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Abstract. Let G be a finite group. By MT (G) = (m1, · · · ,mk) we
denote the type of conjugacy classes of maximal subgroups of G, which
implies that G has exactly k conjugacy classes of maximal subgroups and

m1, . . . ,mk are the numbers of conjugates of maximal subgroups of G,
where m1 ≤ · · · ≤ mk. In this paper, we give some new characterizations
of finite groups by the type of conjugacy classes of maximal subgroups.
By πt(G) we denote the set of indices of all maximal subgroups of G. We

also investigate the influence of the set of indices of all maximal subgroups
on the structure of finite groups.
Keywords: Maximal subgroup, non-abelian simple group, the type of
conjugacy classes, the set of indices.
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1. Introduction

In this paper all groups are finite. In [14] Wang defined the type of conjugacy
classes of maximal subgroups.

Definition 1.1. ([14]). Let G be a group having exactly k conjugacy classes
of maximal subgroups and m1, . . . ,mk the numbers of conjugates of all max-
imal subgroups of G, where m1 ≤ · · · ≤ mk. Then the sequence MT (G) =
(m1, · · · ,mk) is called the type of conjugacy classes of maximal subgroups of
G.

In [14], Wang used MT (G) to show that a non-solvable group G has exactly
21 maximal subgroups if and only if G/Φ(G) is isomorphic to the alternating
group A5, where Φ(G) is the Frattini subgroup of G.

In [12], we applied MT (G) to characterize some groups having exactly four
conjugacy classes of maximal subgroups, some simple groups and the equality
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for N < G, respectively. And in [15], we gave a new characterization of all
alternating groups and some symmetric groups by MT (G).

Note that the number of conjugates of any normal maximal subgroup equals
1, and the number of conjugates of any non-normal maximal subgroup equals
its index.

Let G and N be two groups with MT (G) = MT (N). Let πt(G) be the
set of indices of all maximal subgroups of G and πt(N) the set of indices of
all maximal subgroups of N . If G and N have no normal maximal subgroups,
then πt(G) = πt(N). However, if G and N have at least one normal maximal
subgroup, we cannot get πt(G) = πt(N). For example, it is easy to see that
MT (S5) = MT (A5×Zp) = (1, 5, 6, 10), where p is an odd prime, but πt(S5) =
{2, 5, 6, 10} ≠ πt(A5 × Zp) = {p, 5, 6, 10}.

Conversely, let G and N be two groups with πt(G) = πt(N), we also cannot
get MT (G) = MT (N). For example, it is easy to see that πt(PSL2(7)) =
πt(Z2

3 ⋊Z7) = {7, 8}, but MT (PSL2(7)) = (7, 7, 8) ̸= MT (Z2
3 ⋊Z7) = (1, 8).

For the type of conjugacy classes of maximal subgroups, the following Propo-
sition 1.2 is a direct corollary of [7].

Proposition 1.2. Let G be a simple group and N ≤ G. If MT (N) = MT (G),
then N = G.

In [13] we proved the following result:

Lemma 1.3. ([13, Lemma 1]). Let G be a group and N ≤ G. If G/Φ(G) is
a non-abelian simple group, then MT (N) = MT (G) if and only if N = G.

Lemma 1.3 is not true if G/Φ(G) is an abelian simple group. For example,
let G = Zpn and N = Zp ≤ G, where p is a prime and n ≥ 2. It is easy to see
that G/Φ(G) ∼= Zp and MT (N) = MT (G) = (1), but N < G.

The following Proposition 1.4 is a direct consequence of [8] and Lemma 1.3.

Proposition 1.4. Let G be a group and N a non-abelian simple subgroup of
G. If MT (N) = MT (G), then N = G.

Proposition 1.4 is not true if N is an abelian simple group. For example, let
G = Zp2 and N = Zp ≤ G, where p is a prime. It is obvious that MT (N) =
MT (G) but N < G.

Motivated by above results, we give a further study of the structure of groups
by the type of conjugacy classes of maximal subgroups, some new characteri-
zations of groups are obtained, see Section 3.

Let G be a non-abelian simple group and N a subgroup of G. If πt(N) ⊆
πt(G). By [7], we get:

when πt(N) = πt(G), we have
(1) N = G;
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when πt(N) ⊂ πt(G), we have
(2) N < G, where G ∼= M11, N ∼= PSL2(11); or
(3) N < G, where G ∼= S6(2), N ∼= U3(3); or
(4) N < G, where G is a non-abelian simple group having a maximal sub-

group with index a prime q, N is a subgroup of G of order q .

In case (4), by [11, Theorem 12], we know that q is not only the largest
prime divisor of |G| but also the smallest number in πt(G).

According to the above result, we propose the following problem:

Problem 1.5. Let G be a non-abelian simple group and N a subgroup of G
such that πt(G) ⊆ πt(N). Is it always true that we have N = G?

It is obvious that Problem 1.5 holds when G is a minimal simple group. In
Section 4 of this paper, we will give a further study of Problem 1.5.

2. Preliminaries

In this paper, we denote S(G) the largest solvable normal subgroup of a
group G and p(G) the smallest number in πt(G).

Lemma 2.1. ([2]). If every maximal subgroup of a group G has prime-power
index, then G/S(G) ∼= 1 or PSL2(7).

Lemma 2.2. ([7]). Let N be a group and G a simple group. If |N | divides |G|
and πt(N) ⊆ πt(G), then

when N is non-solvable, we have
(1) N ∼= G, or
(2) G = M11 and N ∼= PSL2(11) or SL2(11), or
(3) G = S6(2) and N ∼= U3(3).
when N is solvable, we have
(4) N is a cyclic group of prime order, or
(5) N = ⟨a, b, c, g | a2 = b2 = c2 = g7 = 1, [a, b] = [a, c] = [b, c] = 1, ag =

c, bg = a, cg = bc⟩.

Lemma 2.3. ( [6, 9]). Let G be a non-solvable group having exactly n same
order classes of maximal subgroups.

(1) If n = 2, then G/Φ(G) ∼= (Z2
3i ⋊PSL2 (7 ))×Z7

j , where i, j = 0, 1, . . .;
(2) If n = 3, then G/S(G) ∼= A6; PSL2(q), q = 11, 13, 23, 59, 61; PSL3(3);

U3(3); PSL5(2); PSL2(2
f ), f is a prime; PSL2(7)×PSL2(7)×. . .×PSL2(7).

Lemma 2.4. ([12]). Let G = T ×Zp and N < G such that MT (N) = MT (G),
where T is a non-abelian simple group and p is a prime. Then T has a non-
solvable proper subgroup that is isomorphic to N .

Lemma 2.5. ([10]). Let G be a simple K4-group, then G is isomorphic to one
of the following simple groups:
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(1) An, n = 7, 8, 9, 10;
(2) M11, M12, J2;
(3) (a) PSL2(r), where r2 − 1 = 2a3buc, a ≥ 1, b ≥ 1, c ≥ 1, r and u are

primes, u > 3;

(b) PSL2(2
m), where

{
2m − 1 = u
2m + 1 = 3tb,

m ≥ 1, u and t are primes, t > 3,

b ≥ 1;

(c) PSL2(3
m), where

{
3m + 1 = 4t
3m − 1 = 2uc,

or

{
3m + 1 = 4tb

3m − 1 = 2u,
m ≥ 1,

u and t are odd primes, b ≥ 1, c ≥ 1;
(d) PSL2(q), q = 16, 25, 49, 81; PSL3(q), q = 4, 5, 7, 8, 17; PSL4(3);

S4(q), q = 4, 5, 7, 9; S6(2); O8
+(2); G2(3); U3(q), q = 4, 5, 7, 8, 9; U4(3);

U5(2); SZ(8); Sz(32);
3D4(2);

2F4(2)
′.

3. Some results on MT (G)

Theorem 3.1. Let G be a simple group and K a group. Suppose that N is a
subgroup of G×K satisfying MT (N) = MT (G). If N ∩G ̸= 1, then N = G.

Proof. Since N ∩G ̸= 1, one has N ≰ K and consequently 1 < N/(N ∩K) ∼=
NK/K ≤ GK/K ∼= G. Note that MT (N) = MT (G). Thus we always
have πt(N) = πt(G) whenever G is an abelian simple group or a non-abelian
simple group. It follows that πt(N/(N ∩ K)) ⊆ πt(N) = πt(G). Note that
MT (N) = MT (G). By Lemma 2.2, we have N/(N ∩K) ∼= G and consequently
MT (N/(N ∩ K)) = MT (G) = MT (N). It follows that N ∩ K ≤ Φ(N ).
Moreover, sinceN/(N∩K) ∼= G is a simple group, we must haveN∩K = Φ(N ).
Then N/Φ(N ) is a simple group.

Observe that (N ∩G)Φ(N ) is normal in N . One has (N ∩G)Φ(N ) = Φ(N )
or N . If (N ∩G)Φ(N ) = Φ(N ). Then we have N ∩G = (N ∩G)∩Φ(N) = (N ∩
G)∩ (N ∩K) = 1, which contradicts N ∩G ̸= 1. Therefore (N ∩G)Φ(N ) = N .
It follows that N = N ∩G ≤ G. By Lemma 2.2, we have N = G. □

The hypothesis that N ∩ G ̸= 1 in Theorem 3.1 cannot be removed. For
example, let G ∼= A5 and K ∼= A5. Then G × K has a maximal subgroup
N that is also isomorphic to A5 but N ̸= G and N ̸= K. It is obvious that
N ∩G = 1 and MT (N) = MT (G).

Corollary 3.2. Let G be a non-abelian simple group and K a solvable group.
Suppose that N is a subgroup of G × K satisfying MT (N) = MT (G), then
N = G.

Proof. We claim N ∩ G ̸= 1. Otherwise, assume N ∩ G = 1. Since NG =
NG ∩ (G × K) = (NG ∩ K) × G, one has N ∼= NG/G = (NG ∩ K)G/G ∼=
NG ∩K ≤ K. It follows that N is solvable, which implies that N has at least
one normal maximal subgroup. However, since MT (N) = MT (G) and G is a
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non-abelian simple group, one has that N has no normal maximal subgroups, a
contradiction. Hence we get N ∩G ̸= 1. By Theorem 3.1, we have N = G. □

Corollary 3.2 is not true if G is an abelian simple group. For example, let
G = ⟨(12)(34)⟩, K = ⟨(13)(24)⟩ and N = ⟨(14)(23)⟩. One has N ≤ G×K and
MT (N) = MT (G), but N ̸= G.

4. Some results on Problem 1.5

In [12], we investigated the following problem:

Problem 4.1. Let G = T × Zp and N ≤ G, where T is a non-abelian simple
group and p is a prime. Is it always true that MT (N) = MT (G) if and only if
N = G?

Note that if Problem 1.5 holds, then we can get that the Problem 4.1 holds.
For the necessity part of the Problem 4.1. Assume N ̸= G. By Lemma 2.4,
there exists a non-solvable proper subgroup H of T such that N ∼= H. Then
MT (H) = MT (N) = MT (G) = MT (T × Zp). It follows that πt(T ) ⊆ πt(H).
If Problem 1.5 holds, one has H = T , a contradiction. Thus we have N = G.

Theorem 4.2. Let G ∼= PSL2(p
n) and N a subgroup of G, where pn ≥ 4. If

πt(G) ⊆ πt(N), then N = G.

Proof. (1) Suppose G ∼= PSL2(5) or PSL2(7) or PSL2(9) or PSL2(11). It is
easy to see that the result holds by [1].

(2) Suppose pn ̸= 4, 5, 7, 9, 11. By [5, Theorem 5.2.2], one has p(G) = pn+1.
If N is solvable. Since πt(G) ⊆ πt(N) and every maximal subgroup of a
solvable group has prime-power index, we have G ∼= PSL2(7) by Lemma 2.1,
a contradiction. Thus N is non-solvable. By [4, Theorem 8.27], one has that
N might be isomorphic to one of the following groups: A5, PSL2(p

m) if m | n,
PGL2(p

s) if 2s | n.
If N ∼= A5. Then πt(G) ⊆ {5, 6, 10}. It follows that G has at most three

same order classes of maximal subgroups. By Lemma 2.3, one has G ∼= A5
∼=

PSL2(5), a contradiction.
Thus N ∼= PSL2(p

m) or PGL2(p
s). If N < G. We have pn+1 ∤ |PSL2(p

m)|
and pn + 1 ∤ |PGL2(p

s)|. However, since πt(G) ⊆ πt(N), one has pn + 1 | |N |,
a contradiction. Hence N = G. □

Theorem 4.3. Let G be a simple K3-group or a simple K4-group and N a
subgroup of G. If πt(G) ⊆ πt(N), then N = G.

Proof. By [3], Lemma 2.5, [1] and Theorem 4.2, we can easily get that the
theorem holds. □

Note that in Problem 1.5 if we assume that G is a general non-solvable group
and N is a subgroup of G satisfying πt(G) ⊆ πt(N), we cannot get N = G.
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For example, let G = U3(3) × N , where N = S6(2). It is easy to see that
πt(G) = πt(N) but N < G. However, we have the following three results, see
Theorems 4.4, 4.5 and 4.6.

Theorem 4.4. Let G ∼= SL2(p
n) and N a subgroup of G, where pn ≥ 4. If

πt(G) ⊆ πt(N), then N = G.

Proof. (1) Suppose p = 2. Then SL2(2
n)) ∼= PSL2(2

n). By Theorem 4.2, we
have N = G.

(2) Suppose pn = 5. Then πt(G) = {5, 6, 10}. Since πt(G) ⊆ πt(N), one
has |N | ≥ 30. Note that SL2(5) has no proper subgroup H such that |H| ≥ 30.
It follows that N = G.

(3) Suppose pn = 7, 9, 11. Arguing as in (2), we can get N = G.
(4) Suppose pn ̸= 5, 7, 9, 11. By p(M) we denote the smallest index of

maximal subgroups of group M . Then p(SL2(p
n)) = p(PSL2(p

n)) = pn+1. If
N is solvable. Since πt(G) ⊆ πt(N) and G is non-solvable, we have G/S(G) ∼=
PSL2(7). It follows that G ∼= SL2(7), a contradiction. Thus N is non-solvable.

Note that Φ(G) ∼= Z2 . We claim Φ(G) ≤ N . Otherwise, assume Φ(G)∩N =
1. Then N ∼= NΦ(G)/Φ(G) ≤ G/Φ(G) ∼= PSL2 (p

n). Since πt(G/Φ(G)) =
πt(G), one has πt(G/Φ(G)) ⊆ πt(N ) = πt(NΦ(G)/Φ(G)). By Theorem 4.2,
we have NΦ(G)/Φ(G) = G/Φ(G). It follows that G = NΦ(G) = N . Then
Φ(G) ∩N = Φ(G) ∩G = Φ(G) ∼= Z2 ̸= 1, a contradiction.

Thus Φ(G) ≤ N . Since N is non-solvable, one has that N/Φ(G) is non-
solvable and 1 < N/Φ(G) ≤ G/Φ(G) ∼= PSL2 (p

n).
If N < G. By [4, Theorem 8.27], N/Φ(G) might be isomorphic to A5 or

PSL2(p
m) if m | n or PGL2(p

s) if 2s | n.
If N/Φ(G) ∼= A5 . Since Φ(G) ∼= Z2 , one has πt(N) = {5, 6, 10} or

{2, 5, 6, 10}. Note that G has no normal maximal subgroup and πt(G) ⊆ πt(N).
It follows that πt(G) ⊆ {5, 6, 10}. By Lemma 2.3, one has G ∼= SL2(5), a con-
tradiction.

So N/Φ(G) ∼= PSL2 (p
m) if m | n or PGL2(p

s) if 2s | n. Then |N | =
2|PSL2(p

m)| if m | n or 2|PGL2(p
s)| if 2s | n. Since N < G, one has m < n

and s < n. It follows that pn + 1 ∤ 2|PSL2(p
m)| and pn + 1 ∤ 2|PGL2(p

s)|.
However, πt(G) ⊆ πt(N) implies that pn + 1 | |N |, a contradiction.

Hence N = G. □
Theorem 4.5. Let G = T ×Zp and N a subgroup of G, where T ∼= PSL2(7)
and p is a prime. If πt(G) ⊆ πt(N), then one of the following statements holds:

(1) N = T or N = G if p = 7;
(2) N = G if p ̸= 7.

Proof. (1) Suppose p = 7. Then πt(G) = πt(T × Zp) = {7, 8}.
First assume Zp ≤ N . One has N = N ∩ (T × Zp) = Zp × (N ∩ T ). Since

πt(G) ⊆ πt(N) and πt(G) = {7, 8}, we have N ∩ T = T by [1], and it follows
that T ≤ N . Thus N = T × Zp = G.
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Next assume Zp ≰ N . One has N × Zp = (N × Zp) ∩ (T × Zp) = Zp ×
((N × Zp) ∩ T ). Then N ∼= (N × Zp) ∩ T ≤ T . Since πt(G) ⊆ πt(N), we have
(N ×Zp)∩ T = T by [1]. It follows that N ∼= T . We claim N = T . Otherwise,
if N ̸= T . One has N ∩ T < N . Since N ∩ T ⊴N , it follows that N ∩ T = 1.
Note that T is a normal maximal subgroup of G. We have N · T = T × Zp.
Then |N ||T | = |T ||Zp|, which implies that |N | = |Zp|, a contradiction. Hence
N = T .

(2) Suppose p ̸= 7. Arguing as above, we can get N = G. □
Arguing as in proof of Theorem 4.5, applying Theorem 4.2 and Theorem 4.4,

we have:

Theorem 4.6. Let G = T×Zq and N a subgroup of G, where T ∼= PSL2(p
n)

or SL2(p
n), pn ≥ 4 and q is a prime. If πt(G) ⊆ πt(N), then N = G if and

only if q /∈ πt(T ).

Note that if N is a subgroup of a general non-solvable group G satisfying
πt(G) ⊆ πt(N), we cannot get that N is non-solvable. For example, let G =
PSL2(7) × N , where N = Z2

3 ⋊ Z7. It is easy to see that πt(G) = πt(N) =
{7, 8} but N is solvable. However, we have the following two results:

Theorem 4.7. Let G = T × Zp and N a subgroup of G, where T is a
non-abelian simple group and p is a prime. If πt(G) ⊆ πt(N), then N is non-
solvable.

Proof. Assume that N is solvable. Since πt(G) ⊆ πt(N) and G is non-solvable,
one has G/S(G) ∼= T ∼= PSL2(7) by Lemma 2.1. Therefore, G ∼= PSL2(7)×Zp.
It follows that N ∼= PSL2(7) or PSL2(7)×Zp by Theorem 4.5, this contradicts
that N is solvable. Hence N is non-solvable. □

Recall that a group A is called a B-free group if any quotient group of every
subgroup of A is not isomorphic to B. Arguing as in proof of Theorems 4.5
and 4.7, we have:

Theorem 4.8. Let G = T×K and N a subgroup of G, where T is a non-abelian
simple group and K is a (Z2

3⋊Z7)-free solvable group. If πt(G) ⊆ πt(N), then
N is non-solvable.
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