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Abstract. Let (ΣP , σP ) be the space of a spacing shifts where P ⊂
N0 = N ∪ {0} and ΣP = {s ∈ {0, 1}N0 : si = sj = 1 if |i− j| ∈ P ∪ {0}}
and σP the shift map. We will show that ΣP is mixing if and only if it has
almost specification property with at least two periodic points. Moreover,
we show that if h(σP ) = 0, then ΣP is almost specified and if h(σP ) > 0
and ΣP is almost specified, then it is weak mixing. Also, some sufficient

conditions for a coded ΣP being renewal or uniquely decipherable is given.
At last we will show that here are only two conjugacies from a transitive
ΣP to a subshift of {0, 1}N0 .
Keywords: Spacing shifts, almost specification, renewal, uniquely deci-

pherable.
MSC(2010): Primary: 54H20; Secondary: 37B10, 37A25.

Introduction

Let N0 = N ∪ {0}, P ⊆ N and ΣP be a subshift on {0, 1}N0 defined as

ΣP = {{si}i∈N0 : si = sj = 1 if |i− j| ∈ P ∪ {0}}.
Then, (ΣP , σP ) is called the spacing shifts associated to P . A rather detailed
study of them can be found in [2]. These shifts generate a good source of exam-
ples in topological dynamical systems (TDS); in particular, when considered
from the combinatorial point of view. For instance, a (ΣP , σP ) is mixing, or
weak mixing if and only if P is cofinite or thick, respectively. In fact, Lau
and Zame [14] introduced spacing shifts to provide examples of maps that are
topologically weak mixing but not mixing. On the other side, the spacing shifts
may be considered as the opposite to Markov shifts: any 1 appearing in a word
depends on all the 1’s coming before it. Therefore, there must be restricting
conditions for a spacing shifts being a shift of finite type (SFT) or sofic.
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Banks et al proved in [2] that a spacing shifts is SFT if and only if it is mixing.
More equivalent conditions will be given in Theorem 2.3. Ir n this paper, we
show that a spacing shifts is mixing if and only if it has almost specification
with at least two periodic points. In fact, it turns out that almost specification
property is a rather good tool for characterizing some dynamical properties
of the spacing shifts. For instance, a spacing shifts with almost specification
property and positive entropy is weakly mixing (Theorem 2.6). Also, all zero
entropy spacing shifts have almost specification property (Theorem 2.5). On

the other hand, there is a weak mixing ΣP with d(P ) = limn→∞
P∩{1,...,n}

n = 1,
zero entropy and yet having almost specification property.

In Section 3, we consider renewal spacing shifts and will give some sufficient
conditions on P to have ΣP as a renewal system (Theorem 3.2). We will show
that not all SFT spacing shifts are renewal (Theorem 3.3).

1. Definitions and preliminaries

A TDS is a pair (X, T ) such that X is a compact metric space and T is a
homeomorphism. The return time set is defined to be N(U, V ) = {n ∈ Z :
U ∩ T−nV ̸= ∅} where U and V are opene (nonempty and open) sets. A TDS
(X, T ) is transitive if N(U, V ) ̸= ∅; and it is totally transitive if (X, Tn) is
transitive for any n. A TDS (X, T ) is weak mixing if N(U, V ) is a thick set
(i.e. containing arbitrarily long intervals of Z) for any two opene sets U and
V ; and is strong mixing if N(U, V ) is cofinite for opene sets U, V .

The topological entropy of T with respect to a finite open cover α is h(T, α) =
lim supn→∞

1
n logN (∨n

i=1T
−iα) where N (α) denotes the number of sets in a

finite subcover of α with the smallest cardinality and the entropy of T is h(T ) =
supα h(T, α).

Let A be a finite alphabet, i.e. a finite set of symbols. The shift map
σ : AZ → AZ is defined by σ((ai)i∈Z) = (ai+1)i∈Z, for (ai)i∈Z ∈ AZ. If AZ is
endowed with the product topology of the discrete topology on A, then σ is a
homeomorphism and (AZ, σ) is a TDS called two-sided shift space. Similarly,
one-sided shift space can be defined on AN0 , then σ is a finite-to-one continuous
map. A subshift is the restriction of σ to any closed non-empty subset Σ of
AN0 that is invariant under σ. A word (block) of length n is a0a1 · · · an−1 ∈ An

if there is x ∈ Σ such that xi = ai, 0 ≤ i ≤ n − 1. The language L(Σ) is the
collection of all words of Σ and Ln(Σ) is the collection of all words in Σ of length
n. Also, a cylinder is defined as [a0 · · · an]qp = {x ∈ Σ : xp = a0, . . . , xq = an}.
For a subshift, the topological entropy of Σ is h(σ) = limn→∞

1
n log(|Ln(Σ)|).

Let

pern(Σ) = |{x ∈ Σ : σnx = x}| and per(Σ) =
∪
n∈N

pern(Σ).



887 Ahmadi Dastjerdi and Dabbaghian Amiri

Shift spaces described by a finite set of forbidden blocks are called shifts of
finite type (SFT) and their factors are called sofic. A shift of finite type is
k-step, that is, it can be described by a collection of forbidden blocks all of
which have length k + 1 for some k ∈ N.

2. Almost specified spacing shifts

Definition 2.1. A shift space Σ has specification property if there exists
N ∈ N such that for any ℓ ≥ N and w(1), w(2), . . . , w(m) ∈ L(Σ) there are
v(1), v(2), . . . , v(m) ∈ Lℓ(Σ) such that

(w(1)v(1)w(2)v(2) · · ·w(m)v(m))∞ ∈ Σ.

A weaker concept which is one of our concern in this note is the almost
specification property [17]. First, recall that a non-decreasing function g : N →
N is called a mistake function if g(n) ≤ n for all n and g(n)

n → 0.

Definition 2.2. A subshift Σ has almost specification property if there exists
a mistake function g such that for every w(1), . . . , w(n) ∈ L(Σ), there are words
v(1), . . . , v(n) ∈ L(Σ) with |v(i)| = |w(i)| such that v(1) . . . v(n) ∈ L(Σ) and each
v(i) differs from w(i) in at most g(|v(i)|) places.

A sequence {xi}i∈N is called δ-pseudo-orbit if d(σ(xi), xi+1) < δ for any i ≥ 1
and (Σ, σ) has shadowing property, if for any ϵ > 0, there exists δ > 0 such that
for any δ-pseudo-orbit {xi}i∈N, there exists y ∈ Σ such that d(σny, xn) < ϵ for
all n ≥ 1. In general, in a dynamical system with a shadowing property the
properties SFT, weak mixing and specification are equivalent [13, Theorem 1].
Here, without assuming the shadowing property, we have the following.

Theorem 2.3. Let (ΣP , σP ) be a spacing shift. Then, the following are equiv-
alent.

(1) ΣP is topologically mixing;
(2) ΣP is SFT;
(3) ΣP has shadowing property;
(4) ΣP has a non-trivial mixing subsystem;
(5) ΣP has specification property;
(6) ΣP has almost specification property with at least two periodic point.

Proof. A subshift is SFT if and only if it has shadowing property [19]. Also, in
spacing shifts, SFT is equivalent to mixing [2, Theorem 2.4]. So the first three
statements are equivalent.

Note that for any ΣP , P = N([1], [1]). Now if ΣP is mixing, (4) is triv-
ially true. Conversely, if Y is a non-trivially mixing subsystem of ΣP , then
N([1], [1]), the return time set in Y , and hence P is cofinite which implies that
ΣP is mixing.
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It is known that specification property implies mixing [18, Pr roposition 2]
and in mixing subshifts, SFT implies specification property [6].

Since all spacing shifts have the fixed point 0∞, it remains to show that if a
spacing shift has a nonzero periodic point and almost specification, then it is
mixing (the converse is clearly true). Let ΣP be a spacing shift with at least
one nonzero periodic point where P is not cofinite. Therefore, we have kN ⊂ P
for some k ∈ N and there is some m ∈ N, such that |(kN + m) \ P | = ∞.
This implies that for any N , there is n ≥ N such that kn +m ̸∈ P . Now let
w(1) = (10k−1)n10m−1 ∈ Lkn+m(ΣP ) and w(2) = (10k−1)n ∈ Lkn(ΣP ) and let
v(i) be a word with |v(i)| = |w(i)|, i ∈ {1, 2} and v(1) differs w(1) in less than
1
2k places. Then at least two successive 1’s of w(1) will be in the same position

of 1’s of v(1). Hence, if v(1)v(2) ∈ L(X), then all the positions of 1’s of w(2)

must be different with the corresponding positions of v(2). So,r any mistake
function will be larger than 1

k |v
(2)| and this in turn implies ΣP does not have

almost specification property. □

The proof of the above theorem implies:

Corollary 2.4. Suppose ΣP has at least two periodic points. Then ΣP has
almost specification property if and only if P is cofinite.

The situation is different whenever ΣP does not have non-zero periodic
points. A subclass is when the entropy is zero. First recall that for any A ⊂ N0,
the Banach density of A is defined as

d∗(A) = lim sup
M−N→∞

|A ∩ {N, N + 1, . . . , M}|
M −N + 1

.

Also for a point x = {xi}i∈N ∈ ΣP , let

Ax = {i : xi = 1}.

Theorem 2.5. If ΣP has zero entropy, then it has almost specification prop-
erty.

Proof. For any n ∈ N, define g(n) to be the maximum cardinality of entry
1 that can appear in a word of length n. Clearly g(n) is increasing and if

w(1), w(2), . . . , w(k) are in L(ΣP ), then w = w(1)0|w
(2)| · · · 0|w(k)| ∈ L(ΣP ). On

the other hand, h(ΣP ) = 0 if and only if d∗(Ax) = 0 for any x = {xi} ∈ ΣP [1,
Theorem 2.4]. Thus

lim
n→∞

g(n)

n
= lim

n→∞
max

x0···xn−1∈L(ΣP )

∑n
i=0 xi

n
= 0.

Therefore, g(n) is a mistake function and so zero entropy implies almost spec-
ification property. □
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In [11], authors prove that any compact topological system with almost
specification and measure of full support is weak mixing. In spacing shifts,
we will prove the same conclusion holds for almost specification with positive
entropy (Theorem 2.6). This is actually an extension, because if an spacing
shifts has a measure with full support then µ([1]) > 0 and by [12, Theorem
13] entropy is positive. However, there are examples in spacing shifts with
positive entropy which are not of full support. To see this we recall a lemma
from Furstenberg [8, Lemma 3.17]. This lemma states that in a shift space
(X, σ) on a set of finite characters Λ, there is an invariant measure µ with
µ([α]) > 0 iff the symbol α occurs in some x ∈ X with upper Banach density.
Now a consequence of this result is that if µ is a measure with full support,
then for any u, the block u appears in some x ∈ X with upper Banach density.
We use this fact to show that if P = 2N ∪ {3}, then ΣP has positive entropy
and without any measure with full support. Our space has positive entropy
because, (10)∞ ∈ X. However, if u = 1001, then u can appear in any point
only finitely many times and so this space is not of full measure.

Recall that a set A ⊂ N is thick if for any M ∈ N, there exists n such that
the M consecutive numbers n, n+ 1, . . . , n+M ∈ A; also, ΣP is weak mixing
if and only if P is thick [2, Theorem 2.1].

Theorem 2.6. Suppose ΣP has almost specification property. If h(σP ) > 0,
then (ΣP , σP ) is weak mixing.

Proof. As stated in the proof of the above theorem h(σP ) > 0 if and only if
there is y ∈ ΣP such that dy = d∗(Ay) > 0 [1, Theorem 2.4].

Assume that g(n) is the mistake function and set k = [ 1
dy−δ ] where 0 < δ <

dy. By this we will have

(2.1) d∗(Ay) >
1

k
.

Pick M ∈ N and choose N sufficiently large so that g(n)
n < 1

2kM whenever

n > N . Also choose l > [ N
2kM ] and let V = v1 · · · v|V | be a word in y such

that |V | = 2lkM > N and |{i : vi = 1}| ≥ |V |
k . Observe that by (2.1), such V

exists and has at least 2lM entries equal 1.
Now set U (i) := V 0i−1 and V (i) := V for 1 ≤ i ≤ M . Let Û (i), V̂ (i) ∈ L(ΣP )

where |Û (i)| = |U (i)|, |V̂ (i)| = |V (i)| and for all 1 ≤ i ≤ M , Û (i)V̂ (i) ∈ L(ΣP )
be the words provided by the definition of almost specification.

We claim that for all 1 ≤ i ≤ M , there is 1 ≤ sV ≤ |V | (resp. 1 ≤ tV ≤ |V |)
such that the sth (resp. t th) entry of all U (i) (resp. V (i) = V ) are 1. Then,

there has to be entries 1 in the positions sV and |Û (i)| + tV in Û (i)V̂ (i). This

forces to have |Û (i)| + tV − sV ∈ P or equivalently |V | + i − 1 + tV − sV ∈
P, 1 ≤ i ≤ M . Since M was arbitrary, P is thick.
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Now we set up to prove the claim. Since g(|V |) < l, V̂ (i) (resp. Û (i)) differs
V = V (i) (resp. U (i)) in at most l (resp. l+1) entries, 1 ≤ i ≤ M . This means

that the positions of at least e = 2lM − (l + 1) of 1’s in Û (i) and U (i) (resp.

V̂ (i) and V (i)) are identical. Without loss of generality, assume that all other
entries except these e entries are 0 and let sV (resp. tV ) be the first appearance

of 1 in Û (i) (resp. V̂ (i)). □

The following example shows that the converse of Theorem 2.6 is not true
even if one chooses P with full density.

Example 2.7. There is a weak mixing ΣP with d(P ) = 1, h(σP ) = 0 and
having almost specification property.

Proof. Recall that if y ∈ ΣP , then Ay − Ay ⊂ P . Hence, if P is not ∆∗, i.e.
there is B ⊂ N, |B| = ∞ such that P ∩ (B − B) = ∅, then h(σP ) = 0. This is
because if d∗(Ay) > 0, then Ay −Ay and hence P is ∆∗ [5]. This enables us to
give examples of weak mixing ΣP with h(σP ) = 0 having almost specification
property.

For instance, let B = {2n : n ∈ N}. Then, for any n, en = 2n = 2n+1 − 2n

and e′n = 2n+1− 2n−1 are two consecutive elements of B−B. But e′n− en > n
and so, P = N \ (B −B) is a thick set and as a result ΣP is weak mixing. By
above reasoning we have h(σP ) = 0 and using Theorem 2.5, implies that it has
almost specification property.

Note that |(B−B)∩ (2n, 2n+1]| = n. That is, |(B−B)∩(1, 2n+1]| = n(n+1)
2

and this means that d(B −B) = 0 or equivalently d(P ) = 1. □

Also, one may use Corollary 2.4 to give examples of spacing shifts which are
not almost specified but have positive entropy. For instance, choose P so that
it is not cofinite but contains kN for some k ∈ N. If P is also chosen to be thick
then our ΣP is weak mixing.

The following example gives a spacing shifts with positive entropy and so
that it has only one periodic point, that is, the unique fixed point (0∞).

Example 2.8. There is a non-weakly mixing spacing shifts with positive en-
tropy and a unique periodic point which does not have almost specification
property.

Proof. Kř́iz̆ provides a subset A ⊂ N such that d∗(A) > 0 but A− A does not
contain any kN for k ∈ N [16]. We have A = (A ∩ (2N + 1)) ∪ (A ∩ 2N) and
with partition regularity, either A ∩ (2N + 1) or A ∩ 2N has positive Banach
density; call that B. Then d∗(B) > 0 and if P = B − B, then h(σP ) > 0.
Also, ΣP is not weak mixing since P is not thick and it does not have non-zero
periodic points for that requires P containing some kN. So by Theorem 2.6,
this spacing shifts does not have almost specification property. □
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It is also worth to mention that independently in [1] and [12], using Kř́iz̆’s
example, a ΣP has been constructed which has positive entropy and it is weakly
mixing with a unique fixed point.

2.1. Spacing shifts as an S-gap shift. Note that a spacing shifts ΣP is an
S-gap shift with S = P − 1 if and only if P + P ⊆ P [2]. The next theorem
gives an alternative combinatorial condition on P for ΣP being an S-gap. We
first give the following elementary lemma.

Lemma 2.9. Suppose a1, a2 ∈ N and (a1, a2) = gcd{a1, a2} = 1. Then there
is L ∈ N such that for any n ≥ L, there are r1, r2 ∈ N0 = N ∪ {0} with
n = r1a1 + r2a2.

We recall from [3] that a set P is ultimately periodic (with ultimate period
p and base N) if there exist p ≥ 1 and N ≥ 0 such that for n ≥ N

n ∈ P ⇔ n+ p ∈ P.

Theorem 2.10. The spacing shifts ΣP is an S-gap shift if and only if P =
kN∩F , for some k ∈ N and F a cofinite set. In particulare, ΣP is a transitive
sofic.

Proof. We show that for a set P ⊂ N, P + P ⊂ P if and only if P = kN ∩ F ,
for some k ∈ N and cofinite F .

This is obvious when gcd(P ) = 1, for then P is cofinite. So assume gcd(P ) =
k. Then without loss of generality we can assume that there are pi, pj ∈ P such
that (pi, pj) = k (otherwise, (pi, pj) = kl for some l and we follow the proof
by kl). This means that there are coprime numbers mi, mj where pi = mik
and pj = mjk. Since P is closed under addition, for any r, s, rpi+spj ∈ P . So
(rmi + smj)k ∈ P and since (mi, mj) are coprime, by Lemma 2.9, there is a
cofinite set F generated by mi and mj and as a result P = kN ∩ F . It is clear
that kN ∩ F is ultimately periodic and by [3, Theorem 5.6], ΣP is sofic. □

Notice that the converse of the above result is not true: Let P = 2N − 1.
Then P is ultimately periodic and ΣP is sofic, but it is not transitive and hence
it cannot be an S-gap.

3. Renewal spacing shifts

A shift space X is coded if there is a countable set W = {w1, w2, . . .} of
words in X called the generator of X such that X is the closure of the set of
sequences obtained by freely concatenating the words in W [15]. We denote
a coded space Σ by Σ(W).

Definition 3.1. A coded system Σ is called renewal system, if there is a finite
generating set W such that Σ = Σ(W). If in addition W can be chosen so
that whenever u1 · · ·ut = v1 · · · vs ∈ L(Σ) with ui, vj ∈ W, we have t = s and
ui = vi, then Σ is called uniquely decipherable [10, Definition 1.2].
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For instance if P = kN, then W = {0k, 10k−1} is a generator for ΣP and it
is uniquely decipherable.

A general form for a cofinite set P is

(3.1) P = {l1, . . . , lr, N, N + 1, . . .}

where li < lj whenever i < j and lr < N − 1.
Set Pl = {l1, . . . , lr} and PN = {N, N + 1, . . .} and note that P = Pl ∪ PN .

Theorem 3.2. Suppose P is cofinite. Then for the following cases ΣP is
uniquely decipherable renewal system.

(1) P + P ⊂ P .
(2) P as in (3.1) and either 2l1 ≥ N or 2lr < N .

Proof. (1) Suppose P is as in (3.1) and P + P ⊂ P . First we show that if

W = {10l1−1, . . . , 10lr−1, 10N−1, 10N , . . . , 102N−2, 0N}
\{10N+l1−1, . . . , 10N+lr−1},

then Σ(W) = ΣP . The fact that Σ(W) ⊂ ΣP is a direct consequence of
P + P ⊂ P . So let x = (xn)n∈N0 ∈ ΣP . We show that x is a sequence made
by concatenation of some words in W.

Without loss of generality assume that

x0 = 1 and m0 = min{i > 0 : xi = 1}.

We have m0 ∈ P . Let m0 = ℓN + q, ℓ ∈ N0 and 0 ≤ q ≤ N − 1 and set
u0 = x0 · · ·xm0−1. If q ∈ Pl = {l1, . . . , lr}, then u0 = 10q−1(0N )ℓ ∈ L(Σ(W));
otherwise, 10N+q−1 ∈ W and hence u0 = 10N+q(0N )ℓ−1 ∈ L(Σ(W)). Now let
x′ = (x′

n)n∈N0 = σm0x. By applying the same routine as x for x′ and then
using induction, we will have x ∈ Σ(W).

To this end Σ(W) is renewal and it remains to show that it is uniquely
decipherable. Note that |W| < ∞ and for 0 ≤ q < N , there exists a unique u ∈
W \ {0N} such that u = 10mN+q, m ∈ {0, 1}. So if u1u2 · · ·us = v1v2 · · · vt ∈
L(Σ(W)), ui, vi ∈ W, then u1 = v1 and similarly ui = vi and s = t.

(2) When 2l1 ≥ N , we will have P +P ⊂ P and the result follows from (1).
So suppose 2lr < N . Then for all 1 ≤ i ≤ r, liN ∩ {lr + 1, . . . , N − 1} = ∅
which implies that liN ̸⊂ P .

To give a suitable generator W for ΣP , let Bn be a set consisting of those
n-tuples in Pn

l such that all the sums of s ∈ {1, . . . , n} consecutive coordinates
are in P . That is, for 1 ≤ n ≤ r let

Bn = {(li1 , li2 , . . . , lin) ∈ Pn
l : ∪n

s=1 ∪n−s+1
α=1 {liα + liα+1 + · · ·+ liα+s−1} ⊂ P}.

Then B1 = Pl and Bn may be empty for some 2 ≤ n ≤ r. Set B := ∪r
n=1Bn

and note that |B| < ∞. Now for b ∈ B define

u(b) = 10li1−110li2−11 · · · 10lin−110N−1.
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We show that
W = {0, 10N−1} ∪ {u(b) : b ∈ B}

is a generator for ΣP and ΣP = Σ(W) is uniquely decipherable.
Observe that for any b, b′ ∈ B

(3.2) u(b) = u(b′) ⇐⇒ b = b′,

and suppose that u1u2 · · ·ur = v1v2 · · · vs where ui, vj ∈ W. If u1 = 0 (resp.
10N−1), then v1 = 0 (resp. 10N−1) and if u1 = u(b) for some b, then v1 =
u(b′) for some b′ and using (3.2) implies u1 = u(b) = u(b′) = v1. Thus by
an induction argument ui = vi and r = s. This means Σ(W) is uniquely
decipherable and the necessity is proved if we show that Σ(W) = ΣP . But
Σ(W) is a subsystem of ΣP and so Σ(W) ⊂ ΣP . Now let x = (xn) ∈ ΣP .
If x = 0∞ we are done. Otherwise, we may assume x0 = 1 and then by our
hypothesis, we must have at least one 10N−1 as a word in x starting at a
positive position. Let m0 be the first incident that such a 10N−1 occurs and
let u = x0 · · ·xm0 · · ·xm0+N = 1x1 · · ·xm0−110

N−1. We show that u ∈ W and

then substituting x by x′ = σ
|u|
P x and using an induction argument we will have

the proof. But the only possibility is that u = 10li1−110li2−1 · · · 10lin−110N−1

where lij ∈ Pl. This in turn means that b = (li1 , . . . , lin) ∈ Bn and so u =
u(b) ∈ W as required. □

Now we exclude some cases that a coded ΣP cannot be renewal.

Theorem 3.3. Let P be cofinite as in (3.1). Suppose Pl∩[1, a+b] ⊂ aN∪bN ⊂
P but (a+b) ̸∈ P for some positive integers 1 < a < b. Then, ΣP is not renewal.

Proof. Assume that ΣP is renewal. So there exists a finite set of words W
such that Σ(W) = ΣP . Since P contains aN and bN, we conclude that
(10a−1)∞, (10b−1)∞ ∈ ΣP . Hence by the fact that |W| < ∞, there exist
p, q, s1, s2, t1, t2 ∈ N0 such that w1 = 0s1(10a−1)p10t1 , w2 = 0s2(10b−1)q10t2

are in W as subwords of (10a−1)∞ and (10b−1)∞ respectively.
So

s1 + t1 = a− 1, s2 + t2 = b− 1.(3.3)

Also, w1w2 ∈ L(ΣP ) ⇒ e := t1 + s2 + 1 ∈ P . On the other hand, a + b ̸∈ P
implies a+b < N and since e ≤ t1+s1+s2+t2+1 ≤ a+b−1, e ∈ Pl∩[1, a+b] ⊂
aN ∪ bN. Observe that since a < b, we have e < 2b. So either e = b or e = ka
for some k ∈ N. If e = b, then from

w1w2 = 0s1(10a−1)p−1(1 0a−1)10t10s2︸ ︷︷ ︸(10b−1)q10t2 ∈ L(ΣP )

one must have a+ t1 + s2 +1 = a+ b ∈ P which is not allowed by assumption.
(If p = 0, we can consider w1w1w2 instead of w1w2.) Hence, e = ka for some
k ∈ N. Similarly, we have w2w1 ∈ L(ΣP ) and so e′ := s1+ t2+1 = k′a, k′ ∈ N.
This in turn implies a+ b = e+ e′ = (k + k′)a ∈ aN ⊆ P which is absurd. □
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Let P and ΣP be as in the above theorem. Then, a natural question is if
ΣP is conjugate to a renewal system? In fact, in a more general settings, this
question was posed by Adler, that is, he asks: “Is every irreducible shift of
finite type conjugate to a renewal system” [9]. Note that this question has not
been addressed here.

Definition 3.4. A spacing shifts ΣP is called regular spacing shifts if for any
u ∈ L(ΣP ) there exists l ∈ N such that 10l−1u ∈ L(ΣP ).

Example 3.5. (1). Transitive spacing shifts and those with a dense set of
periodic points are regular spacing shifts.

(2). Example of a regular but not transitive spacing shifts. Let P1 = 2N∪3N.
First by showing that ΣP1 has a dense set of periodic points, we will conclude
that ΣP1 is a regular spacing shifts.

By [2, Theorem 2.7], ΣP1 has a dense set of periodic points if and only if for
any p ∈ P1 there exists k ∈ N such that

kN ∪ (kN+ p) ∪ (kN− p) ⊂ P1.

Our example satisfies this condition and so is regular.
Now we show that ΣP1 is not transitive. Let u = 101 and v = 1021 be two

words in ΣP1 . Non-transitivity is proved if we show that u0l−1v ̸∈ L(ΣP1) for
all l ∈ N. Otherwise, l, l+2, l+3, l+5 ∈ P1. Since (l+2)− l = 2, l, l+2 ∈ 2N
and so l + 3, l + 5 are odd numbers and hence they must be in 3N. Trivially
this is impossible.

(3). Example for a non-regular spacing shifts. Let P2 = 2N ∪ {3} and
let u = 1001001 ∈ L(ΣP2). Then, 10l−1u ̸∈ L(ΣP2) for l ∈ N. Because, if
l ∈ 2N+ 1, then l has to be 3 which is impossible here; for this forces to have
9 ∈ P2. If l ∈ 2N, then we must have another odd number l + 3 ∈ P2 which is
again impossible.

Theorem 3.6. Let ΣP be a regular spacing shifts and let X be a subshift in
{0, 1}N0 . Then, ΣP is conjugate to X if and only if ΣP = X. Also, the
conjugacy map must be the identity map up to re-indexing the characters in
{0, 1}.

Proof. Let ϕ be the conjugacy map. Since ΣP has at most one point of periodic
point of period one, the same is true for X and so either 0∞ ∈ X or 1∞ ∈ X;
either is possible and we assume 0∞ ∈ X. (Re-indexing of the characters in
{0, 1} stated in the conclusion happens here.) Also let Φ be the bijective sliding
block coded by anticipation n, and ϕ = Φ∞.

Claim: If xu = u0∞ = u0u1 · · ·um0∞ ∈ ΣP has k entries 1, then k entries
of ϕ(xu) are 1.

We prove the claim by induction on k, the number of entries 1 in u. Since 0∞

is the only periodic point of period 1 in both systems, we must have ϕ(0∞) = 0∞
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and so Φ(0n) = 0. So our claim is true when k = 0. Hence assume that the
claim is true for k − 1 and let

u = 10l1−110l2−11 · · · 10lk−1−110lk−1,

a word of length m in ΣP with k entries 1. By Φ(0n) = 0, we have ϕ(u0∞) =
v0∞ for some v = v0v1 · · · vm ∈ L(X). We show that v has k entries 1. We have
ϕ(σxu) = σ(v0∞) = v1v2 · · · vm0∞. Also since σxu has k − 1 entries 1, by the
induction assumption, v1v2 · · · vm has the same number of entries 1. Now re-
place u0 in u with 0 and call it u′, that is, let u′ = 0l110l2−11 · · · 10lk−1−110lk−1.
Observe that u′ and v′0∞ = ϕ(u′0∞) have k − 1 entries 1. But v′1v

′
2 · · · v′m =

v1v2 · · · vm (because u′
1 · · ·u′

m = u1 · · ·um) and they have k − 1 entries 1 as
well. This implies that v′0 = 0. It remains to determine v0. If v0 = 0, then
ϕ(u′0∞) = ϕ(u0∞) and this is absurd by the fact that ϕ is one to one. There-
fore, v0 = 1 and as a result v has k entries 1 and the claim is set for the case
that u starts with 1. Moreover, in this case xu and its image start with 1.

Now let u = 0l010l1−11 · · · 10lk−1 for some l0 ∈ N. By the definition of reg-
ular spacing shifts, there exists l′ ∈ N where w = 10l

′−10l010l1−11 · · · 10lk−1 ∈
L(ΣP ). On the other hand, xw = w0∞ and σl′+l0(w0∞) begin with 1 and so

ϕ(w0∞) and ϕ(σl′+l0(w0∞)) have k + 1 and k entries 1 respectively and both

begin with 1. Thus ϕ(σl′(w0∞)) = ϕ(u0∞) has k entries 1 and the proof of the
claim is complete.

Now we show that for any u ∈ L(ΣP ), ϕ(u0
∞) = u0∞ and clearly this gives

the proof. But in the second case of the proof of the claim we have that both
xu and its image start with 0. Combining this fact and the similar fact in the
first case, we see that xu and ϕ(xu) have the same starting entry. This in turn
means that Φ(u) = u0 and so we may actually take the anticipation to be 1.
Then, Φ as well as ϕ are identity and we are done. □

Theorem 3.7. Suppose P1 is cofinite and P1 ⊆ P2. Then, ΣP1 is both a
subsystem and a factor of ΣP2 .

Proof. The conclusion follows trivially if P1 = P2; so assume P1 ⊊ P2. Then,
ΣP1 is a proper subsystem of ΣP2 and h(σP1) < h(σP2) ( [15, Corollary 4.4.9]).
Also, per(ΣP1

) ⊆ per(ΣP2
) and in particular, per(ΣP1

) ↘ per(ΣP2
), that is, for

any periodic point of period p in ΣP1 , there is a periodic point of period q in ΣP2

such that p|q. Now, since ΣP1
and ΣP2

are mixing and SFT, by [7, Theorem
5.3], (ΣP1 , σP1) is a factor of (ΣP2 , σP2). □
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