm.

2. Preliminaries

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y is
an isometry c : [0, d(x, y)] −→ X such that c(0) = x, c(d(x, y)) = y. The image
of a geodesic path joining x to y is called a geodesic segment between x and
y. The metric space (X, d) is said to be a geodesic space if every two points of
X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X.

A geodesic space (X, d) is a CAT(0) space if it satisfies the following inequal-
ity which is called the CN -inequality.

d2(x, y0) ≤
1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2),

where x, y0, y1, y2 belong to X and d(y0, y1) = d(y0, y1) =
1
2d(y1, y2). A com-

plete CAT(0) space is called a Hadamard space. It is known that a CAT(0)
space is a uniquely geodesic space. For other equivalent definitions of the CN -
inequality and its basic properties, see [6, 9, 14, 17]. Some examples of CAT(0)
spaces are pre-Hilbert spaces (see [6]), R-trees (see [21]), Euclidean buildings
(see [8]), the complex Hilbert ball with a hyperbolic metric (see [13]), Hadamard
manifolds and many others.

For all x and y belong to a CAT(0) space X, we write (1− t)x ⊕ ty for
the unique point z in the geodesic segment joining from x to y such
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that d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y). Set [x, y] = {(1− t)x⊕ ty :
t ∈ [0, 1]}, a subset C of X is called convex if [x, y] ⊆ C for all x, y ∈ C.

The notion of ∆-convergence in complete CAT(0) spaces was introduced by
Lim [24] as follows. Let (xn) be a bounded sequence in complete CAT(0) space
(X, d) and x ∈ X. Set r(x, (xn)) = lim supn→∞ d(x, xn). The asymptotic
radius of (xn) is given by r((xn)) = inf{r(x, (xn)) : x ∈ X} and the asymptotic
center of (xn) is the set A((xn)) = {x ∈ X : r(x, (xn)) = r((xn))}. It is known
that in a complete CAT(0) space, A((xn)) consists exactly one point (see [22]).
A sequence (xn) in the complete CAT(0) space (X, d) is said ∆-convergent to
x ∈ X if A((xnk

)) = {x} for every subsequence (xnk
) of (xn). The concept of

∆-convergence has been studied by many authors (see e.g., [10, 12]).
Berg and Nikolaev [4] introduced the concept of quasilinearization for a

CAT(0) space X. They denoted a pair (a, b) ∈ X × X by
−→
ab and called it a

vector. Then the quasilinearization map ⟨·, ·⟩ : (X × X) × (X × X) → R is
defined by

⟨
−→
ab,

−→
cd⟩ = 1

2 (d
2(a, d) + d2(b, c)− d2(a, c)− d2(b, d)), (a, b, c, d ∈ X).

It can be easily verified that ⟨
−→
ab,

−→
ab⟩ = d2(a, b), ⟨

−→
ba,

−→
cd⟩ = −⟨

−→
ab,

−→
cd⟩ and

⟨
−→
ab,

−→
cd⟩ = ⟨−→ae,

−→
cd⟩+ ⟨

−→
eb,

−→
cd⟩ are satisfied for all a, b, c, d, e ∈ X. Also, we can

formally add compatible vectors, more precisely −→ac+
−→
cb =

−→
ab, for all a, b, c ∈ X.

We say that X satisfies the Cauchy-Schwarz inequality if

⟨
−→
ab,

−→
cd⟩ ≤ d(a, b)d(c, d) (a, b, c, d ∈ X).

It is known that a geodesically connected metric space is a CAT(0) space if
and only if it satisfies the Cauchy-Schwarz inequality (see [4, Corollary 3]).
Ahmadi Kakavandi and Amini [2] introduced the concept of dual space of a
complete CAT(0) space X, based on a work of Berg and Nikolaev [4], as follows.
Consider the map Θ : R×X ×X → C(X,R) defined by

Θ(t, a, b)(x) = t⟨
−→
ab,−→ax⟩ (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. Then
the Cauchy-Schwarz inequality implies that Θ(t, a, b) is a Lipschitz function
with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X),

where L(φ) = sup{φ(x)−φ(y)
d(x,y) : x, y ∈ X,x ̸= y} is the Lipschitz semi-norm for

any function φ : X → R. A pseudometric D on R×X ×X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)) (t, s ∈ R, a, b, c, d ∈ X).

For a Hadamard space (X, d), the pseudometric space (R×X ×X,D) can be
considered as a subspace of the pseudometric space of all real-valued Lipschitz
functions (Lip(X,R), L).It is obtained ([2, Lemma 2.1]) thatD((t, a, b), (s, c, d))

= 0 if and only if t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩, for all x, y ∈ X. Thus, D can impose

an equivalent relation on R×X ×X, where the equivalence class of (t, a, b) is

[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.
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The set X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)), which is called the dual space of (X, d).

It is clear that [−→aa] = [
−→
bb] for all a, b ∈ X. For a fix o ∈ X, we write 0 = [−→oo] as

the zero of the dual space. In [2], it is shown that the dual of a closed and convex

subset of Hilbert space H with nonempty interior is H and t(b− a) ≡ [t
−→
ab] for

all t ∈ R, a, b ∈ H. Note that X∗ acts on X ×X by

⟨x∗,−→xy⟩ = t⟨
−→
ab,−→xy⟩ (x∗ = [t

−→
ab] ∈ X,x, y ∈ X).

Also, we use the following notation:

⟨αx∗ + βy∗,−→xy⟩ := α⟨x∗,−→xy⟩+ β⟨y∗,−→xy⟩
for all α, β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗. Introducing of a dual for a CAT(0)
space leads to a concept of weak convergence with respect to the dual space,
which is named w-convergence in [2]. In [2], authors also showed that w-
convergence is stronger than ∆-convergence. Ahmadi Kakavandi [1] presented
an equivalent definition of w-convergence in complete CAT(0) spaces without
using dual space as follows.

Definition 2.1 ([1]). A sequence (xn) in the complete CAT(0) space (X, d)
w-converges to x ∈ X if and only if limn→∞⟨−−→xxn,

−→xy⟩ = 0, for all y ∈ X.

w-convergence is equivalent to the weak convergence in a Hilbert space H,
since the inner product (·, ·) in a Hilbert space H leads to

2⟨−→xz,−→xy⟩ = d2(x, y) + d2(z, x)− d2(z, y) = 2(x− z, x− y).

It is obvious that convergence in the metric implies w-convergence. Further-
more, it was shown (see [2]) that w-convergence implies ∆-convergence but the
converse does not hold, see [1]. However, Ahmadi Kakavandi [1] proved that
(xn) is ∆-convergent to x ∈ X if and only if lim supn→∞⟨−−→xxn,

−→xy⟩ ≤ 0, for all
y ∈ X. It is known that every bounded sequence in a Hadamard space X has a
∆-convergent subsequence. This is not true for w-convergence, see [1, Exam-
ple 4.7]. We say that a Hadamard space X satisfies the condition Q if every
bounded sequence in X has a w-convergent subsequence. A Hadamard space
(X, d) is said to satisfy the (S) property if for any (x, y) ∈ X × X there ex-
ists a point yx ∈ X such that [−→xy] = [−−→yxx]. Hilbert spaces and symmetric
Hadamard manifolds satisfy the (S) property, see [1, Definition 2.7]. It fol-
lows from [1, Lemma 2.8] that, if a Hadamard space (X, d) satisfies the (S)
property, then it satisfies the condition Q; because every bounded sequence in
a Hadamard space (X, d) has a ∆-convergent subsequence. Also, the proper
Hadamard spaces satisfy the condition Q, see [1, Propositions 4.3 and 4.4]. In
the sequel, we denote w-convergence by ⇀ and strong convergence by →.

For X = H, where H is a Hilbert space, the multi-valued operator
A : D(A) ⊂ H → 2H with D(A) := {x ∈ X : Ax ̸= ∅} is called monotone if

⟨x− y, x∗ − y∗⟩ ≥ 0, ∀x, y ∈ D(A), ∀x∗ ∈ Ax, ∀y∗ ∈ Ay.
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The multi-valued monotone operator A : H → 2H is maximal if there exists no
monotone operator B : H → 2H such that gra(B) properly contains gra(A).
It is well-known that maximality of monotone operators is equivalent to surjec-
tivity of I +A, where I is the identity operator (see [26]). The proximal point
algorithm introduced by Rockafellar [27] is defined as follows:

(2.1) xn−1 − xn ∈ λnA(xn), x0 ∈ H,

where (λn) is a sequence of positive real numbers. In fact, Rockafellar [27]
proved that the sequence generated by the proximal point algorithm is weakly
convergent to a zero of the maximal monotone operator A provided that λn ≥
λ > 0, for all n ≥ 1. Conditions on the control sequence λn was improved by
Brézis and Lions [7]. In this paper, we introduce proximal point algorithm in
Hadamard spaces and prove w-convergence of the proximal point algorithm to
a zero of the operator. Our results extend the previous results of the proximal
algorithm to complete CAT(0) spaces.

3. Maximal monotone operators

Let X be a Hadamard space with dual X∗ and A : X → 2X
∗
be a multi-

valued operator with domain D(A) := {x ∈ X : Ax ̸= ∅}, range R(A) :=∪
x∈X Ax, A−1(x∗) := {x ∈ X : x∗ ∈ Ax} and graph gra(A) := {(x, x∗) ∈

X ×X∗ : x ∈ D(A), x∗ ∈ Ax}.

Definition 3.1. Let X be a Hadamard space with dual space X∗. The multi-
valued operator A : X → 2X

∗
with domain D(A) := {x ∈ X : A(x) ̸= ∅},

is

(i) monotone if for all x, y ∈ D(A), x ̸= y, x∗ ∈ Ax, y∗ ∈ Ay,

⟨x∗ − y∗,−→yx⟩ ≥ 0,

(ii) strictly monotone if for all x, y ∈ D(A), x ̸= y, x∗ ∈ Ax, y∗ ∈ Ay,

⟨x∗ − y∗,−→yx⟩ > 0,

(iii) α-strongly monotone for α > 0 if for all x, y ∈ D(A), x ̸= y, x∗ ∈ Ax, y∗ ∈
Ay,

⟨x∗ − y∗,−→yx⟩ ≥ αd2(x, y).

It is clear that every α-strongly monotone operator, for α > 0, is strictly
monotone and every strictly monotone operator is monotone.

Definition 3.2. Let X be a Hadamard space with dual X∗. The multi-valued
monotone operator A : X → 2X

∗
is maximal if there exists no monotone

operator B : X → 2X
∗
such that gra(B) properly contains gra(A),

(
i.e., for

any (y, y∗) ∈ X×X∗, the inequality ⟨x∗−y∗,−→yx⟩ ≥ 0 for all (x, x∗) ∈ gra(A),
implies that y ∈ D(A) and y∗ ∈ A(y)

)
.
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Theorem 3.3 ([16]). Let X be a Hadamard space with dual X∗ and A : X →
2X

∗
be a multi-valued maximal monotone operator. Suppose (xn, x

∗
n) ∈ gra(A)

for all n ∈ N, where (xn) is a bounded sequence in X which is w-convergent to
x ∈ X and (x∗

n) ⊂ X∗ converges to x∗ ∈ X∗ in metric D, then x∗ ∈ Ax.

We say that a subset C of Hadamard space X is w-sequentially closed if
for any sequence (xn) ⊂ C that xn ⇀ x, we have x ∈ C. It is clear that
every w-sequentially closed subset of X is closed. By Theorem 3.3, it is easy
to verify that if A : X → 2X

∗
is a multi-valued maximal monotone operator,

then A−1(x∗) is a w-sequentially closed subset of the Hadamard space X, for
any x∗ ∈ X∗. One of the most important examples of monotone operators are
subdifferentials of convex, proper and lower semicontinuous functions. There-
fore, in the following, we study convex and lower semicontinuous functions
and their subdifferentials in Hadamard spaces. Let (X, d) be a Hadamard
space. The sub-level set of the function f : X →] − ∞,+∞] at a ∈ R is
fa := {x ∈ X : f(x) ≤ a}. It is known that if f is a convex and lower semicon-
tinuous function then the sub-level set fa is closed and convex for all a ∈ R. We
say that a function f : X →]−∞,+∞] is w-sequentially lower semicontinuous
if and only if

f(x) ≤ lim infn f(xn)

for each sequence (xn) with xn ⇀ x.

Proposition 3.4. ([22, Proposition 5.2]). If a sequence (xn) in a Hadamard
space (X, d) is ∆-convergent to x ∈ X, then

x ∈
∩∞

k=1 conv{xk, xk+1, ...},
where conv(A) :=

∩
{B : A ⊂ B and B is closed and convex} for any A ⊂ X.

The following corollary is a result of Proposition 3.4 and [2, Proposition 2.5].

Corollary 3.5. Every closed and convex subset of a Hadamard space is w-
sequentially closed.

Proposition 3.6. Let (X, d) be a Hadamard space. A function f : X →
] − ∞,+∞] is w-sequentially lower semicontinuous if and only if for every
a ∈ R, fa is a w-sequentially closed subset in X.

Proof. The only if part is clear. For the if part, let for every a ∈ R, fa be
a w-sequentially closed and (xn) be a sequence in X such that xn ⇀ x. Set
µ = lim infn f(xn). If µ = ∞, the proof is completed. Let µ < ∞, there exists
a subsequence (xnk

) of (xn) such that limk f(xnk
) = µ. For an arbitrary ε > 0,

there exists N > 0 such that for any k > N , f(xnk
) ≤ µ + ε. Therefore,

we get xnk
∈ fµ+ε for all k > N . Thus, by assumptions, for every arbitrary

ε > 0, we have x ∈ fµ+ε and so by letting ε → 0 we get x ∈ fµ. Hence,
f(x) ≤ µ = lim infn f(xn). This completes the proof. □

By Corollary 3.5 and Proposition 3.6, the following corollary is obtained.
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Corollary 3.7. Let (X, d) be a Hadamard space. Every lower semicontinuous
and convex function f : X →]−∞,+∞] is w-sequentially lower semicontinuous.

In [2], subdifferential of a proper function on a Hadamard space X was
defined as follows.

Definition 3.8 ([2]). LetX be a Hadamard space with dualX∗ and f : X →]−
∞,+∞] be a proper function with efficient domain D(f ) := {x : f (x ) < +∞}.
The subdifferential of f is the multi-valued function ∂f : X → 2X

∗
defined by

∂f(x) = {x∗ ∈ X∗ : f(z)− f(x) ≥ ⟨x∗,−→xz⟩ (z ∈ X)},
when x ∈ D(f ), and ∂f(x) := ∅, otherwise.

The following theorem was proved in [2]. The proof is given for sake of
completeness.

Theorem 3.9 ([2, Theorem 4.2]). Let f : X →]−∞,+∞] be a proper, lower
semicontinuous and convex function on a Hadamard space X with dual X∗,
then

(i) f attains its minimum at x ∈ X if and only if 0 ∈ ∂f(x).
(ii) ∂f : X → 2X

∗
is a monotone operator.

(iii) for any y ∈ X and α > 0, there exists a unique point x ∈ X such that
[α−→xy] ∈ ∂f(x).

Proof. We check property (iii). Let y ∈ X and α > 0 be fixed, and set g(x) =
f(x) + α

2 d
2(x, y). Similar to [2, Theorem 4.2], there exists a point x ∈ X such

that [α−→xy] ∈ ∂f(x). To prove uniqueness, let there exist x, z ∈ X such that
[α−→xy] ∈ ∂f(x) and [α−→zy] ∈ ∂f(z). Then using part (ii), we have

0 ≤ 2⟨[α−→xy]− [α−→zy],−→zx⟩ = 2α⟨−→xy,−→zx⟩ − 2α⟨−→zy,−→zx⟩ = −2αd2(x, z),

which implies x = z. □

4. Proximal point algorithm

Let X be a Hadamard space with dual X∗. The problem of finding a zero
of the monotone operator A : X → 2X

∗
can be formulated as follows.

(4.1) Find x ∈ X, such that 0 ∈ A(x),

where 0 is the zero element of the dual space X∗. We say that A satisfies
the range condition if for every y ∈ X and every α > 0, there exists a point
x ∈ X such that [α−→xy] ∈ Ax. It is known that if A is a maximal monotone
operator on a Hilbert space H then R(I + λA) = H for all λ > 0, where I
denotes the identity operator. Thus, every maximal monotone operator A on a
Hilbert space satisfies the range condition. Theorem 3.9 shows that ∂f satisfies
the range condition, whenever f is a proper, lower semicontinuous and convex
function on a Hadamard space X. However, we do not know if every maximal
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monotone operator A : X → 2X
∗
, where X is a Hadamard space, satisfies the

range condition.

Lemma 4.1. If A is a monotone operator on a Hadamard space X that satisfies
the range condition, then for every y ∈ X and every α > 0, there exists a unique
point x ∈ X such that [α−→xy] ∈ Ax.

Proof. If there exists x, z ∈ X such that [α−→xy] ∈ Ax and [α−→zy] ∈ Az then,
using monotonicity of A, we have

0 ≤ 2⟨[α−→xy]− [α−→zy],−→zx⟩
= 2α⟨−→xy,−→zx⟩ − 2α⟨−→zy,−→zx⟩
= α(d2(y, z)− d2(x, z)− d2(y, x))− α(d2(x, z) + d2(y, z)− d2(y, x))

= −2αd2(x, z),

which implies that x = z. □
Let A : X → 2X

∗
be a multi-valued monotone operator on the Hadamard

space X with dual X∗ which satisfies the range condition and let (λn) be a se-
quence of positive real numbers. The proximal point algorithm for a monotone
operator A on a Hadamard space X is the sequence generated by

(4.2)

{
[ 1
λn

−−−−−→xnxn−1] ∈ Axn,

x0 ∈ X.

Note that Lemma 4.1 implies the proximal point algorithm (4.2) is well-defined
and also (4.2) is in accordance with the proximal point algorithm (2.1) in a
Hilbert space.

In the following, we prove w-convergence of the sequence generated by the
proximal point algorithm (4.2) to an element of A−1(0), where 0 is the zero
of the dual space X∗. To this end, we need the following lemma that is a
generalization of Opial lemma in CAT(0) spaces.

Lemma 4.2. Let X be a Hadamard space that satisfies the condition Q, and
let (xn) be a sequence in X such that there exists a nonempty subset F of X
verifying:

(1) For every z ∈ F , limn d(xn, z) exists.

(2) If subsequence (xnj ) of (xn) is w-convergent to x ∈ X, then x ∈ F .
Then, there exists p ∈ F such that (xn) w-converges to p in X.

Proof. Suppose x, y ∈ X and there exist subsequences (xnj ) and (xnk
) of (xn)

such that xnj ⇀ x and xnk
⇀ y. So, we have ⟨−−→xxnj ,

−→xy⟩ → 0 and ⟨−−→yxnk
,−→yx⟩ →

0. Using (2), we have x, y ∈ F . By (1), set

l1 = lim
n

d(xn, x) and l2 = lim
n

d(xn, y).
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We also have

2⟨−−→xxnj ,
−→xy⟩ = d2(x, xnj )− d2(y, xnj ) + d2(x, y),

2⟨−−→yxnk
,−→yx⟩ = d2(y, xnk

)− d2(x, xnk
) + d2(x, y).

Therefore, by letting j → ∞ and k → ∞, we get d2(x, y) = l1− l2 = −d2(x, y),
and consequently x = y. Hence, (xn) is w-convergent to x ∈ F . □

In the following theorem, a solution of the problem 4.1 for a maximal mono-
tone operator A is approximated.

Theorem 4.3. Let X be a Hadamard space with dual X∗. Suppose that X
satisfies the condition Q, and that A : X → 2X

∗
is a multi-valued maximal

monotone operator which satisfies the range condition and A−1(0) ̸= ∅, where
0 is the zero of the dual space. Let (λn) be a sequence of positive real numbers
such that

∑∞
n=1 λ

2
n = ∞. Then the sequence generated by the proximal point

algorithm (4.2) w-converges to a point p ∈ A−1(0).

Proof. Let x ∈ A−1(0). By monotonicity of A, we have

0 ≤ 2⟨[ 1
λn

−−−−−→xnxn−1]− 0,−−→xxn⟩

=
2

λn
⟨−−−−−→xnxn−1,

−−→xxn⟩

=
1

λn
(d2(x, xn−1)− d2(x, xn)− d2(xn, xn−1)),

which implies

(4.3) d2(x, xn) + d2(xn, xn−1) ≤ d2(x, xn−1), ∀x ∈ A−1(0).

Thus, (d(x, xn)) is convergent for all x ∈ A−1(0). Hence (xn) is bounded.
By monotonicity of A and (4.2), for all n ∈ N, we have

0 ≤ ⟨[ 1

λn−1

−−−−−−→xn−1xn−2]− [
1

λn

−−−−−→xnxn−1],
−−−−−→xnxn−1⟩

=
1

λn−1
⟨−−−−−−→xn−1xn−2,

−−−−−→xnxn−1⟩ −
1

λn
⟨−−−−−→xnxn−1,

−−−−−→xnxn−1⟩

≤ 1

λn−1
d(xn−1, xn)d(xn−1, xn−2)−

1

λn
d2(xn−1, xn),

which implies

1
λn

d(xn−1, xn) ≤ 1
λn−1

d(xn−1, xn−2), ∀n ∈ N.

Hence, we get

L(Θ( 1
λn

, xn, xn−1)) ≤ L(Θ( 1
λn−1

, xn−1, xn−2)), ∀n ∈ N,

that is
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D([ 1
λn

−−−−−→xnxn−1],0) ≤ D([ 1
λn−1

−−−−−−→xn−1xn−2],0), ∀n ∈ N.

Therefore, for all k ≥ n, we have

(4.4) D2([
1

λk

−−−−→xkxk−1],0) ≤ D2([
1

λn

−−−−−→xnxn−1],0).

On the other hand, using (4.3), we get

λ2
n(L(Θ( 1

λn
, xn, xn−1)))

2 ≤ d2(x, xn−1)− d2(x, xn), ∀x ∈ A−1(0),

that is

λ2
nD

2([ 1
λn

−−−−−→xnxn−1],0) ≤ d2(x, xn−1)− d2(x, xn), ∀x ∈ A−1(0).

Hence, using (4.4), for all k ≥ n, we obtain

λ2
nD

2([ 1
λk

−−−−→xkxk−1],0) ≤ d2(x, xn−1)− d2(x, xn), ∀x ∈ A−1(0).

Summing up from n = 1 to k, we obtain

k∑
n=1

λ2
nD

2([
1

λk

−−−−→xkxk−1],0) ≤
k∑

n=1

(d2(x, xn−1)− d2(x, xn))

= d2(x, x0)− d2(x, xk),

which implies

D2([ 1
λk

−−−−→xkxk−1],0) ≤ d2(x,x0)∑k
n=1 λ2

n

.

Hence, using the assumptions, [ 1
λk

−−−−→xkxk−1] converges to 0 ∈ X∗ in metric D as

k → ∞. Now, by condition Q, suppose (xnj ) is a subsequence of the sequence

(xn) such that xnj ⇀ q. Then [ 1
λnj

−−−−−−→xnjxnj−1] converges to 0 ∈ X∗ in metric D

as j → ∞. Theorem 3.3 implies that 0 ∈ Aq and so q ∈ A−1(0). Therefore,
we proved that
(1) for every x ∈ A−1(0), limn d(xn, x) exists,
(2) if subsequence (xnj ) of (xn) is w-convergent to q ∈ X, then q ∈ A−1(0).
Hence, Lemma 4.2 completes the proof. □

In the following two theorems, with some additional assumptions on the
operator A, we prove the strong convergence of the proximal point algorithm
(4.2) to a point of A−1(0).

Theorem 4.4. Let X be a Hadamard space with dual X∗ and let A : X →
2X

∗
be a α-strongly monotone operator which satisfies the range condition and

A−1(0) ̸= ∅, where 0 ∈ X∗ is the zero of dual space. Suppose (λn) is a sequence
of positive real numbers such that

∑∞
n=1 λn = ∞. Then the sequence generated

by the proximal point algorithm (4.2) converges strongly to a single element
p ∈ A−1(0).
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Proof. Let x ∈ A−1(0). By the strong monotonicity of A, we have

αd2(xn, x) ≤ 2⟨[ 1
λn

−−−−−→xnxn−1]− 0,−−→xxn⟩

=
2

λn
⟨−−−−−→xnxn−1,

−−→xxn⟩

=
1

λn
(d2(x, xn−1)− d2(x, xn)− d2(xn, xn−1)),

which implies

(4.5) αλnd
2(x, xn) ≤ d2(x, xn−1)− d2(x, xn), ∀x ∈ A−1(0).

Summing up from n = 1 to n = k and letting k → +∞, we get

+∞∑
n=1

λnd
2(x, xn) < +∞,

which, by the assumptions, implies lim infn→+∞ d(xn, x) = 0. Since by (4.5),
limn d(xn, x) exists, we have xn → x as n → +∞. □

We say that the multi-valued operator A : X → 2X
∗
satisfies condition I

if there exists y ∈ X and a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0 and f(r) > 0 for all r > 0 such that for all x ∈ X and all x∗ ∈ Ax,

f(d(x,A−1(0))) ≤ |⟨x∗,−→xy⟩|,
where d(x,A−1(0)) = inf{d(x, z) : z ∈ A−1(0)}.

Example 4.5. Let X be a Hadamard space and o ∈ X. Define A : X → 2X
∗

with Ax = {[α−→ox] : α ∈ R}. Then o ∈ A−1(0) and for all x ∈ X and [α−→ox] ∈ Ax
we have

|⟨[α−→ox],−→xo⟩| = |α|d2(x, o)
≥ |α| inf{d2(x, u) : u ∈ A−1(0)}
= |α|d2(x,A−1(0)),

which implies A satisfies the condition I with f(r) = |α|r2 and y = o.

Example 4.6. Suppose H = R2 with the Euclidean norm and with polar
coordinates (r, θ). Set C =

{
(r, θ) : r ∈ [0, 1] and θ ∈ [−π

2 ,−
π
4 ]
}
. Define

T : C → C by T ((r, θ)) = (r,−π
2 ) for all (r, θ) ∈ C. T is nonexpansive because;

d(T (r1, θ1), T (r2, θ2)) = |r2 − r1|

≤
√
r21 + r22 − 2r1r2 cos(θ1 − θ2)

= d((r1, θ1), (r2, θ2)).
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We also have, Fix(T ) =
{
(r,−π

2 ) : r ∈ [0, 1]
}
, where Fix(T ) is the set of fixed

points of T . Clearly, for x = (r, θ) ∈ C, we get

d(x, Tx) = d((r, θ), (r,−π

2
))

≥ inf{d((r, θ), (r,−π

2
)) : r ∈ [0, 1]}

= d((r, θ), F ix(T ))

= d(x, F ix(T )).

Now, set Ax =
{−−−−→
[(Tx)x]

}
= {x − Tx}, then A−1(0) = Fix(T ) and A is a

maximal monotone operator that satisfies the range condition. Let p ∈ Fix(T ),
then p ∈ A−1(0). For all x ∈ C, using nonexpansiveness of T , we have

2|⟨Ax,−→xp⟩| = |2⟨
−−−→
(Tx)x,−→xp⟩|

= d2(x, Tx) + d2(x, p)− d2(Tx, p)

≥ d2(x, Tx)

≥ d2(x, F ix(T ))

= d2(x,A−1(0)).

Hence, A satisfies the condition I with f(r) = 1
2r

2 and y = p.

Remark 4.7. Note that if X is a Hadamard space and T : X → X be a nonex-

pansive mapping, then the operator Ax =
{−−−−→
[(Tx)x]

}
is a monotone operator

(see [19, proposition 4.2]), and if X is a flat Hadamard space then A satisfies
the range condition (see [20, Proposition 6.4]). Also, in [20], it is shown that in
spite of Hilbert spaces, in the case of Hadamard spaces, there are examples of
nonexpansive mappings T for which the operator A is not maximal monotone.

Theorem 4.8. Let X be a Hadamard space with dual X∗, and let A : X →
2X

∗
be a multi-valued maximal monotone operator which satisfies the range

condition, the condition I, and A−1(0) ̸= ∅. Suppose (λn) is a sequence of
positive real numbers such that lim infn λn > 0. Then the sequence generated
by the proximal point algorithm (4.2) converges strongly to a point p ∈ A−1(0).

Proof. Let x ∈ A−1(0). By (4.3), we have

d(xn, x) ≤ d(xn−1, x), ∀n ∈ N and
∑∞

n=1 d
2(xn, xn−1) < ∞,

which implies (d(xn, A
−1(0))) is nonincreasing and limn d(xn, xn−1) = 0. On

the other hand, by condition I and (4.2), we get

f(d(xn, A
−1(0))) ≤ |⟨[ 1

λn

−−−−−→xnxn−1],
−−→xny⟩| ≤

1

λn
d(xn, xn−1)d(xn, y)
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for some y ∈ X. This implies

lim
n

f(d(xn, A
−1(0))) = 0,

and the properties of f implies

lim
n

d(xn, A
−1(0)) = 0.

Therefore, for any ϵ > 0 there exists N ∈ N and z ∈ A−1(0) such that
d(xN , z) < ϵ, which implies d(xn, z) < ϵ, for all n > N , because the sequence
(d(xn, z)) is nonincreasing for all z ∈ A−1(0). Thus, for any k ∈ Z+, there
exists Nk ∈ N and zk ∈ A−1(0) such that d(xn, zk) <

1
2k+2 for all n ≥ Nk. Set

Sz(ϵ) = {x ∈ X : d(x, z) ≤ ϵ}. We show that (Szk(
1
2k
)) is a nested sequence of

nonempty closed sets such that diam Szk(
1
2k
) → 0. Clearly, diam Szk(

1
2k
) → 0

and for each k ∈ Z+, Szk(
1
2k
) is closed. Suppose for each k ∈ Z+, Nk+1 ≥ Nk.

For every k ∈ Z+, we have

d(zk, zk+1) ≤ d(zk, xNk+1
) + d(x

Nk+1
, zk+1)

<
1

2k+2
+

1

2k+3
=

3

2k+3

<
1

2k+1
.

Hence, for all k ∈ Z+, Szk(
1
2k
) ̸= ∅. On the other hand, if x ∈ Szk+1

( 1
2k+1 ),

then

d(x, zk) ≤ d(x, zk+1) + d(zk+1, zk)

<
1

2k+1
+

1

2k+1

=
1

2k
,

which implies x ∈ Szk(
1
2k
). Thus, Szk+1

( 1
2k+1 ) ⊂ Szk(

1
2k
). Hence, by the

Cantor intersection theorem,
∩

k∈Z+ Szk(
1
2k
) is a singleton. Let∩

k∈Z+

Szk(
1

2k
) := {p}.

We have

d(zk, p) ≤
1

2k
, for all k ∈ Z+,

which implies zk → p. Since A−1(0) is w-sequentially closed, p ∈ A−1(0).
Consequently, for all n ≥ Nk,

d(xn, p) ≤ d(xn, zk) + d(zk, p)

<
1

2k+2
+ d(zk, p),

which implies xn → p. This completes the proof. □
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In the sequel, we approximate a minimizer of a proper, lower semicontinuous
and convex function in a Hademard space. Let X be a Hadamard space with
dual X∗. Let f : X →] − ∞,+∞] be a proper, lower semicontinuous and
convex function and (λn) be a sequence of positive real numbers. Using part
(iii) of Theorem 3.9, the operator ∂f satisfies the range condition. Thus, we
can introduce the proximal point algorithm for ∂f in the Hadamard space X
as follows

(4.6)

{
[ 1
λn

−−−−−→xnxn−1] ∈ ∂f(xn),

x0 ∈ X.

In the following theorem, it will be shown that the sequence generated by (4.6)
is w-convergent to a point of (∂f)−1(0).

Theorem 4.9. Let X be a Hadamard space with dual X∗, and let X satisfy
the condition Q. Let f : X →] − ∞,+∞] be a proper, lower semicontinuous
and convex function such that (∂f)−1(0) ̸= ∅. Suppose (λn) is a sequence of
positive real numbers such that

∑∞
n=1 λn = ∞. Then the sequence generated by

the proximal point algorithm (4.6) w-converges to a point p ∈ (∂f)−1(0).

Proof. By subdifferential inequality in Definition 3.8 and (4.6), for all n ∈ N,
we have

f(xn)− f(xn−1) ≤ ⟨[ 1
λn

−−−−−→xnxn−1],
−−−−−→xn−1xn⟩

=
1

λn
⟨−−−−−→xnxn−1,

−−−−−→xn−1xn⟩

= − 1

λn
d2(xn, xn−1),

which implies f(xn) ≤ f(xn−1) for all n ∈ N. Hence, we get

(4.7) f(xk) ≤ f(xn) ∀k ≥ n.

Let p ∈ (∂f)−1(0). Then by subdifferential inequality and part (i) of Theorem
3.9, for all n ∈ N, we have

0 ≤ f(xn)− f(p)

≤ ⟨[ 1
λn

−−−−−→xnxn−1],
−−→pxn⟩

=
1

λn
⟨−−−−−→xnxn−1,

−−→pxn⟩

=
1

2λn
(d2(xn−1, p)− d2(xn, p)− d2(xn, xn−1)),
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which implies

(4.8) 0 ≤ λn(f(xn)− f(p)) ≤ 1

2
(d2(xn−1, p)− d2(xn, p)), ∀n ∈ N.

It follows that d(xn−1, p) ≤ d(xn, p) for all n ∈ N. Thus, limn d(xn, p) exists
for all p ∈ (∂f)−1(0). On the other hand, for all k ≥ n, (4.8) and (4.7) imply

0 ≤ λn(f(xk)− f(p)) ≤ 1
2 (d

2(xn−1, p)− d2(xn, p)).

Summing up from n = 1 to k, we get

0 ≤
k∑

n=1

λn(f(xk)− f(p))

≤
k∑

n=1

1

2
(d2(xn−1, p)− d2(xn, p))

≤ 1

2
d2(x0, p).

Dividing the above inequality by
∑k

n=1 λn, we obtain

0 ≤ f(xk)− f(p) ≤ d2(x0,p)

2
∑k

n=1 λn
.

Letting k → ∞, by assumptions, we get f(xk) → f(p). Now, by the condition
Q, let (xnj ) be a subsequence of the sequence (xn) such that xnj ⇀ q. By
assumptions and Corollary 3.7, f is w-sequentially lower semicontinuous, thus
we have

f(q) ≤ lim infj f(xnj ) = limk f(xk) = f(p),

which by (i) of Theorem 3.9, implies q ∈ (∂f)−1(0). Now, Lemma 4.2 gives
the desired result. □

Theorem 4.10. Let X be a Hadamard space with dual X∗. Let X satisfies the
condition Q and let f : X →]−∞,+∞] be a proper, lower semicontinuous and
convex function such that (∂f)−1(0) ̸= ∅. Suppose (λn) is a sequence of positive
real numbers such that

∑∞
n=1 λn = ∞ and the sequence (xn) is generated by

the proximal point algorithm (4.6). If for every n ∈ N and every k ≤ n, there
exists αn,k > 0 such that the inclusion

[αn,k

−−−−−−−−−−−−−−−−−−−−→
( 12xn ⊕ 1

2xk)(
1
2xn ⊕ 1

2xk−1)] ∈ ∂f( 12xn ⊕ 1
2xk)

holds, then (xn) converges strongly to a point q ∈ (∂f)−1(0).
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Proof. Let p ∈ (∂f)−1(0). Using the monotonicity of ∂f and (4.6) we get
that limn d(xn, p) exists. On the other hand, by subdifferential inequality and
assumptions, for every n ∈ N and every k ≤ n there exists αn,k > 0 such that

f(p) ≥ f(
1

2
xn ⊕ 1

2
xk) + ⟨[αn,k

−−−−−−−−−−−−−−−−−−−−−→
(
1

2
xn ⊕ 1

2
xk)(

1

2
xn ⊕ 1

2
xk−1)],

−−−−−−−−−−→
(
1

2
xn ⊕ 1

2
xk)p⟩

≥ f(p) + αn,k⟨
−−−−−−−−−−−−−−−−−−−−−→
(
1

2
xn ⊕ 1

2
xk)(

1

2
xn ⊕ 1

2
xk−1),

−−−−−−−−−−→
(
1

2
xn ⊕ 1

2
xk)p⟩

≥ f(p) +
αn,k

2
(d2(

1

2
xn ⊕ 1

2
xk, p)− d2(

1

2
xn ⊕ 1

2
xk−1, p)).

Thus, for every n ∈ N and every k ≤ n, we get

(4.9) d2(
1

2
xn ⊕ 1

2
xk, p) ≤ d2(

1

2
xn ⊕ 1

2
xk−1, p)).

Substituting k by n, n− 1, n− 2, ..., 0 in (4.9), and using 1
2xn ⊕ 1

2xn = xn, we
have

d2(xn, p) ≤ d2( 12xn ⊕ 1
2xk, p) ∀k ≤ n,

which by the CN -inequality, for all k ≤ n implies

d2(xn, xk) ≤ 2d2(xn, p) + 2d2(xk, p)− 4d2(
1

2
xn ⊕ 1

2
xk, p)

≤ 2(d2(xk, p)− d2(xn, p)).

Thus (xn) is a Cauchy sequence. Let q = limn xn. By Theorem 4.9, xn ⇀ p ∈
(∂f)−1(0). Since xn converges to q and w-converges to p, then p = q. This
completes the proof. □

The following example is related to Theorem 4.10. In fact, we give a proper,
lower semicontinuous and convex function f : X →] − ∞,+∞] such that
(∂f)−1(0) ̸= ∅ and for every n ∈ N and every k ≤ n, there exists αn,k > 0 such
that

[αn,k

−−−−−−−−−−−−−−−−−−−−→
( 12xn ⊕ 1

2xk)(
1
2xn ⊕ 1

2xk−1)] ∈ ∂f( 12xn ⊕ 1
2xk),

where (xn) is generated by the proximal point algorithm.

Example 4.11. Define f :]0,∞[→] − ∞,+∞] with f(x) = 1
2x

2. Clearly, f
is a proper, lower semicontinuous and convex function with ∂f(x) = {x} and
(∂f)−1(0) = {0}. If x0 > 0 in the proximal point algorithm (4.6), then for
every n ∈ N and every k ≤ n, we have
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xn + xk

2
=

xn + xk

xk−1 − xk
(
xk−1 − xk

2
)

= [
xn + xk

xk−1 − xk

−−−−−−−−−−−−−−−−−−−−−→
(
1

2
xn ⊕ 1

2
xk)(

1

2
xn ⊕ 1

2
xk−1)]

∈ {xn + xk

2
}

= ∂f(
1

2
xn ⊕ 1

2
xk).

Hence, for every n ∈ N and every k ≤ n, there exists αn,k = xn+xk

xk−1−xk
> 0 that

satisfies

[αn,k

−−−−−−−−−−−−−−−−−−−−→
( 12xn ⊕ 1

2xk)(
1
2xn ⊕ 1

2xk−1)] ∈ ∂f( 12xn ⊕ 1
2xk).
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