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Abstract. In this paper, we study two types of the reducing subspaces

for the weighted composition operator W : f → u · f ◦ φ on L2(Σ). A
necessary and sufficient condition is given for W to possess the reducing
subspaces of the form L2(ΣB) where B ∈ Σσ(u). Moreover, we pose some

necessary and some sufficient conditions under which the subspaces of the
form L2(A) reduce W . All of these are basically discussed using the con-
ditional expectation properties. To explain the results, some examples
are then presented.

Keywords: Reducing subspace, weighted composition operators, condi-
tional expectation.
MSC(2010): Primary 47B37; Secondary: 47B38.

1. Introduction and preliminaries

Interesting results concerning the reducibility of composition operator Cφ are
found in [1]. In this paper, we attempt to give some necessary and sufficient
conditions for a weighted composition operator W ∈ B(L2(Σ)), to possess two
types of reducing subspaces of the forms L2(ΣA) and L2(A).
Let (X,Σ, µ) be a complete σ-finite measure space. For any complete σ-finite
subalgebra A ⊆ Σ, the Hilbert space L2(X,A, µ|A) is abbreviated to L2(A)
where µ|A is the restriction of µ to A. Given a B ∈ Σ, by AB we mean {A∩B :
A ∈ A} and Bc stands for the complement of B. Also we shall abbreviate
the subspace L2(B,ΣB , µ|ΣB

) to L2(ΣB) which is isometrically isomorphic to

{f ∈ L2(Σ) : χ
Bc f = 0}. We denote the linear space of all complex-valued

Σ-measurable functions on X by L◦(Σ). The subspace L∞(Σ) consists of those
Σ-measurable functions on X which are essentially bounded. The support of
a measurable function f is defined by σ(f) = {x ∈ X : f(x) ̸= 0}. The
characteristic function of a set A will be denoted by χA and χX means the
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constant function 1. All sets and functions statements are to be interpreted as
being valid almost everywhere with respect to µ. For each non-negative function
f ∈ L◦(Σ) or f ∈ L2(Σ), by the Radon-Nikodym theorem, there exists a unique
A-measurable function EA(f) such that∫

A

fdµ =

∫
A

EA(f)dµ,

where A is an A-measurable set for which
∫
F
fdµ exists. Now associated with

every complete σ-finite subalgebra A ⊆ Σ, the mapping EA : L2(Σ) → L2(A)
uniquely defined by the assignment f 7→ EA(f), is called the conditional ex-
pectation operator with respect to A. The mapping EA is a linear orthogonal
projection onto L2(A). If B ⊆ A ⊆ Σ, then EB

A denotes the appropriate con-
ditional expectation from L2(A) onto L2(B). We shall abbreviate the notation
EA

Σ to EA. Then EB
AE

A = EB. For more details on conditional expectation
see [11].

Let φ : X → X be a Σ- measurable transformation of X. Denote by
µ ◦ φ−1 the measure on Σ given by µ ◦ φ−1(A) = µ(φ−1(A)) for A ∈ Σ. We
say that φ is non-singular if µ ◦ φ−1 is absolutely continuous with respect to
µ. Put h = dµ ◦ φ−1/dµ. By φ−1(Σ) we mean the relative completion of the
σ-algebra generated by {φ−1(A) : A ∈ Σ}. In this case, the conditional expec-

tation Eφ−1(Σ) is understood. For a non-singular measurable transformation
φ of X and a Σ-measurable weight function u : X → [0,∞), the weighted
composition operator on L2(Σ) is defined by W (f) = u · f ◦ φ. It is shown

in [8] that W is bounded if and only if J := hEφ−1(Σ)(u2) ◦ φ−1 ∈ L∞(Σ).

Even though φ is not invertible, the function Eφ−1(Σ)(·) ◦ φ−1 is well defined

since Eφ−1(Σ)(·)◦φ−1 = g◦φ for some g ∈ L◦(Σ) which is uniquely determined
on σ(h) ( [4]). For a bounded weighted composition operator W we can write
W = Mu◦Cφ, where Mu is the multiplication and Cφ is the composition opera-
tor. For more details the interested reader is referred to [1,2,11,12]. Throughout
this paper, we assume that φ is non-singular, u ≥ 0 and J ∈ L∞(Σ).

The role of conditional expectation operator is important in this note. We
shall frequently use the following general properties of EA and W acting on
L2(Σ). The proofs of these facts and some related discussions may be found
in [1, 6–8,11].

L(1) If f is an A-measurable function, then EA(fg) = fEA(g);
L(2) If f ≥ 0 then EA(f) ≥ 0; if f > 0 then EA(f) > 0;
L(3) σ(f) ⊆ σ(EA(f)), for each nonnegative f ∈ L2(Σ);
L(4) EA(|f |2) = |EA(f)|2 if and only if f ∈ L◦(A);
L(5) φ−1(σ(h)) = X, i.e., h ◦ φ > 0;
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L(6) (Change of variable)
∫
φ−1(A)

gf ◦ φdµ =
∫
A
hEφ−1(Σ)(g) ◦ φ−1fdµ, for

all g ∈ L2(Σ) and A ∈ Σ;

L(7) W ∗f = hEφ−1(Σ)(uf) ◦ φ−1;

L(8) W ∗Wf = hEφ−1(Σ)(u2) ◦ φ−1f ;

L(9) WW ∗f = u(h ◦ φ)Eφ−1(Σ)(uf);

L(10) Eφ−1(A)(L2(A))=Cφ(L2(A)) = {f ∈ L2(A) :f is φ−1(A)-measurable}.

Let H be a real or complex Hilbert space. The set of all bounded linear
operators from H into H is denoted by B(H). We write N (T ) and R(T ) for
the null-space and the range of an operator T ∈ B(H). Recall that a closed
subspace M ⊆ H is said to be invariant for an operator T ∈ B(H) whenever
T (M) ⊆ M . If M and its orthogonal complement M⊥ are both invariant for
T , then we say that M reduces T . The problem of classifying the reducing
subspaces of T is equivalent to finding the orthogonal projections in {T}′, the
commutant algebra of T . In this case, an operator T can be written with
respect to the decomposition H = M ⊕ M⊥ as a 2 × 2 matrix with linear
transformation entries,

[T ] =

[
PTP 0
0 (I − P )T (I − P )

]
,

where P is an orthogonal projection onto M , PTP ∈ B(M) and (I−P )T (I−
P ) ∈ B(M⊥). So M is a reducing subspace of T if and only if PT (I − P ) = 0
and (I − P )TP = 0. One may consult [10] for further information.

2. Reducibility of weighted composition operators

In order to characterize the reducibility of weighted composition operators
we first need to know the behavior of the orthogonal projections onto a reducing
subspace. For this we shall need the following known facts.

Lemma 2.1 ([5]). For a closed subspace M of H and T ∈ B(H), let P be the
orthogonal projection onto M . Then the following are equivalent:

(a) M is a reducing subspace of T ;
(b) TP = PT ;
(c) T ∗P = PT ∗.

In this case, P commutes with TT ∗ and T ∗T .

Lemma 2.2 ([1, Corollary 3]). Let A and B be two complete σ-finite subalgebras
in Σ. Then the following are equivalent:

(a) EAEB is an orthogonal projection;
(b) EAEB=EBEA;
(c) EAEB=EA∩B.

Let P be the orthogonal projection onto a reducing subspace of L2(Σ) for
W . By Lemma 2.1, L(7), L(8) and L(9) we obtain the following proposition.
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Proposition 2.3. Let W be a weighted composition operator induced by the
pair (u, φ), and let P be the orthogonal projection onto a reducing subspace of
L2(Σ) for W . Then for each f ∈ L2(Σ),

(a) P (uf ◦ φ) = u(Pf) ◦ φ;
(b) P (hEφ−1(Σ)(uf) ◦ φ−1) = hEφ−1(Σ)(uPf) ◦ φ−1;
(c) P (Jf) = JPf ;

(d) P (uh ◦ φEφ−1(Σ)(uf)) = uh ◦ φEφ−1(Σ)(uPf).

It should be mentioned that the part (c) of the following proposition was
originally proved by C. Burnap and A. Lambert in [1, Theorem 5(a)].

Proposition 2.4. Let B ∈ Σ with µ(B) > 0 and let Cφ ∈ B(L2(Σ)). Then
the following assertions hold:

(a) φ−1(B) ⊆ B if and only if L2(ΣB) is an invariant subspace of Cφ;
(b) φ−1(B) ⊇ B if and only if L2(ΣB) is an invariant subspace of C∗

φ;

(c) L2(ΣB) reduces Cφ if and only if φ−1(B) = B.

Proof. Let B ∈ Σ with µ(B) > 0 be arbitrary. Then L2(Σ) = L2(ΣB) ⊕
L2(ΣBc), where L2(ΣB) is isometrically isomorphic to {f ∈ L2(Σ) : f =
0 on Bc}. If φ−1(B) ⊆ B, then we get φ−1(ΣB) = φ−1(Σ) ∩ φ−1(B) ⊆
Σ∩B = ΣB . Since (B,ΣB, µ|ΣB

) is a relatively complete σ-finite measure space,

using L(10), we get Cφ(L
2(ΣB)) ⊆ L2(φ−1(ΣB)), and Cφ(L

2(ΣB)) ⊆ L2(ΣB).
Hence L2(ΣB) is an invariant subspace of Cφ. Assuming φ−1(B) ⊇ B im-
plies φ−1(ΣBc) ⊆ φ−1(Σ) ∩ Bc ⊆ ΣBc and Cφ(L

2(ΣBc)) ⊆ L2(φ−1(ΣBc))
⊆ L2(ΣBc). Consequently, if φ−1(B) = B, then L2(ΣB) reduces Cφ. On
the other hand, if L2(ΣB) and L2(ΣBc) are both invariant under Cφ, then by
the same argument we get that φ−1(ΣB) ⊆ ΣB and φ−1(ΣBc) ⊆ ΣBc . Thus,
φ−1(B) = B. By these observations the desired results are established. □

In the following theorem we try to restate a similar fact for the combination
of a multiplication and a composition operator.

Theorem 2.5. Let W ∈ B(L2(Σ)) and B ∈ Σσ(u). Then L2(ΣB) reduces W if

and only if φ−1(B) = B. In particular, if σ(u) ⊆ φ−1(σ(u)), then L2(Σσ(u))
is reducing for W .

Proof. Let φ−1(B) = B and put P = MχB . Then for each f ∈ L2(Σ), we have
χBWf = χφ−1(B)(uf ◦φ) = uχB ◦φf ◦φ = u(χBf)◦φ. Hence PW = WP and

so L2(ΣB) reducesW . Conversely, let L2(ΣB) reducesW . Then by Proposition
2.3(a), one gets

(2.1) uχ
B
f ◦ φ = uχφ−1(B)f ◦ φ.

Since Σ and φ−1(Σ) are σ-finite, then X can be written as X = ∪∞
i=1Xi =

∪∞
j=1Yj , for mutually disjoint setsXi ∈ Σ and Yj ∈ φ−1(Σ) with finite measures.
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It is easy to see that {φ−1(Xi) ∩ Yj}i,j is also a partition of X. Put f = χ
Xi

in (2.1). Then uχB∩φ−1(Xi) = uχφ−1(B)∩φ−1(Xi), and so

uχB = uχ∪∞
i=1

∪∞
j=1(φ

−1(Xi)∩Yj∩B)

= u

∞∑
i=1

∞∑
j=1

χφ−1(Xi)∩Yj∩B

= u

∞∑
i=1

∞∑
j=1

χYj∩φ−1(Xi)∩φ−1(B)

= uχ∪∞
i=1

∪∞
j=1(Yj∩φ−1(Xi))∩φ−1(B)

= uχ
φ−1(B)

.

From B ⊆ σ(u) we deduce that B = φ−1(B). When σ(u) ⊆ φ−1(σ(u)), φ
maps σ(u) into σ(u) and so L2(Σ) can be decomposed as L2(Σ) = L2(Σσ(u))⊕
L2(Σσ(u)c). Now, the desired conclusion follows from [3, Lemma 2.3].

□

Let A ⊆ Σ be a relatively complete σ-finite algebra. In the following we
pose some necessary and sufficient conditions, of course not simultaneously, on
which the subspace L2(A) reduces W .

Theorem 2.6. If L2(A) reduces W , then (φ−1(A))σ(u) ⊆ Aσ(u) and u, J ∈
L◦(A).

Proof. The reducibility of W implies that uχφ−1(A) = W (χA) ∈ L2(A), for

all A ∈ A with finite measure. Therefore σ(uχφ−1(A)) = σ(u) ∩ φ−1(A) ∈ A,

and so φ−1(A) ∩ σ(u) ∈ Aσ(u) for each A ∈ A. Thus, (φ−1(A))σ(u) ⊆ Aσ(u).

Let {Cn} ⊆ A, µ(Cn) < ∞ and X =
∪∞

n=1 Cn. Thus, X =
∪∞

n=1 φ
−1(Cn).

Hence we get that uχφ−1(Cn)∩σ(u) = uχφ−1(Cn) = W (χcn) ∈ L2(A), for each
n ∈ N. This implies that u ∈ L◦(A). Finally, it just remains to show that
J is A-measurable. Since R(EA) = L2(A) reduces W , then by Lemma 2.1,
EAW ∗W = W ∗WEA. By L(8), W ∗W = MJ . It follows that EA(Jf) =
JEA(f), for each f ∈ L2(Σ). Let {Bn} be a sequence of finite measure elements
in Σ increasing to X. Then EA(χBn) ↑ EA(1) = 1 and hence EA(JχBn) ↑
J . Since EA(JχBn) is A-measurable for each n ∈ N, we conclude that J ∈
L◦(A). □

Corollary 2.7. If L2(A) reduces W and h◦φ∈ L◦(A).Then E(φ−1(Σ))σ(u)EAσ(u)

= E(φ−1(A))σ(u) and EAσ(u)E(φ−1(A))σ(u) = E(φ−1(A))σ(u) .

Proof. By Theorem 2.6 we know that u ∈ L◦(A). By applying these assump-
tions to Proposition 2.3, part (d) we obtain that

E(φ−1(Σ))σ(u)EAσ(u) = EAσ(u)E(φ−1(Σ))σ(u) .
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Now by Lemma 2.2,

E(φ−1(Σ))σ(u)EAσ(u) = EAσ(u)∩(φ−1(Σ))σ(u) .

So we only have to show that EAσ(u)∩(φ−1(Σ))σ(u) = E(φ−1(A))σ(u) . Again by
Theorem 2.6 we have

Aσ(u) ∩ (φ−1(Σ))σ(u) ⊇ (φ−1(A))σ(u) ∩ (φ−1(Σ))σ(u) = (φ−1(A))σ(u).

Consequently

EAσ(u)∩(φ−1(Σ))σ(u) ≥ E(φ−1(A))σ(u) .

On other hand, let f ∈ L2((φ−1(Σ))σ(u) ∩ Aσ(u)) be an arbitrary. Then f =
χσ(u)g ◦ φ for some g ∈ L◦(Σ) with g = 0 on σ(h)c. At this moment, we may

assume that f is non-negative. Hence g is non-negative as well, thus EA can be
applied to g, since all non-negative functions are conditionable. Because u ∈
L◦(A), uf = ug ◦φ ∈ L◦(A), we have EA(ug ◦φ) = ug ◦φ. On the other hand,
in light of Proposition 2.3 (a), the fact that L2(A) reduces W should imply
that EA(ug ◦ φ) = u(EA(g)) ◦ φ (even though g might not belong to L2(Σ)).
Combining these, one gets that uf = ug ◦ φ = EA(ug ◦ φ) = u(EA(g)) ◦ φ.
This yields f = χσ(u)(E

A(g)) ◦ φ, which means that f ∈ L◦((φ−1(A))σ(u)).
In this stage, one should easily pass from non-negative f ’s to arbitrary ones.
Indeed, for a real case we have EA(f) = EA(f+) − EA(f−), where f+ =
max{f, 0} and f− = max{0,−f}. If f is complex-valued, then EA(f) =
EA(Ref) + iEA(Imf), where Ref and Imf are the real and imaginary parts
of f , respectively. Eventually, we conclude that

EAσ(u)∩(φ−1(Σ))σ(u) ≤ E(φ−1(A))σ(u) .

Hence

E(φ−1(Σ))σ(u)EAσ(u) = EAσ(u)∩(φ−1(Σ))σ(u) = E(φ−1(A))σ(u) .

The equation EAσ(u)E(φ−1(A))σ(u) = E(φ−1(A))σ(u) is precisely followed by

the inclusion (φ−1(A))σ(u) ⊆ Aσ(u) and the fact that E(φ−1(A))σ(u) is the pro-

jection onto L2((φ−1(A))σ(u)). □

Theorem 2.8. Assume that u, J ∈ L◦(A) and Eφ−1(Σ)EAMu = Eφ−1(A)Mu

on L◦(Σ). Then L2(A) reduces W .

Proof. Since W (L2(Σ)) ⊆ L2(Σ) and also the set of all A-measurable simple
functions are dense in L2(A), it is sufficient to show that W (χA) and W ∗(χA)
are A-measurable for each A ∈ A with finite measure. After taking adjoint

on our hypothesis, we obtain MuE
AEφ−1(Σ)(f) = MuE

φ−1(A)(f) for each

f ∈ L◦(Σ). Set f = χφ−1(A). Since Eφ−1(Σ)(χA ◦ φ) = χA ◦ φ = χφ−1(A) =

f and u is A-measurable, then MuE
AEφ−1(Σ)(f) = MuE

A(f) = EA(uf)

and MuE
φ−1(A)(f) = uf . It follows that EA(uf) = uf and so W (χA) =
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uχφ−1(A) = uf ∈ L◦(A).

Now, let Eφ−1(A)(uχA) = g ◦φ for some g ∈ L◦(A). Since uχA = EA(uχA),
we obtain

W ∗(χA) = hEφ−1(Σ)(uχA) ◦ φ−1 = hEφ−1(Σ)Mu(χA) ◦ φ−1

= hEφ−1(A)(uχA) ◦ φ−1 = h(g ◦ φ) ◦ φ−1 = hg ∈ L◦(A).

This completes the proof. □

Corollary 2.9. Let Cφ be a bounded composition operator on L2(Σ). If L2(A)
reduces Cφ, then

(a) φ−1(A) ⊆ A and h ∈ L∞(A);

(b) EAEφ−1(A) = Eφ−1(A);

(c) EAEφ−1(Σ) = EA∩φ−1(Σ);

(d) EA∩φ−1(Σ) = Eφ−1(A);
(e) CφE

A = EACφE
A = EACφ.

Proof. (a) It suffices to put u = 1 in Theorem 2.6.

(b) It follows immediately from (a) and the fact that Eφ−1(A) is the projec-
tion onto space of φ−1(A)-measurable functions.

(c) Put u = 1 and P = EA in Proposition 2.3(d). Then by L(5) and Lemma

2.2 we obtain EAEφ−1(Σ) = Eφ−1(Σ)EA = EA∩φ−1(Σ).
(d) Let f ∈ L2(Σ) be an arbitrary function. Then Eφ−1(Σ)(f) = g ◦ φ, for

some g ∈ L2(Σ). Since h is A-measurable and L2(Σ) ∩ L∞(Σ) is dense
in L2(Σ), using [9, Proposition 3] we have

E
φ−1(A)
φ−1(Σ) (g ◦ φ) = EA(g) ◦ φ.

It follows that

Eφ−1(A)(f) = E
φ−1(A)
φ−1(Σ)E

φ−1(Σ)(f) = E
φ−1(A)
φ−1(Σ) (g ◦ φ)

= EA(g) ◦ φ = EA(g ◦ φ) (by Proposition 2.3(a))

= EAEφ−1(Σ)(f) = EA∩φ−1(Σ)(f).

Note that the last equation holds by an application of (c).
(e) From the general theory of reducing subspaces (see [10]) and the fact

that EA is the orthogonal projection onto L2(A) which reduces Cφ, the
statement is trivially deduced.

□

Corollary 2.10. The following assertions hold.

(a) Let φ−2(Σ) ⊆ Σ be a complete σ-finite subalgebra, and let u, h ∈
L◦(φ−1(Σ)). If MuE

φ−1(Σ) = Eφ−2(Σ)Mu, then L2(φ−1(Σ)) reduces
W .
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(b) If u ∈ L◦(A) and L2(A) reduces Cφ, then L2(A) reduces W .
(c) If σ(u) = X and L2(A) reduces W , then L2(A) reduces Cφ.

(d) L2(A) reduces Cφ if and only if h ∈ L◦(A) and Eφ−1(Σ)EA = Eφ−1(A).
(e) L2(A) reduces Mu if and only if u ∈ L◦(A).

Proof. (a) PutA = φ−1(Σ). Because u is φ−1(Σ)-measurable, Eφ−1(Σ)Mu =

MuE
φ−1(Σ). Now, the desired conclusion follows by Theorem 2.8.

(b) Let f ∈ L2(Σ). By Proposition 2.3(a), EA(f) ◦ φ = EA(f ◦ φ). Hence
WEA(f) = uEA(f) ◦ φ = uEA(f ◦ φ) = EA(u · f ◦ φ) = EAW (f).

(c) L2(A) reduces W , then WEA = EAW and u ∈ L◦(A). Thus, uEA(f) ◦
φ = EA(u · f ◦ φ) = uEA(f ◦ φ) for each f ∈ L2(Σ). Because u > 0, we
have EA(f) ◦ φ = EA(f ◦ φ), and so CφE

A = EACφ.

(d) Put u = 1 in Theorem 2.8. Then h ∈ L◦(A) and Eφ−1(Σ)EA = Eφ−1(A).
The converse follows from Theorem 2.6 and Corollary 2.9(d). This result
is originally due to Burnap and Lambert [1, Theorem 5(b)].

(e) It follows from Theorem 2.6 and Theorem 2.8.
□

Example 2.11. Let X = [−1, 1]. Suppose that the σ-algebra Σ consists of all
Lebesgue measurable subsets of X. Let µ be the Lebesgue measure on X. The
transformation φ : X → X is given by

φ(x) =

{
x, x ∈ [−1, 0)
1− x, x ∈ [0, 1].

The weight function u is defined on X by u(x) = x. Then by Theorem 2.5 all
subspaces of L2(Σ) of the form L2(ΣA) reduce W : L2(Σ) → L2(Σ), where A
is an arbitrary Lebesgue measurable subset of [−1, 0]. Put A = [−1, 0]. Note
that the matrix blocks form of the weighted composition operator with respect
to the closed subspaces L2(ΣA) and N (EΣA) is represented as follows

[W ]

[
EΣA(f)

f − EΣA(f)

]
=

[
EΣAMuCφ EΣAMuCφ

(1− EΣA)MuCφ (1− EΣA)MuCφ

] [
EΣA(f)

f − EΣA(f)

]
.

By Corollary 2.9(e), EΣAMuCφ = 0 = (1−EΣA)MuCφ. In this circumstance
the matrix of weighted composition operator with respect to the decomposition
L2(Σ) = L2([−1, 0])⊕ L2([0, 1]) becomes

[W ] =

[
MEΣA (u) 0

0 T

]
,

where T : L2([0, 1]) → L2([0, 1]) is defined by Tf(x) = xf(1− x).

Example 2.12. Let X = [− 1
2 ,

1
2 ], dµ = dx, Σ be the Lebesgue sets, and let

A ⊆ Σ be the σ-subalgebra generated by the symmetric subsets about the
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origin. Let 0 < a ≤ 1
2 and f ∈ L2(Σ). Then∫ a

−a

EA(f)(x)dx =

∫ a

−a

f(x)dx

=

∫ a

−a

{f(x) + f(−x)

2
+

f(x)− f(−x)

2
}dx

=

∫ a

−a

f(x) + f(−x)

2
dx.

Thus, EA(f)(x) = f(x)+f(−x)
2 . Therefore, by Corollary 2.10(e), L2(A) reduces

Mu if and only if u is an even function.
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