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1. Introduction

In this paper we consider the equation
(P) —div(K(z)Vu) = K(z)f(x,u), x€cRY,

where f € C(RYN x R,R), N > 3 and K (x) := exp(|z|?/4). Note that equation
(P) is equivalent to

(1.1) —Au—%(x-Vu):f(x,u).

This problem is closely related to the study of self-similar solutions for the
heat equation as quoted in the works of Escobedo and Kavian [17] (see also
[7,18-21,34,35]). In this direction, equations like (1.1) arise naturally when one
seeks for solutions of the form w(t,z) := t=/(P=2)y(t~1/2z) for the evolution
equation

(1.2) w; — Aw = |w|P~ 2w, (t,z) € (0,00) x RY.

Such self-similar solutions are global in time and often used to describe the
large time behavior of global solutions to (1.2).
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Using variational methods, Escobedo and Kavian [17] considered the follow-
ing equation

1
(1.3) —Au— i(xVu) = u+ |u|? 2y, zeRN,

where 2 < ¢ < 2*. For a long time, there were no results about this type
of equation using variational methods. Until very recently, Furtado et al.,
[21] studied the critical exponent case by using the concentration-compactness
principle at infinity. Later, Furtado et al., [19] established a Trudinger-Moser
type inequality in a weighted Sobolev space. The inequality is applied in the
study of a perturbed elliptic equation and the nonlinearity term has exponential
critical growth and the perturbed term belongs to the dual of an appropriate
function space. They proved that the problem has at least two weak solutions.
Furthermore, Catrina et al. [7], Furtado et al. [18] and Furtado et al. [20]
studied more general weight and Ohya [34, 35] studied the p-Laplacian case.
Motivated by the previous results, in this paper we want to study the ground
state solutions of (P).
For the superlinear case, we give the following assumptions.
(S1) f € CRYN x R,R), for some 2 < p < 2* = 2N/(N — 2), C
(2, 8)] < O[] + |t]P~) for (z,¢) € RY x R and limy_,q 120 — oo
uniformly in z € RY
(S2) f(z,t) =o(t) as t — 0, uniformly in z € RV.
(S3) There exists # > 1 such that 0}"(:3 t) > F(z,st) for (z,t) € RV xR and
s €[0,1], where F(z,t) fo z,s)ds and F(z,t) = f(z,t)t—2F (x,t).

Now, we have the following theorem.

Theorem 1.1. Suppose conditions (S1)-(S3) hold, then problem (P) has a
ground state solution.

Remark 1.2. In order to get ground state solution for superlinear equations,
the following superlinear condition of Ambrosetti and Rabinowitz is assumed:

(AR) there is p > 2 such that 0 < uF(z,t) < tf(x,t) for x € RY and ¢ # 0.
The role of (AR) is to ensure the boundedness of the Palais—Smale (PS) se-
quences of the functional corresponding to problem (P). However, many func-
tions which are superlinear at infinity do not satisfy condition (AR) for any
p > 2. In fact, (AR) implies that F(x,t) > C|¢|* for some C > 0. For example,
the superlinear function

f(z,t) = tlog(1 + [¢])

does not satisfy (AR). However, it satisfies our condition (S1)—(S3).

The mountain pass solution has the least energy for the corresponding func-
tional (minimizing the functional on the Nehari manifold N'). Instead of min-
imizing the functional on the Nehari manifold N, we will prove our result by
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a mountain pass type argument. A crucial step is to prove that some kind of
almost critical sequence is bounded. We adopt a technique developed in [23]
to show that any Cerami sequence is bounded. Finally, we show the existence
of ground states by using a technique of Jeanjean and Tanaka [24].

For the asymptotically linear case, we assume

(H1) f € C(RN xR,R), f(x,0) =0, f(x,t) =0forallt <0and all z € RV.

f(ﬂtﬂ’t) f(ﬂz,t) < limsup,_, ;oo f(z,t) <

(H2) limsup, g+ < A1 < liminf, 4o :
400, uniformly in z € RY, where A\ = inf { [,y K(2)|Vul?dz : u €
H'(RY), [~ K(z)u’dz = 1} and K(z) := exp(|z|*/4).

Then we can obtain the following theorem.

Theorem 1.3. Assume that (H1) and (H2) hold. Then problem (P) admits a
positive ground state solution.

The paper is organized as follows. In Section 2, we introduce a variational
setting of the problem and present some preliminary results. In Section 3, we
apply a variant version of the Mountain Pass Theorem to prove the existence
of ground state solutions of (P).

2. Preliminaries

We shall denote by X the completion of C°(R”Y) with respect to the norm

full:=( K<x>|w|2dx)1/27

which is induced by the inner product

(u,v) := K(z)(Vu - Vv)dz.
RN

For each ¢ € [2,2*] we denote by L% (RY) the following space

1/q
LI (RY) = {u is measurable in RY : [ju|, := (/RN K(aj)|u|qdm) < oo} .
Due to the rapid decay at infinity of the functions belonging to X, we have the
following embedding result proved in [17].

Proposition 2.1. The embedding X — L% is continuous for all g € (2,2
and it is compact for all q € [2,2%).

By using the above result, we can prove that the functional I'(u) : X — R
given by

(2.1) I(u) = %/RN K(@)[Vufds = [ K(@)Ple,u)ds,
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is well defined. Standard calculations and Proposition 2.1 show that I €
C'(X,R) and the derivative of I at the point u is given by

(I'(u),v) = K(z)Vu - Vvdz — K(z)f(x,u)vdx,
RN RN
for any v € X. Hence, the critical points of I are precisely the weak solutions
of problem (7). We remark that the compactness of the embedding X < L3

and standard spectral theory for self-adjoint compact operators shows that the
linear problem

(LP) —div(K(2)Vu) = AK (z)u, = €RY,
has a sequence of positive eigenvalues (A, )nen such that lim, . A, = 400.

More precisely, we have the following lemma.

Lemma 2.2. Let

A1 = inf {/ K(2)|Vul|?dr :u € HY(RY), |  K(z)u*dx = 1}
RN

RN
be an eigenvalue of the operator —A(K(z)u) and there exists a corresponding
eigenfunction ¢1(z) with ¢1(x) > 0 for all z € RV,

We recall that a sequence {u,,} C X is said to be a (C).-sequence if I(u,) —
c and (1 + |Jupl/)!l’(u,) — 0. The functional I is said to satisfy the (C).-
condition if any (C').-sequence of I has a convergent subsequence. To obtain
a nonzero critical point of the functional I, we need a variant version of the
Mountain Pass Theorem as follows.

Theorem 2.3 ([38]). Let X be a real Banach space with its dual space X*.
Suppose that I € C1(X,R) satisfies

max{I(0),1(e)} <m <ma < ”iﬁipl(w?

for some m1, n2, p >0, and e € X with |le|| > p. Define

— inf I(~(t
¢ = Inf max (v(t)),

where I' = {y € C([0,1],X) : v(0) = 0,v(1) = e}. If I satisfies the (C).-
condition, then c is a critical value of I.
3. Proof of theorems

3.1. Proof of Theorem 1.1. As an obvious consequence of (S1) and (S2), we
have the following lemma.

Lemma 3.1. There exists r > 0 and ¢ € X such that ||¢|| > r and
(3.1) b:= ”11H1£ I(u) > I(0) =0 > I(p).
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Remark 3.2. In fact, (S2) implies that as u — 0 we have

(' (u),u) = [[ull® + o(|[ull®),  I(u) = %IIUII2 +o||ull?).

Therefore, it is also easy to see that:

(i) There exists pg > 0 such that ||u|]| > pg, where u is any nontrivial
critical point of 1.

(ii) For any ¢ > 0, there exists p. > 0 such that if I(u,) — ¢, then
[unll = pe.

By Lemma 3.1 we see that I has a mountain pass geometry: that is, setting

I'={y € (C[0,1], X) : 7(0) = 0 and I(y(1)) < 0},

we have I" # (). By a special version of the Mountain Pass theorem (see [16]),
for the mountain pass level

3.2 — inf I(v(t)),

(3:2) ¢ = Inf max I((1))

there exists a (C). sequence {u,} for I. Moreover, by (3.1) we see that ¢ > 0.
Next, we show that this (C'). sequence is bounded. Before that, we deduce
from (S3) that

F(x,t) == f(z,t)t — 2F (x,t) > 0, for all (z,t) € RY x R.

Actually, let s = 0 in (S3), we can get this conclusion easily.
Now we are ready to prove the following lemma.

Lemma 3.3. Suppose that (S1), (S2) and (S3) hold, and let ¢ € R. Then any
(C)¢ sequence of I is bounded.

Proof. Let {u,} be a (C). sequence of I. If {u,} is unbounded, up to a
subsequence we may assume that

I(un) = ¢, lunll = 00, [II"(un)|l[lun]l — 0.

In particular,
(3.3)
1

lim (K (2) <2f(a:,un)un - F(m,un)> dz = lim (I(un) - ;(I'(un),un>) —e

n—oo JpN n— oo

Let v, = |lun ||~ up, then {v,} is bounded in X, and there exists v € X such
that, passing to a subsequence if necessary,

(3.4) v, = vin X,
v, = vin LL(RY) Vg € [2,2%),

v (x) = v(x) for ae. z € RV,
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If v(x) # 0 we have |u,(z)| — +00, and using (S1) we obtain
Bz, un(z))

|un?

The set © = {z € RY : v(z) # 0} has positive Lebesgue measure, using (3.5)
we have

(3.5) |vn |2 — +o00.

1 c—|—0(1) K(z)F(z,up,)
= = 5 dz
2 unl? Hunll
K(x n
/ Fla,u )| v |2dz — 400,
|u 2

which is impossible.
If v(z) = 0, we shall derive a contradiction as follow. Given a real number
R >0, by (S1) and (S2), for any £ > 0, there exists C; > 0 such that

(3.6) |F(z, Rt)| < glt|* 4 C.|t|P,

we can get that,

lim sup K (2)|F(z, Rvy)|de < limsup (¢|va]3 + Ce|lval3) -
n—oo

n—o00 RN

By (3.4), we deduce

(3.7) lim K(z)F(x, Rv,)dx = 0.
n—oo JpN

As in [23], we choose a sequence {t,} C [0, 1] such that

3.8 I(thuy) = I(tuy,).

(3.8) (bnun) = masc I(tun)

Given | > 0, since for n large enough we have v/4l|lu,||~! € (0,1), using (3.7)
with R = v/4l, we obtain

(3.9) I(tpun) > I1((4D) Y ?0,) =21 — | K(2)F(x, (4)Y?v,)dz > 1.
RN

That is, I(tpun) — +oo. But I(0) = 0, I(u,) — ¢, using (3.8) we see that
€ (0,1), and

/ K(x)|V(tnun)|2dx —/ K(z)f(z, tpup)tnunde = (I (tauy), thtin)

d

=t,— I(tu,) = 0.
dt lt=t, (tun)
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Now, by assumption (S3), we have

[ K@) (;f(x,un)un - F(m,un)) dx

Y]

/ K(x) (;f(x, tpn ) tpu, — F(x, tnun)> dx
]RN
1/1

= 5 (3 [ K@V P [ K F i)

1
= gl(tnun) — +o00.

This contradicts (3.3). Therefore we have proved that {u,} is bounded. g

Proof of Theorem 1.1. We use the standard argument (see e.g. [1] for the case
that (AR) holds) to show that (P) has a nontrivial solution w. Using the
technique in the proof [24, Theorem 4.5], we show that problem (P) has a
ground state. Letting

(3.10) m = inf{I(u) : uw € X \ {0} and I'(u) = 0}.
Assume that w is an arbitrary critical point of I. Since (S3) implies
(3.11) F(z,t) >0, forall (z,t) € RY xR,

we deduce

(312)  I(u) = I(u) %(I’(u),u) =5 |, K@Fwuwds >0,

and m > 0. Therefore 0 < m < I(u) < 4+o0o. Let {u,} be a sequence of
nontrivial critical points of I such that I(u,) — m. According to Remark
3.2(i) we see that

(3.13) l[unll = po
for some py > 0. Since u,, is critical point, we also have
(L + flun DI (un)|| = O.

Thus {u, } is a Cerami sequence at the level m. By Lemma 3.3, {u, } is bounded
in X. Up to a subsequence {u,} (still denoted by {u,}) converges weakly to
some u, a critical point of I. Moreover, using (3.11) and applying Fatou’s
lemma, we deduce

(I'(u),u) = L K(z)F(x,u)dx

I(u) = I(u) 5 |

1
2

1
< liminf = K(z)F(z,up)dz

n—oo RN

— liminf (I(un) _ ;(I’(un),un>> —m.

n—oo
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Therefore, u is a nontrivial critical point of I with I(u) = m. Now, Theorem
1.1 is proved. O

3.2. Proof of Theorem 1.3. First, we show that the functional I has the
mountain pass geometry.

Lemma 3.4. Under the conditions of Theorem 1.3, we have

(i) There exist p, § > 0 such that I(u) > 0, Yu € X with ||u|| = p.
(ii) There exists e € X with ||e|| > p such that I(e) < 0.

Proof. (i) By (H1), (H2), there exist dg, Coy > 0 such that
(3.14) Fla,t) < (A0 — o)t + Cot> =1, Vo e RV, vt >0,
which implies that

2F (x,t) < (A — 0o)t? + Cot?, vz e RNVt > 0.

Then we get

I(u) = %/RN K (2)|Vu|?dr — /RN K(z)F(z,u)dzx

1/ K (z)|Vul*dz — M=%
2 RN

Y

K(z)u?dx — Cy K(x)u? dx
RN RN

1 — x

> = <1 _M 60) K(z)|Vul*dr — Co/ K(z)u® dx
2 /\1 RN RN
do Co 2N

> Do e - o

= o fuf? [1 - ||u||f3”2] .
It is not difficult to see that there exists sufficiently small p > 0 such that
I(u) >0, Yue X with |Jul| = p.
(ii) Using (H2), there exist d1, My > 0 such that
(3.15) 2F (x,t) > (A + 1)1, Vo € RN vt > M.
Take R; > 0 large enough such that

A1+ 261
(316) 1911255,y 2 S22 1B

Since ¢1(x) > 0 in RY, there exists ¢; > 0 such that

t1¢1($) > My, V|l‘| < R;.
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Then, by (3.15), (3.16) and Lemma 2.2, we can see that, for ¢t > t;,

2
Ito) =5 [ K@Védo- [ K@@ to)ds
RN RN
2
= SalalE - [ K@F@tod - | K@) F,)ds

Br, Bﬁl

t2 5 t2 9
< SMlal- S [ g
BR]

A

aeN PN

= 4 1 1]l2-

Take e = t¢; with £ > t;. It is easily seen that I(e) < 0. O
To obtain critical points of the functional I, we need to show that I satisfies

the (C).-condition.

Lemma 3.5. Assume that (H1) and (H2) hold. Then the functional I satisfies
the (C).-condition for any c € R.

Proof. Let {uy,} C X such that

(3.17) I(un) = ¢, (14 un|DIH (un)| — 0.

We assume by contradiction that |un|| — co. Set wy, = rr. Then [wy|| = 1,

and there exists wg € X such that, passing to a subsequence if necessary,
wy, — wp in X,
wy, — wo in L% (RY),

wy(z) — wo(z) for a.e. x € RY.

We claim that wg(x) £ 0. In fact, if not, we assume that wqo(x) = 0, that is,
wy, — 0 in L% (RY). From (3.17) and (H1) it follows that

0(1) — <I/(un)7 Un>

[[n |
= K(z)Vw?dz — / K(z) Jz. un)wnd:ﬂ
RN RN [ |
=1- K(x)wwida:
RN [[un]|

— 1,
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which is a contradiction. Taking w;,, (z) = max{—w,(z),0} as test function,
using (3.17) again we get

0(1) — <I’(un),w5>
[[n |

_ [ K@)Vt [ K@l
RN RN Hun”

— [l II12 r f(@, un) w=)2dx
=l P+ [ K@ H s,

From (H1) it follows that w, (x) = o(1). Then we have wg (z) = 0 for a.e.
x € RY and thus wo(z) > 0 and wo(z) Z 0.
Define

Q) ={z e RY 1wo(z) =0}, Qo= {xcRY :wy(x)>0}.
If x € 4, using (H1), (H2), there exists C; > 0 such that

(3.18) 0< @ <y, VreRN VicR,

w,, dx

which implies that
F @ ()| _ | ()
[[un| Un ()

Then we have

wp(z)| < Cilwy(x)] — 0 for ae. z € Q.

[[un]|
where d; is taken as in (3.15). If x € Qo, then uy,(z) = wy(x)||un| — +oo.
Using (H2) we get

(3.19) — 0= (A1 + 01)wp(x) for a.e. z € Ny,

(3.20)
lﬁgirgof W = linIr_1>i£f an(m) > (A1 + 61)wo(z) for a.e. x € Q.

In view of w, — wg in X, it follows that [px wp¢rde — [pn wogrdz. By
(3.17) and Lemma 2.2, we have

0(1) _ <I/(un)7 ¢1>

[[wal
[ K@)Vwn-Vordr— [ K@) g a0,
RN RN ||“n||
=\ / wyPrdr — K(x)Mwn(bldx.
RN RN n

Then, from (3.19), (3.20) and Fatou’s lemma, it follows that

)\1/ woprdr > (A + 51)/ woprdx.
RN RN
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Since, ¢1(x) > 0 and wo > 0, wo # 0, it follows that [,y wo¢idz > 0. Thus
A1 > A1 + 91, a contradiction. This shows that {u,} is bounded in X. Thus
there exists ug € X such that, passing to a subsequence if necessary,

Uy, — ug in X,
U, — up in L% (RY),
() — ug(x) for a.e. x € RY.

Together with (H1), (H2), it is not difficult to obtain that

- K(z)f(x,un)(u, — up)dx = o(1).

Noting that (I’ (uy), un — ug) — 0, it follows that
Jun — woll? = / K(2) (2, ) (tn — w0} + o(1) = o(1),

which implies that w,, — ug in X. This completes the proof. O

Proof of Theorem 1.3. Set M = {u € X \ {0} : I'(u) = 0}. By Lemmas 3.5,
3.4 and Theorem 2.3, it is easy to obtain a nontrivial critical point ug of I,
which implies that M # (). We claim that

n=inf{ue X\ {0} :ue M} >0.

Assume by contradiction that there is a sequence u,, C X \ {O} with ||ug| — 0
such that I'(uy,) = 0, which implies that [lu||? = [pn K(2)f(2, un)undz. As
shown in Lemma 3.4, there exists Cy > 0 such that

A1 — 6 .
Junl < =5 Hlun* 4 Cullun "

Then we can obtain a contradiction and thus the claim is right.

Now we shall show that I is bounded from below on M. Indeed, if not, there
exists a sequence {un} C M such that I(u,) < —n, Vn € N. Using (3.14), we
can get that I(u) > 2)\ |ul|? = Coljul|>" for some Cy > 0, which implies that
|lwn|| = +o0. Note that (1 + ||un|)||I'(un)|] = 0 for all u, € M. As in the
proof of Lemma 3.5, we can obtain that {u,} is bounded in X, which is a
contradiction. Thus I is bounded from below on M. Define

Crmin = Inf{I(u) : u € M}.

Clearly, ¢min < I(ug). Let {u,} C M be a minimizing sequence for ¢un, i.e.,
I(un) = Cmin and I'(up,) = 0. Then {u,} is a (C),,,,, sequence. Together
with Lemmas 3.5, {u,} is bounded in X and it has a convergence subsequence,
still denoted by {u,}, such that w,, — @ in X. Thus, 4 in X is a nontrivial
critical point of I with I(@) = ¢pin > 0 and hence @ is a ground state solution

of (P). O
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