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Abstract. A module M is lifting if and only if M is amply supple-
mented and every coclosed submodule of M is a direct summand. In
this paper, we are interested in a generalization of lifting modules by re-

moving the condition ”amply supplemented” and just focus on modules
such that every non-cosingular submodule of them is a summand. We call
these modules NS. We investigate some general properties of NS -modules.
Several examples are provided to separate different concepts. It is shown

that every non-cosingular NS -module is a direct sum of indecomposable
modules. We also discuss on finite direct sums of NS -modules.
Keywords: Non-cosingular submodule, amply supplemented module,
NS -module.

MSC(2010): Primary: 16D10; Secondary: 16D80.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring with iden-
tity and all modules will be unitary right R-modules. A submodule N of a
module M is denoted by N ≤ M . The notation N ≤⊕ M , means that N is
a direct summand of M . Let M be a module and N a submodule of M . N
is called a small submodule of M (denoted by N ≪ M) if for any X ≤ M ,
M = N +X implies X = M . The module M is called hollow if every proper
submodule is small in M . Let M be a module and N,K ≤ M . We say that
K is a (weak) supplement of N in M , provided (N ∩ K ≪ M) N ∩ K ≪ K
and M = N + K. M is called supplemented (weakly supplemented) if every
submodule of M has a supplement (weak supplement) in M . Following [7], M
is called ⊕-supplemented if every submodule N of M has a supplement K that
is a direct summand of M (in this case we call K an ⊕-supplement of N). As
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a generalization of supplemented modules, a module M is called amply supple-
mented if M = A+B for submodules A,B ≤ M , then B contains a supplement
of A in M . A module M is called H-supplemented if, given any submodule A
of M , there exists a direct summand D of M such that M = A + X holds if
and only if M = D + X. Equivalently, the module M is H-supplemented if
for every submodule N of M there exists a direct summand D of M such that
(N +D)/N ≪ M/N and (N +D)/D ≪ M/D (see [6]).

A module M is called small if there exist modules L ≤ K such that M ∼=
L ≪ K. For a module M let Z(M) = Rej(M, S) =

∩
{Kerf | f : M →

U,U ∈ S} =
∩
{K ⊆ M | M/K ∈ S} where S denotes the class of all small

modules. If Z(M) = 0 (Z(M) = M), then M is called a cosingular (non-

cosingular) module (see [11]). In [11], Z
α
(M) is defined by Z

0
(M) = M ,

Z
α+1

(M) = Z(Z
α
(M)) and Z

α
(M) =

∩
β<α Z

β
(M) if α is a limit ordinal.

Hence there is a descending chain M = Z
0
(M) ⊇ Z(M) ⊇ Z

2
(M) ⊇... of

submodules of M .
It is obvious that every small module is cosingular but in general the converse

is not true (see [11, Remark 2.11(2)]). It is also clear that a module M is non-
cosingular if and only if every nonzero factor module of M is non-small. Let
M be a module and K ≤ N ≤ M . If N/K ≪ M/K , then K is called

a coessential submodule of N (denoted by K
ce
↪→ N) in M and N is called

coessential extension of K in M . A submodule N of M is called coclosed

(denoted by N
cc
↪→ M) if N has no proper coessential submodule. K is called a

coclosure of N in M , if K
ce
↪→ N and K

cc
↪→ M . Any module M is lifting if every

submodule N of M contains a direct summand K of M such that K
ce
↪→ N .

Lifting modules and their generalizations have been studied extensively (see
for example [4–6, 8, 10]). A module M is lifting if and only if M is amply
supplemented and every coclosed submodule of M is a direct summand. If
we delete the assumption ”M is amply supplemented” and restrict coclosed
submodules to non-cosingular submodules, we can have a new generalization
of lifting modules.

In this paper we define and study modules whose non-cosingular submodules
are direct summand. We call these modules NS. In Section 2, we investigate
general properties of NS -modules and their relation with other types of mod-
ules. We show that the class of NS -modules contains properly the class of lift-
ing modules and H-supplemented modules (see Example 2.9). We show that a
non-cosingular NS -module can be expressed as a direct sum of indecomposable
modules (see Theorem 2.13).

In Section 3, we deal with (finite) direct sums of NS -modules. Let M has
(D∗) and ∗-property. Let M = M1 ⊕ . . . ⊕ Mn be a finite sum of relatively
projective modules. Then M is NS if and only if each Mi is NS for i = 1, . . . , n
(see Theorem 3.10).
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2. NS-modules

Let R be a ring and M a right R-module. Then every non-cosingular sub-
module of M need not be a direct summand of M . For example, let K be a
field and R =

∏∞
i=1 Ki where Ki = K for all i. Then R is a von Nuemann

regular ring and by [13, 23.5(2)] and [11, Corollary 2.6], every R-module is
non-cosingular. Let L =

⊕∞
i=1 Ki. Then it is not hard to check that, L is not

a direct summand of R while L is non-cosingular (In fact, for every nonzero
submodule K of R, we have L ∩K ̸= 0).

The above example leads us to study and investigate modules with every
non-cosingular submodule is a summand (we call these modules NS). This
new concept generalizes the definition of lifting modules. Obviously, every
module with no nonzero non-cosingular submodules is NS (for example, a
(small) cosingular module).

We first provide some examples of NS-modules. Before that we need the
definition of a V -ring. Let R be a ring. Recall that R is a V -ring (cosemisimple
ring), if every simple R-module is injective. It is well-known that R is a V -ring
(cosemisimple) if and only if for every R-module M , Rad(M) = 0 (see [13,
23.1]).

Example 2.1. (1) Let R be a commutative domain which is not a field. It is
well-known from [3, Theorem 2] that RR is a small module. So RR is NS.

(2) Let R be a right V -ring. ThenNS right R-modules are precisely semisim-
ple right R-modules. It follows from the fact that over a right V -ring, every
right R-module is non-cosingular (see [11, Corollary 2.6]).

(3) Since every non-cosingular simple submodule of a module M is a direct
summand, then if every non-cosingular submodule of M is simple, M is NS.

Following [10], the module M is said to have C∗-condition, if for every
submodule N of M there exists a direct summand K of M such that K ≤ N
and N/K is cosingular.

Remark 2.2. Let R be a ring. Then every right R-module is NS if and only
if every non-cosingular right R-module is injective. To prove the assertion, let
every right R-module be NS and M a non-cosingular right R-module. Suppose
that M is contained in a right R-module N . Since N is NS, then M is a direct
summand of N . So, M is injective. For the converse, let M be an arbitrary
right R-module and K a non-cosingular submodule of M . Then, by assumption
K is injective and hence a direct summand of M .

The following introduces rings R for which every R-module is NS.

Example 2.3. (1) Let R be a right Harada ring. By [2, 28.10], every right
R-module is a direct sum of an injective right R-module and a small right R-
module. It follows that every non-cosingular right R-module is injective. Now
by Remark 2.2, every right R-module is NS.



Modules for which every non-cosingular submodule is a summand 914

(2) Let R be a ring such that every right R-module has C∗. Then by [10,
Theorem 2.9], every right R-module is a direct sum of an injective right R-
module and a cosingular right R-module. It follows from Remark 2.2 that
every right R-module is NS.

(3) Let R be a Dedekind domain which is not a field. By [8, Lemma 4.12],
every non-cosingular R-module is injective. Hence every R-module is NS by
Remark 2.2.

Example 2.4. (1) Let M be a module such that Z(M) is a semisimple direct
summand of M . Then clearly, M is NS.

(2) LetR be a semilocal ring (i.e. R/J(R) is semisimple) such that Soc(RR) =
Soc(RR). Let P be a projective right R-module. By [12, Corollary 2.7],
Z(P ) = Soc(P ) is semisimple. If Z(P ) is a direct summand of P , then P is NS
by (1). For example, let K be a field and R = K×K[[x]]. Then J(R) = 0×(x).
It follows that R/J(R) ∼= K × (K[[x]]/(x)) is semisimple. Hence R is a com-
mutative semilocal ring with Z(R) = Soc(R) = K×0. Clearly Z(R) is a direct
summand of R. Therefore, R as a module is NS by (1).

Example 2.5. An NS-module need not be cosingular. Consider Z-modules
M = Z(p∞) and T = Q/Z. Then, M and N are NS by Example 2.3(3). In
fact, they are non-cosingular.

Proposition 2.6. Let M be an R-module. Then the following are equivalent:
(1) M is NS;
(2) For every non-cosingular submodule N of M , there is a decomposition

M = M1 ⊕M2, such that M1 ≤ N and N ∩M2 ≪ M2;
(3) For every non-cosingular submodule N of M , there is a direct summand

K of M such that K
ce
↪→ N ;

(4) Every non-cosingular submodule N of M can be written as N = A ⊕ S
where A ≤⊕ M and S ≪ M .

Proof. It is straightforward. □

Let M be a module, a submodule N of M is called fully invariant if for
every h ∈ EndR(M), h(N) ⊆ N . The module M is called duo module, if every
submodule of M is fully invariant.

Some examples of duo modules are presented in [9]. We bring here examples
of a non-duo module and a duo module.

Example 2.7. (1) The Z-module Q is not a duo module. In fact, the sub-
module Z of Q is not fully invariant. Consider Z-homomorphism f : Q → Q
defined by f(x) = x

2 , for all x ∈ Q. It is clear that f(Z) ⊈ Z.
(2) Let K be a field and let V be a two-dimensional vector space over K. Let

the ring R be the trivial extension of V by K. Thus R is the K-vector space
K ⊕V and multiplication is defined in R as follows: (a, u)(b, v) = (ab, av+ bu)
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for all a, b ∈ K and u, v in V . The R-module R is a duo module (see [9, P.
535]).

Proposition 2.8. For a module M consider the following conditions:
(1) M is lifting;
(2) M is H-supplemented;
(3) M is ⊕-supplemented;
(4) M is C∗;
(5) M is NS.
Then (1) ⇒ (2) ⇒ (3), (1) ⇒ (4) ⇒ (5), (2) ⇒ (5) and if M is a duo-

module, then (3) ⇒ (5). Moreover, if M is non-cosingular amply supplemented,
then they are equivalent.

Proof. (1) ⇒ (2) ⇒ (3) It is easy by definitions.
(1) ⇒ (4) It follows from [10, Proposition 2.3].
(4) ⇒ (5) Let N ≤ M be a non-cosingular submodule. By assumption, N

contains a direct summand K of M such that N/K is cosingular. Since N is
non-cosingular, N/K is non-cosingular. Hence N = K is a direct summand of
M . So M is NS.

(2) ⇒ (5) LetX ≤ M be non-cosingular. By assumption there exists a direct

summand D of M such that X
ce
↪→ (X + D) and D

ce
↪→ (X + D). Since X is

non-cosingular, then (X +D)/D is non-cosingular. Hence (X +D)/D is both
non-cosingular and cosingular. Therefore, we get X ≤ D and consequently

X
ce
↪→ D. Set M = D⊕D′. Then D/X is a direct summand of M/X, however

it is a small submodule of M/X. Then we have D = X. This implies that M
is NS.

(3) ⇒ (5) Let K ≤ M be non-cosingular. There is N ≤⊕ M such that M =
N+K and N∩K ≪ N . Since M is ⊕-supplemented, it is weakly supplemented
and N ∩K ≪ K. Since M is a duo module, we get N = (N ∩K)⊕ (N ∩K ′).
Accordingly, we have N = N ∩K ′ and N ⊆ K ′. It follows that M = N ⊕K,
and we conclude that K ≤⊕ M and M is NS.

(5) ⇒ (1) Let X be a coclosed submodule of M . Then by [11, Lemma
2.3(3)], X is non-cosingular. So every coclosed submodule of M is a direct
summand. Hence by [7, Proposition 4.8], M is lifting. □

The following example will show that NS -modules are proper generalizations
of small modules, lifting modules and H-supplemented modules.

Example 2.9. (1) Let M = Z(p∞)⊕Z/Zq as an Z-module, where p and q are
primes. Then M is NS by Example 2.3(3). Note that M is neither lifting nor
small.

(2) Let M1 be an H-supplemented module with a finite composition series
0 = X0 ≤ X1 ≤ . . . ≤ Xm = M . Let M2 = Xm/Xm−1 ⊕ . . . ⊕ X1/X0.
By [6, Proposition 4.3], M = M1 ⊕M2 is H-supplemented. Then it is NS. But
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M is not lifting in general. In particular, M ⊕ (U/V ) is an NS -module but it
is not lifting. (see [4, Corollary 2]).

(3) Consider the Z-module Z. Since Z is indecomposable, it is not H-
supplemented by [6, Proiposition 2.9]. But Z is NS by Example 2.3(3).

Using [8, Remark 4.20], there exists a (an) non-cosingular (injective) Z-module
M such that M is not C∗. So NS -modules are the proper generalization of
C∗-modules.
It is not hard to check that every non-cosingular H-supplemented module is
C∗.

So using the above results we have the following implications:
Lifting =⇒ H − supplemented

⇓ ⇓
C∗ − condition =⇒ NS

Remark 2.10. (1) Let M be an NS -module such that every submodule N of
M with Z(N) ̸= N is small in M . Then M is lifting.

(2) LetM be an NS -module such that every submodule ofM has a coclosure.
Then every non-cosingular submodule of M is lifting.

(3) Let M be an H-supplemented module such that every submodule of M
has a coclosure. Then every non-cosingular submodule of M is lifting.

Proposition 2.11. Let M be an NS-module such that Z(M) has a coclosure

in M . Then M = Z
2
(M)⊕M ′ with Z

2
(M) and M ′ are NS and Z(M ′) ≪ M ′.

Proof. Since Z(M) has a coclosure in M , using [11, Corollary 3.4], Z
2
(M) is

non-cosingular in M . Hence there exists a direct summand M ′ of M such

that M = Z
2
(M) ⊕ M ′ with Z

2
(M) and M ′ are NS. By [11, Corollary 3.4],

Z
2
(M) is unique coclosure of Z(M). So we get Z

2
(M)

ce
↪→ Z(M). We also have

Z(M) = Z
2
(M)⊕ Z(M ′). This implies that Z(M ′) ≪ M ′. □

Corollary 2.12. Let M be an amply supplemented NS-module. Then M =

Z
2
(M) ⊕M ′ with Z

2
(M) and M ′ are amply supplemented NS and Z(M ′) ≪

M ′.

Let X =
∑

λ∈Λ Xλ be a direct sum of submodules Xλ (λ ∈ Λ) of a module
M . Then X is called a local summand of M if

∑
λ∈F Xλ is a direct summand

of M for each finite subset F of Λ. If X =
∑

λ∈Λ Xλ is a summand of M , we
say that local summand is a direct summand (see [7, Definition 2.15]).

Theorem 2.13. Every non-cosingular NS module is a direct sum of indecom-
posable modules. If Moreover, M is supplemented, then M can be expressed as
a direct sum of hollow modules.

Proof. Let M be a non-cosingular NS module and X =
∑

Xi a local summand
of M . Since each Xi is a direct summand of M , and Xi = Z(Xi) ≤ Z(X), then
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X ≤ Z(X). So X is non-cosingular. It follows that X ≤⊕ M . Hence every
local summand is summand. Therefore by [7, Theorem 2.17] , M is a direct
sum of indecomposable modules. The last statements follows from the fact that
every NS non-cosingular supplemented indecomposable module is hollow. □

Recall that an epimorphism f : P → M of R-modules is a (projective)
small cover of M , if (P is projective and) Kerf ≪ P . A ring R is perfect
(semiperfect) if every R-module (finitely generated R-module) has a projective
cover (see [13]).

Proposition 2.14. If R is a right perfect (semiperfect) ring, then every (finitely
generated) projective right R-module is NS.

Proof. Let R be a right perfect ring and M a projective R-module. Let A
be a non-cosingular submodule of M . Consider the canonical epimorphism
φ : M → M/A. Since M/A has a projective cover, using [1, Lemma 17.17],
there exists a decomposition M = P1 ⊕ P2 such that P2 ⊆ Kerφ = A and
(φ |P1) : P1 → M/A → 0 a projective cover. Hence, we get A = P2 ⊕ (A ∩ P1)
where A ∩ P1 is both cosingular and non-cosingular. Therefore A = P2 is a
direct summand of M . □

The converse of Proposition 2.14 does not hold. Consider the ring of integers
R = Z. Then every (projective) R-module is NS by Example 2.3(3). However,
R is not perfect (semiperfect) (note that R/J(R) ∼= R is not semisimple).

A ring R is a right max ring, if every nonzero right R-module M has at least
one maximal submodule.

Proposition 2.15. Let R be a ring such that every right NS-module is semisim-
ple. Then R is a right max ring.

Proof. Since every small R-module is an NS -module, so by hypothesis every
small R-module is semisimple. Since for a module M , Rad(M) is the sum of all
small submodules of M (see [1, Proposition 9.13]), so Rad(M) is a semisimple
submodule of M . In contrary, let M be a nonzero right R-module with no
maximal submodule. Hence, Rad(M) = M . It follows that M is semisimple.
This yields M = Rad(M) = 0, that contradicts M ̸= 0. Therefore, for every
nonzero module M , we have Rad(M) ̸= M . Consequently, R is a right max
ring. □

As an example of above proposition, we can focus on V -rings. Because, over
a V -ring, NS-modules are precisely the semisimple ones. It is clear that a
V -ring is a max ring.

Proposition 2.16. Let M and N be two modules. Then
(1) The module M is NS if and only if for every f : M → N with Kerf

non-cosingular, Imf is NS.
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(2) If M is NS, then for every nonzero f : M → N with Kerf non-
cosingular, Imf is not small in M .

Proof. (1) (=⇒) Let M be NS and f : M → N a homomorphism with Kerf
non-cosingular. Then Imf ∼= M/Kerf . Since M is NS, there exists a decom-
position M = Kerf ⊕N . It follows that Imf is isomorphic to a submodule of
M . Therefore, Imf is NS. For the converse, it suffices to choose the identity
isomorphism i : M −→ M . Since Keri = 0 is non-cosingular, M = Imf is
NS.
(2) Since Imf is isomorphic to a direct summand of M , Imf is not a small
submodule of M . □
Proposition 2.17. Let f : M → M ′ be a small cover and M ′ an NS module
such that Rad(K) = 0 for every non-cosingular submodule K of M . Then M
is NS.

Proof. Let K ≤ M be non-cosingular. Then clearly f(K) is non-cosingular.
SinceM ′ is NS, f(K)⊕f(L) = M ′ for some submodule L ofM . ThenM = K+
L+Kerf . Since f is a samll cover, we getM = K+L andK∩L ⊆ Kerf ≪ M .
Let (K ∩ L) + T = K for a submodule T of K. Therefore we have K∩L

T∩L
∼= K

T .

It follows that K
T is both small and non-cosingular (since K

T is a homomorphic
image of both K and K ∩L). Therefore, K = T , yields that K ∩L ≪ K. Now,
using assumption K ∩ L = 0. Hence M = L⊕K. □

3. Direct Sums of NS-Modules

In this section we define the (D∗)-property. Using this concept we prove
that under some assumptions a finite direct sum of NS -modules is NS. We also
give a sufficient condition for an arbitrary direct sum of NS -modules to be NS.

Proposition 3.1. Let M = M1⊕M2 with M1 semisimple and M2 NS. If every
direct summand of a homomorphic image of M lifts to a direct summand of
M , then M is NS.

Proof. Let N ≤ M be non-cosingular. Since M1 is semisimple, M1 = (N ∩
M1)⊕M ′ for some M ′ ≤ M1; we thus get M = [(N ∩M1)⊕M ′]⊕M2. Using
modularity law, N = (N ∩M1)⊕ [(M ′⊕M2)∩N ]. Set A = (M ′⊕M2)∩N and
consider the submodule (A+M ′)/M ′ of (M2⊕M ′)/M ′. Since (A+M ′)/M ′ is a
homomorphic image of N and N is non-cosingular, it follows that (A+M ′)/M ′

is a direct summand of (M2 ⊕ M ′)/M ′. So we get (A + M ′)/M ′ ⊕ X/M ′ =
(M2 ⊕ M ′)/M ′. Hence A + X = M2 ⊕ M ′. It follows that N + X = A +
X + N = (M2 ⊕ M ′) + N = M . So M/A = N/A + (X + A)/A. Since
N ∩ (X +A) = A+(X ∩N) ⊆ A, therefore N/A is a direct summand of M/A.
Using assumption there exists a direct summand T of M containing A such
that T/A = N/A. Hence N ≤⊕ M . So M is NS. □
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Definition 3.2. We say that a module M has (D∗) property if for every sub-
module N of M there exists a non-cosingular submodule K of M such that

K ≤ N and K
ce
↪→ N . In this case we call K, a quasi-coclosure of N in M .

By the definition every quasi-coclosure is a coclosure. But the converse does
not hold as the following example shows.

Example 3.3. Let M = Z/Zp ⊕ Z/Zp3. Since M is artinian, it is amply
supplemented. So by [5, Proposition 1.5], Z/Zp has a coclosure. Since Z/Zp is
simple, it is a coclosure of itself, though it is not non-cosingular. In fact Z/Zp
is a small module.

It is clear that every hollow module has (D∗) property. Also every non-
cosingular amply supplemented (lifting) module has D∗.

Proposition 3.4. Let M be a module with (D∗). Then the following state-
ments hold:

(1) Every factor module of M has (D∗).
(2) Every non-cosingular submodule of M has (D∗).

Proof. (1) Let N ≤ M and K/N ≤ M/N . Using assumption, K has a quasi-

closure L in M . It follows that L
ce
↪→ K and L is non-cosingular. So we get

K

L+N
∼=

K/N

(L+N)/N
≪ M/N

(L+N)/N
∼=

M

L+N
,

where clearly (L + N)/N is non-cosingular. Hence (L + N)
ce
↪→ K and this

completes the proof.
(2) Let N ≤ M be non-cosingular and K ≤ N . By assumption, there exists

a non-cosingular submodule L of M such that L
ce
↪→ K in M . Since N/L is

non-cosingular, L
ce
↪→ K in N by [11, Lemma 2.3(1)]. Hence N has (D∗). □

Definition 3.5. Let M = M1⊕M2 be a module. We say M has ∗-property, if
the sum of a non-cosingular submodule L and a direct summand T of M with
L+ T ̸= M , is a direct summand of M .

Lemma 3.6. Let M = M1 ⊕ M2 be a module with ∗-property. Suppose that
every non-cosingular submodule N of M with the property M = N + M1 or
M = N+M2, is a direct summand of M . Let K be a non-cosingular submodule
in M such that (K+Mi)/K has a quasi-coclosure in M/K for i ∈ {1, 2}. Then
K is a direct summand of M .

Proof. We consider the submodule (K +M1)/K of M/K. Then there exists a
non-cosingular submodule N/K of M/K such that N/K ≤ (K +M1)/K and

N
ce
↪→ (K+M1). It follows that K+M1 = N+M1 andM = N+M2. Since N is

non-cosingular in M , by hypothesis, we get M = N ⊕N ′ for some submodule
N ′ of M and then we have (K + N ′) + M1 = M . If K + N ′ = M , we get
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K = N and so we get K ≤⊕ M . Otherwise, by hypothesis, K +N ′ is a direct
summand of M . Let M = (K + N ′) ⊕ K ′ for some K ′ ≤ M . It follows that
N ′ = (K+N ′)∩ (N ′+K ′) and N ∩ (K+N ′)∩ (N ′+K ′) = K∩ (N ′+K ′) = 0.
Therefore we get M = K ⊕ (N ′ +K ′), as claimed. □

The following proposition introduces equivalent conditions for a moduleM =
M1 ⊕M2 under some assumptions to be NS.

Proposition 3.7. Let M = M1⊕M2 has (D∗) and ∗-property. Then following
statements are equivalent:

(1) M is NS;
(2) Every non-cosingular submodule K of M such that M = K + M1 or

M = K +M2 is a direct summand of M ;

(3) Every non-cosingular submodule K of M such that K
ce
↪→ K + M1 or

K
ce
↪→ K +M2 or M = K +M1 = K +M2 is a direct summand of M .

Proof. Follows from Lemma 3.6 and [5, Theorem 2.1]. □
Let M1 and M2 be modules. The module M1 is small M2-projective if every

homomorphism f : M1 → M2/A where A ≤ M2 and Imf ≪ M2/A, can
be lifted to a homomorphism g : M1 → M2. The modules M1 and M2 are
relatively small projective if Mi is small Mj-projective, for every i, j ∈ {1, 2},
i ̸= j. It is clear that if M1 is M2-projective then M1 is small M2-projective.

Lemma 3.8. Let M1 be any module, M2 an NS-module and M = M1⊕M2. If
M1 is small M2-projective, then every non-cosingular submodule N of M such

that N
ce
↪→ (N +M1) is a direct summand.

Proof. Let N be a non-cosingular submodule of M such that N
ce
↪→ (N +M1).

By [5, Lemma 2.4], there exists a submodule N ′ of N such that M = N ′ ⊕
M2. Clearly, M/N ′ is NS. Since N is non-cosingular, N/N ′ is non-cosingular.
Therefore N/N ′ is a direct summand of M/N ′. Hence N is a direct summand
of M . □
Proposition 3.9. Let M1 and M2 be NS-modules such that M = M1 ⊕ M2

has (D∗) and ∗-property. If one of the following conditions holds, then M is
NS.

(1) M1 is small M2-projective and every non-cosingular submodule N of M
such that M = N +M1 is a direct summand.

(2) M1 and M2 are relatively small projective and every non-cosingular sub-
module N of M such that M = N + M1 = N + M2 is a direct summand of
M .

(3) M2 is M1-projective and M1 is small M2-projective.
(4) M1 is semisimple and small M2-projective.

Proof. The conclusion follows from Lemmas 3.6, 3.8 and [5, Theorem 2.8]. □
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Theorem 3.10. Let M has (D∗) and ∗-property. Let M = M1 ⊕ . . .⊕Mn be
a finite sum of relatively projective modules. Then M is NS if and only if each
Mi is NS for i = 1, . . . , n.

Proof. The necessity is clear. Conversely, it is enough to prove that M is NS
for n = 2. This follows from Proposition 3.9. □

Corollary 3.11. Let R be a hereditary ring. Let M1 and M2 be R-modules
such that M = M1 ⊕M2 has (D∗) and ∗-property. Then M is NS if and only
if M1 and M2 is NS and every non-cosingular submodule N of M such that
M = N +M1 is a direct summand.

Proof. Use [5, Lemma 2.3] and Proposition 3.9. □

Definition 3.12 ( [6]). LetM andN be two modules. ThenN is called radical-
M -projective if, for any K ≤ M and any homomorphism f : N → M/K there
exists a homomorphism h : N → M such that Im(f − πh) ≪ (M/K), where
π : M → M/K is the natural epimorphism.

Proposition 3.13 ( [6]). Let M = M1⊕M2. Consider the following conditions:
(1) M1 is radical-M2-projective;
(2) For every K ≤ M with K + M2 = M , there exists M3 ≤ M such that

M = M2 ⊕M3 and (K +M3)/K ≪ (M/K).
Then (1) ⇒ (2) and if M is amply supplemented, then (2) ⇒ (1).

Proposition 3.14. Let M = M1 ⊕M2 such that M1 and M2 are NS. If M1

is radical-M2-projective, then every non-cosingular submodule K of M with
K +M2 = M , is a direct summand of M .

Proof. Let K be a non-cosingular submodule of M such that K + M2 = M .
Then by Proposition 3.13, there exists M3 ≤ M such that M = M2 ⊕M3 and
(K + M3)/K ≪ (M/K). Consider the submodule (K + M3)/M3 of M/M3.
Since (K +M3)/M3 is non-cosingular and M/M3

∼= M2 is NS, it follows that
(K +M3)/M3 ⊕ L/M3 = M/M3 for a submodule L of M containing M3. We
thus get K+L = M . On the other hand, from M3 ≤ L and the modularity law
we have L = (L∩M2)⊕M3 and hence we get K+(L∩M2)+M3 = M . Now we
have (K+M3)/K+((L∩M2)+K)/K = M/M3. Since (K+M3)/K ≪ M/K,
it implies that (L∩M2)+K = M . Further, by the above direct decomposition
of M/M3, we get (L ∩ M2) ∩ K ⊆ (M2 ∩ M3) = 0. We thus arrive at M =
K ⊕ (L ∩M2). □

We conclude the paper with a rather obvious remark that is a sufficient
condition for a direct sum of NS -modules to be NS.

Remark 3.15. Let M =
⊕

i∈I Mi be a duo module. Then M =
⊕

i∈I Mi is NS
if and only if each Mi is NS.
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Proof. Let M =
⊕

i∈I Mi be such that each Mi is NS and let N ≤ M be
non-cosingular. Since M is a duo module, N =

⊕
i∈I(N ∩Mi) and for each i,

N∩Mi is non-cosingular. By assumption, for each i, we get Mi = (N∩Mi)⊕Ni

for some Ni ≤ Mi. Then

M =
⊕
i∈I

Mi =
⊕
i∈I

[(N ∩Mi)⊕Ni)] = [
⊕
i∈I

(N ∩Mi)]⊕ [
⊕
i∈I

Ni] = N ⊕N ′,

where N ′ =
⊕

i∈I Ni. Hence M is NS, as required. The converse is clear. □
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