Bulletin of the

Iranian Mathematical Society

Vol. 43 (2017), No. 5, pp. 1037-1043

Title:

The norm of pre-Schwarzian derivatives on bi-univalent functions of order α
Author(s):
H. Rahmatan, Sh. Najafzadeh and A. Ebadian

Published by the Iranian Mathematical Society

THE NORM OF PRE-SCHWARZIAN DERIVATIVES ON BI-UNIVALENT FUNCTIONS OF ORDER α

H. RAHMATAN, SH. NAJAFZADEH* AND A. EBADIAN

(Communicated by Ali Abkar)

Abstract. In the present investigation, we give the best estimates for the norm of the pre-Schwarzian derivative $T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}$ for bi-starlike functions and a new subclass of bi-univalent functions of order α, where $\left\|T_{f}\right\|=\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|$.
Keywords: Bi-univalent functions, bi-starlike functions, subordination, pre-Schwarzian derivatives.
MSC(2010): Primary: 30C45; Secondary: 30C50.

1. Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. The subclass of A, consisting of all univalent functions $f(z)$ in Δ, is denoted by S. Obviously, every function $f \in S$ has an inverse f^{-1} defined by $f^{-1}(f(z))=z, z \in \Delta$, and $f\left(f^{-1}(w)\right)=w,|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}$. Moreover, it is easy to see that the inverse function has the series expansion of the form

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots ; w \in \Delta
$$

which implies that f^{-1} is analytic. The derivative of f^{-1}, can be calculated by using elementary calculus. It is easy to see that if $w=f(z)$ and $w+\epsilon=f(z+\delta)$, then

$$
\delta=f^{-1}(w+\epsilon)-f^{-1}(w) \longrightarrow 0
$$

Article electronically published on 31 October, 2017.
Received: 13 June 2015, Accepted: 31 March 2016.

* Corresponding author.
as $\epsilon \longrightarrow 0$. Since f^{-1} is continuous, so in this case we have

$$
f(z+\delta)-f(z) \neq 0, f(z) \neq 0
$$

Since f is a univalent function as a result, when $\epsilon \longrightarrow 0$, one gets

$$
\frac{f^{-1}(w+\epsilon)-f^{-1}(w)}{\epsilon}=\frac{\delta}{f(z+\delta)-f(z)} \longrightarrow \frac{1}{f^{\prime}(z)}
$$

Therefore, we have

$$
\begin{equation*}
\frac{d}{d w}\left(f^{-1}(w)\right)=\frac{1}{f^{\prime}(z)} \tag{1.2}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in Δ if both f and f^{-1} are univalent in Δ. We denote by σ the class of bi-univalent functions in Δ of the form (1.1). For examples of bi-univalent functions see the recent work of Srivastava et.al., [7].

Let f and g be analytic in Δ. The function f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function ω such that $\omega(0)=0$, $|\omega(z)|<1$, and $f(z)=g(\omega(z))$ on Δ, see [3].

The pre-Schwarzian derivative of f is denoted by

$$
T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} .
$$

We define the norm of T_{f} by

$$
\left\|T_{f}\right\|=\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|
$$

This norm have a significant meaning in the theory of Teichmuller spaces. For a univalent function f, it is well known that $\left\|T_{f}\right\|<6$. This is the best possible estimation. On the other hand, the following result is important to note.

Theorem 1.1. Let f be analytic and locally univalent in Δ. Then
(i) if $\left\|T_{f}\right\| \leq 1$, then f is univalent, and
(ii) if $f \in S^{*}(\alpha)$, then $\left\|T_{f}\right\| \leq 6-4 \alpha$.

Part (i) is due to Becker [1] and sharpness of the constants is due to Becker and Pommerenke [2]. Part (ii) is due Yamashita [4, 8]. The norm estimations for typical subclasses of univalent functions are investigated by many authors, see [5-8].

In this paper we shall give the best estimation for subclasses of bi-univalent functions.

2. Main results

Definition 2.1. A function $f(z)$ given by (1.1) is said to be in the class $S_{\sigma}^{*}(\alpha)$, if the following conditions are satisfied:

$$
\begin{aligned}
& f \in \sigma \quad \text { and } \quad \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \\
& f \in \sigma \quad \text { and } \quad \operatorname{Re}\left\{\frac{w g^{\prime}(w)}{g(w)}\right\}>\alpha
\end{aligned}
$$

where $w=f(z), \quad g=f^{-1}, \quad 0 \leq \alpha<1$.
Theorem 2.2. Let the function $f(z)$ given by (1.1) be in the class $S_{\sigma}^{*}(\alpha)$, $0 \leq \alpha<1$. Then

$$
\begin{equation*}
\left\|T_{f}\right\| \leq \min \{6-4 \alpha, 4 \alpha+2\} \tag{2.1}
\end{equation*}
$$

Proof. It follows from Theorem 1.1 that $\left\|T_{f}\right\| \leq 6-4 \alpha$, where $0 \leq \alpha<1$. Also by Definition 2.1 we have $\operatorname{Re}\left\{\frac{w g^{\prime}(w)}{g(w)}\right\}>\alpha$. We set $h(z)=\frac{w g^{\prime}(w)}{g(w)}$. Then by assumption h is a holomorphic function on Δ satisfying $h(0)=1$, and $h(\Delta) \subset\{w \in C ;$ Re $w>\alpha\}$. The univalent map $p(z)=\frac{1+(1-2 \alpha) z}{1-z}$ on Δ satisfies $p(0)=1$ and

$$
\begin{equation*}
h(w)=\frac{w g^{\prime}(w)}{g(w)} \prec \frac{1+(1-2 \alpha) z}{1-z} \tag{2.2}
\end{equation*}
$$

so there exists a holomorphic function $\varphi: \Delta \longrightarrow \Delta$ with $\varphi(0)=0$ and $|\varphi(z)|<$ 1 on Δ such that

$$
\begin{equation*}
h=p \circ \varphi=\frac{1+(1-2 \alpha) \varphi(z)}{1-\varphi(z)} \tag{2.3}
\end{equation*}
$$

Using (1.2) we have,

$$
\begin{equation*}
h(z)=\frac{f(z)}{z f^{\prime}(z)}=\frac{1+(1-2 \alpha) \varphi(z)}{1-\varphi(z)} \tag{2.4}
\end{equation*}
$$

By logarithmic differentiation on (2.4), we have

$$
\begin{aligned}
& \log f(z)-\log z-\log f^{\prime}(z)=\log (1+(1-2 \alpha) \varphi(z))-\log (1-\varphi(z)) \\
& \frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}-\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{(1-2 \alpha) \varphi^{\prime}(z)}{1+(1-2 \alpha) \varphi(z)}+\frac{\varphi^{\prime}}{1-\varphi(z)}
\end{aligned}
$$

Since φ belongs to class of Schwarz functions, we have $\varphi(z) \prec z$ on Δ. So we can set $\varphi=i d_{\Delta}$; we also have

$$
\begin{equation*}
T_{f_{\alpha}}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\left(2-6 \alpha+4 \alpha^{2}\right) z}{(1-z)(1+(1-2 \alpha) z)} \tag{2.5}
\end{equation*}
$$

We conclude

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq\left(1-|z|^{2}\right)\left|T_{f_{\alpha}}(z)\right| \tag{2.6}
\end{equation*}
$$

So we can estimate as,

$$
\begin{align*}
& \left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq \sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \\
& =\sup _{|z|<1} \frac{\left(2-6 \alpha+4 \alpha^{2}\right)|z|(1+|z|)}{|1+(1-2 \alpha) z|} \tag{2.7}
\end{align*}
$$

We can see that for upper bound of $\left\|T_{f_{\alpha}}(z)\right\|$, that z have to lead to 1 . So we have,

$$
\begin{equation*}
\lim _{z \longrightarrow 1} \frac{\left(2-6 \alpha+4 \alpha^{2}\right)|z|(1+|z|)}{|1+(1-2 \alpha) z|}=\frac{2\left(2-6 \alpha+4 \alpha^{2}\right)}{1+(1-2 \alpha)}=4 \alpha+2 \tag{2.8}
\end{equation*}
$$

Hence by (2.6) and (2.8) we conclude,

$$
\left\|T_{f}\right\| \leq 4 \alpha+2
$$

This complets the proof.
Definition 2.3. A function $f(z)$ given by (1.1) is said to be in the class $\nu_{\sigma}^{*}(\alpha)$, if the following conditions are satisfied:

$$
\begin{aligned}
& f \in \sigma \quad \text { and } \quad \operatorname{Re}\left\{\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)\right\}>\alpha \\
& f \in \sigma \quad \text { and } \quad \operatorname{Re}\left\{\left(\frac{w}{g(w)}\right)^{2} g^{\prime}(w)\right\}>\alpha
\end{aligned}
$$

where $w=f(z), \quad g=f^{-1}, \quad 0 \leq \alpha<1, w \in \Delta$.
Theorem 2.4. Let the function $f(z)$ given by (1.1) be in the class $\nu_{\sigma}^{*}(\alpha)$, $0 \leq \alpha<1$. Then

$$
\begin{equation*}
\left\|T_{f}\right\| \leq \min \{10-8 \alpha, 6-8 \alpha\} \tag{2.9}
\end{equation*}
$$

Proof. Since $\operatorname{Re}\left\{\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)\right\}>\alpha$, we set $h(z)=\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)$, by a similar argument we conclude that

$$
\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z) \prec \frac{1+(1-2 \alpha) z}{1-z} .
$$

So we have,

$$
\begin{equation*}
\left(\frac{z}{f(z)}\right)^{2} f^{\prime}(z)=\frac{1+(1-2 \alpha) \varphi(z)}{1-\varphi(z)} \tag{2.10}
\end{equation*}
$$

By logarithmic differentiation on (2.10) we have

$$
\begin{aligned}
& 2(\log z-\log f(z))+\log f^{\prime}(z)=\log (1+(1-2 \alpha) \varphi(z))-\log (1-\varphi(z)) \\
& \frac{2}{z}-\frac{2 f^{\prime}(z)}{f(z)}+\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{(1-2 \alpha) \varphi^{\prime}(z)}{1+(1-2 \alpha) \varphi(z)}+\frac{\varphi^{\prime}}{1-\varphi(z)} \\
& \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2 f^{\prime}(z)}{f(z)}-\frac{2}{z}+\frac{(1-2 \alpha) \varphi^{\prime}(z)}{1+(1-2 \alpha) \varphi(z)}+\frac{\varphi^{\prime}}{1-\varphi(z)}
\end{aligned}
$$

So, we get

$$
T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2+2(1-2 \alpha) \varphi(z)}{z(1-\varphi(z))}-\frac{2}{z}+\frac{(1-2 \alpha) \varphi^{\prime}(z)}{1+(1-2 \alpha) \varphi(z)}+\frac{\varphi^{\prime}}{1-\varphi(z)}
$$

Setting $\varphi=i d_{\Delta}$, we also have

$$
T_{f_{\alpha}}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2(1+(1-2 \alpha) z)}{z(1-z)}-\frac{2}{z}+\frac{1-2 \alpha}{1+(1-2 \alpha) z}+\frac{1}{1-z}
$$

or equivalently,

$$
T_{f_{\alpha}}(z)=\frac{-6 \alpha+6+\left(4-12 \alpha+8 \alpha^{2}\right) z}{(1-z)(1+(1-2 \alpha) z)}
$$

We conclude that

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq\left(1-|z|^{2}\right)\left|T_{f_{\alpha}}(z)\right| \tag{2.11}
\end{equation*}
$$

So we can estimate as

$$
\begin{align*}
& \sup _{|z|<1}\left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq \sup _{|z|<1}\left(1-|z|^{2}\right)\left|T_{f_{(\alpha)}}(z)\right| \\
& \leq \sup _{|z|<1} \frac{(1+|z|)\left(-6 \alpha+6+\left(4-12 \alpha+8 \alpha^{2}\right)|z|\right)}{(1+(1-2 \alpha)|z|)} \tag{2.12}
\end{align*}
$$

We can see that for upper bound of $\left\|T_{f_{\alpha}}(z)\right\|$, that z have to lead to 1 ,

$$
\begin{align*}
& \lim _{z \longrightarrow 1} \frac{(1+|z|)\left(-6 \alpha+6+\left(4-12 \alpha+8 \alpha^{2}\right)|z|\right)}{1+(1-2 \alpha)|z|} \\
& =10-8 \alpha \tag{2.13}
\end{align*}
$$

Hence by (2.12) and (2.13) we conclude that

$$
\begin{equation*}
\left\|T_{f}\right\| \leq 10-8 \alpha \tag{2.14}
\end{equation*}
$$

For the second part of the proof, we have
$f \in \sigma$ and $\operatorname{Re}\left\{\left(\frac{w}{g(w)}\right)^{2} g^{\prime}(w)\right\}>\alpha$, where $g=f^{-1}, w \in \Delta$ and $0 \leq \alpha<1$.

By $g^{\prime}=\frac{d}{d w}\left(f^{-1}(w)\right)=\frac{1}{f^{\prime}(z)}$, we have $\operatorname{Re}\left\{\left(\frac{f(z)}{z}\right)^{2} \frac{1}{f^{\prime}(z)}\right\}>\alpha$. We set $h(z)=$ $\left(\frac{f(z)}{z}\right)^{2} \frac{1}{f^{\prime}(z)}$. By a similar argument, we conclude that

$$
\left(\frac{f(z)}{z}\right)^{2} \frac{1}{f^{\prime}(z)} \prec \frac{1+(1-2 \alpha) z}{1-z} .
$$

So we have,

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{2} \frac{1}{f^{\prime}(z)}=\frac{1+(1-2 \alpha) \varphi(z)}{1-\varphi(z)} \tag{2.15}
\end{equation*}
$$

By logarithmic differentiation of (2.15) we have,

$$
T_{f}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2+2(1-2 \alpha) \varphi(z)}{z(1-\varphi(z))}-\frac{2}{z}-\frac{(1-2 \alpha) \varphi^{\prime}(z)}{1+(1-2 \alpha) \varphi(z)}-\frac{\varphi^{\prime}}{1-\varphi(z)}
$$

Setting $\varphi=i d_{\Delta}$, we also have

$$
T_{f_{\alpha}}(z)=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{2(1-\alpha)+\left(8 \alpha^{2}-12 \alpha+4\right) z}{(1-z)(1+(1-2 \alpha) z)} .
$$

So, we obtain

$$
\begin{aligned}
& \left\|T_{f_{\alpha}}(z)\right\| \leq \sup _{|z|<1}\left(1-|z|^{2}\right) \frac{2(1-\alpha)+\left(8 \alpha^{2}-12 \alpha+4\right)|z|}{(1-|z|)(1+(1-2 \alpha)|z|)} \\
& =\sup _{|z|<1} \frac{(1+|z|)\left[2(1-\alpha)+\left(8 \alpha^{2}-12 \alpha+4\right)|z|\right.}{(1+(1-2 \alpha)|z|)},
\end{aligned}
$$

and finally,

$$
\left(1-|z|^{2}\right)\left|T_{f}(z)\right| \leq\left(1-|z|^{2}\right)\left|T_{f_{\alpha}}(z)\right| .
$$

Therefore, using what we get

$$
\begin{equation*}
\left\|T_{f}(z)\right\| \leq \sup _{|z|<1}\left(1-|z|^{2}\right)\left|T_{f_{\alpha}}(z)\right|=\sup _{|z|<1} \frac{(1+|z|)\left[2(1-\alpha)+\left(8 \alpha^{2}-12 \alpha+4\right)|z|\right]}{(1+(1-2 \alpha)|z|)} . \tag{2.16}
\end{equation*}
$$

We can see that for upper bound of $\left\|T_{f_{\alpha}}(z)\right\|$, that z have to lead to 1 ,

$$
\begin{align*}
& \lim _{z \rightarrow 1} \frac{(1+|z|)\left[2(1-\alpha)+\left(8 \alpha^{2}-12 \alpha+4\right)|z|\right]}{1+(1-2 \alpha)|z|} \\
& =6-8 \alpha . \tag{2.17}
\end{align*}
$$

Hence using (2.16) and (2.17) we conclude that

$$
\begin{equation*}
\left\|T_{f}\right\| \leq 6-8 \alpha \tag{2.18}
\end{equation*}
$$

Combining (2.14) and (2.18) completes the proof.

References

[1] J. Becker, Lownersche differentialgleichung and quasikonform fortsetzbare schlichte funktionen, J. Reine Angew. Math. 255 (1972) 23-43.
[2] J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math. 354 (1984) 74-94.
[3] P.L. Duren, Univalen Functions, Springer, New York 1978.
[4] Y.C. Kim and T. Sugawa, Norm estimates of the pre-schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. (2) 49 (2006), no. 1, 131-143.
[5] Y. Okuyama, The norm estimates of pre-schwarzian derivatives of spiral-like functions, Complex Var. Theory Appl. 42 (2000), no. 3, 225-239.
[6] S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc. 21 (2013), no. 3, 190-193.
[7] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192.
[8] S. Yamashita, Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J. 28 (1999) 217-230.
(Hormoz Rahmatan) Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran.

E-mail address: h.rahmatan@gmail.com
(Shahram Najafzadeh) Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran.

E-mail address: najafzadeh1234@yahoo.ie
(Ali Ebadian) Department of Mathematics, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran.

E-mail address: ebadian.ali@gmail.com

