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1. Introduction

The subject of this paper is to study the Cauchy problem of the following
sixth-order damped Boussinesq equation

utt − uttxx − uxx + uxxxx − uxxxxxx − rutxx = f(u)xx, x ∈ R, t > 0,(1.1)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R.(1.2)

where u(x; t), f(s) and r denote the unknown function, the given nonlinear
function and a constant, respectively.

The effects of small nonlinearity and dispersion are taken into considera-
tion in the derivation of Boussinesq equations, but in many real situations,
damping effects are compared in strength to the nonlinear and dispersive ones.
Therefore, the damped Boussinesq equation is considered as well:

utt − 2butxx = −αuxxxx + uxx + β(f(u))xx,(1.3)

where the second term on the left-hand side is responsible for dissipation. For
f(u) = u2 , Varlamov [12–14] has constructed the classical solution of the prob-
lem equation (1.3) and obtained the long-time asymptotics in explicit form. Us-
ing the eigenfunction expansion method, he also studied the long-time asymp-
totics of a damped Boussinesq equation which is similar to equation (1.3).
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In [17], the Cauchy problem for a class of Boussinesq equation

utt − kutxx + uxxxx − uxx − uxxtt = (f(u))xx,(1.4)

was studied. The well-posedness of the local and global solutions and the blow-
up of the solution were established. Polat [8,9] studied the locally and globally
existence, blow-up and the asymptotic behavior of the solutions for the Cauchy
problem of equation (1.4). In order to investigate the water wave problem with
surface tension, Schneider and Eugene [10] considered a class of Boussinesq
equation which models the water wave problem with surface tension as follows

utt = uxx + uxxtt + µuxxxx − uxxxxtt + (u2)xx,(1.5)

where x, t, µ ∈ R and u(x, t) ∈ R. The model can also be formally derived
from the 2D water wave problem. For a degenerate case, they proved that the
long wave limit can be described approximately by two decoupled Kawahara-
equations. In [18,19], Wang studied the well-posedness of the local and globally
solutions, the blow-up of solutions and nonlinear scattering for small amplitude
solutions to the Cauchy problem of equation (1.5). In [7], the authors consid-
ered the Cauchy problem of the following Boussinesq equation

utt = uxx + uxxtt + µuxxxx − uxxxxtt + f(u)xx + kutxx,(1.6)

the existence, both locally and globally in time, the global nonexistence and
the asymptotic behavior of solutions for the Cauchy problem of equation (1.6)
are established in n-dimensional space.

Recently, Wang [20] proved the global existence and asymptotic behavior
of solutions of the Cauchy problem for equation (1.1) provided that the initial
value is suitably small. In [15], the authors obtained the global existence and
asymptotic decay of solutions to the problem equation (1.1). For the initial
boundary value problem of equation (1.1) with f(u) = u2, Zhang [21] and
Lai [3,4] established the well-posedness of strong solution and constructed the
solution in the form of series in the small parameter present in the initial con-
ditions. The long-time asymptotics was also obtained in the explicit form. The
main purpose of this paper is to study the well-posedness of the global solution
for the Cauchy problem of (1.1)-(1.2), and the results in this paper generalize
the results established in [8, 17]. Because of the complexity of equation (1.1),
we yield the existence of local solution by transforming equation (1.1) in an-
other way and establishing the corresponding estimate which is different from
that in [8, 17].

Throughout this paper, we use Lp to denote the space of all Lp− functions
on R with the norm ∥f∥p = ∥f∥Lp and ∥f∥ = ∥f∥2, Hs denotes the Sobolev
space with norm ∥f∥Hs = ∥(I − ∂2x)

s
2 f∥, where 1 ≤ p ≤ ∞, s ∈ R.

At first, using the contraction mapping principle, we obtain the following
existence of the local solution to problem (1.1) and (1.2).
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Theorem 1.1. Assume that s > 1
2 , ϕ ∈ Hs, ψ ∈ Hs−2 and f(s) ∈ C [s]+1(R),

then the problem (1.1)-(1.2) admits a unique local solution u(x, t) defined on
a maximal time interval [0, T0) with u ∈ C([0, T0),H

s) ∩ C1([0, T0),H
s−2).

Moreover, if

sup
t∈[0,T0)

(∥u(t)∥Hs + ∥ut(t)∥Hs−2) <∞.(1.7)

then T0 = ∞.

Secondly, under some assumptions, we study the well-posedness and blow-up
of the global solution for the the problem (1.1)-(1.2).

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 hold and T0 > 0
is the maximal existence time of the corresponding solution u ∈ C([0, T0),H

s)∩
C1([0, T0),H

s−2) to (1.1) and (1.2). Then T0 <∞ if and only if

lim
t→T0

sup ∥u(·, t)∥L∞ = ∞.(1.8)

Theorem 1.3. Assume that s ≥ 1, ϕ ∈ Hs, ψ ∈ Hs−2, (−∂2x)−
1
2ϕ ∈ L2, F (u) =∫ u

0
f(z)dz,

F (ϕ) ∈ L1, s ≥ 1 and F (u) or f ′(u) is bounded below, i.e there is a constant A0

such that f ′(s) ≥ A0. Then the problem (1.1)-(1.2) has a unique global solution
u ∈ C([0,∞), Hs) ∩ C1([0,∞),Hs−2).

Theorem 1.4. Assume that k ≥ 0, f(u) ∈ C(R), ϕ ∈ H2, ψ ∈ L2, (−∂2x)−1/2ϕ,
(−∂2x)−1/2ψ ∈ H1, F (u) =

∫ u

0
f(s)ds, F (ψ) ∈ H1, and there exists a constant

α > 0 such that

f(u)u ≤ (α+ r + 2)F (u) +
α

2
u2,∀u ∈ R.(1.9)

Then the solution u(x, t) of the problem (1.1)-(1.2) blows up in finite time if
one of the following conditions is valid:

(i) E(0) = ∥(−∂2x)−1/2ψ∥22+∥ψ∥22+∥ϕ∥22+∥ϕx∥22+∥ϕxx∥22+2
∫
R
F (u)dx <

0,
(ii) E(0) = 0 and ((−∂2x)−

1
2ϕ, (−∂2x)−

1
2ψ) + (ϕ, ψ) > 0,

(iii) E(0) > 0 and

((−∂2
x)

− 1
2 ϕ, (−∂2

x)
− 1

2ψ) + (ϕ, ψ)) >

√
2
4 + 2r + 2α

α+ 2
E(0)(∥(−∂2

x)
− 1

2 ϕ∥22 + ∥ϕ∥22).

The remaining of this paper is organized as follows. In Section 2, we prove
the existence and the uniqueness of the local solution by the contraction map-
ping principle. The well-posedness of the global solution is given in Section 3.
Finally, Section 4 is denoted to the blow-up of solution to the problem.
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2. Existence of local solution

In this section, the existence and uniqueness of the local solution to the
problem (1.1)-(1.2). are proved by the contraction mapping principle. For this
purpose, we write equation (1.1) as

utt + uxxxx = Γ[f(u) + u] + rΓ[ut],(2.1)

where Γ = (1− ∂2x)
−1∂2x. Using the Fourier transform, we can obtain

Γf = ∂2x(G ∗ f) = G ∗ f − f,

where G(x) = 1
2e

−|x|, u ∗ v =
∫ +∞
−∞ u(y)v(x− y)dy denotes the convolution of u

and v.
In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1. Let s ∈ R, ϕ ∈ Hs, ψ ∈ Hs−2 and q ∈ L1([0, T ];Hs−2). Then
for any T > 0, the Cauchy problem for the linear wave equation

utt + uxxxx = q(x, t), x ∈ R, t > 0,

with the initial value condition (1.2) has a unique solution u ∈ C([0, T ],Hs) ∩
C1([0, T ],Hs−2). Moreover, u satisfies

∥u(t)∥Hs + ∥ut(t)∥Hs−2

≤ C(1 + T )(∥ϕ∥Hs + ∥ψ∥Hs−2 +

∫ t

0

∥q(τ)∥Hs−2dτ), 0 ≤ t ≤ T,(2.2)

where C only depends on s.

Proof. The argument used to prove the existence and uniqueness of the solution
of the Cauchy problem for the linear wave equation is similar to that in [11],
we omit it. And the solution of the linear wave equation is given in Fourier
space by

û(ξ, t) = cos(tξ2)ϕ̂(ξ) +
sin(tξ2)

ξ2
ˆ|ψ|2 +

∫ t

0

sin(t− τ)ξ2

ξ2
q̂(ξ, τ)dτ,

whereˆdenotes Fourier transform with respect to t. Since

∥(1 + ξ2)
s
2 cos(tξ2)ϕ̂(ξ)∥ ≤ ∥(1 + ξ2)

s
2 ϕ̂(ξ)∥ = ∥ϕ∥Hs
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and

∥(1 + ξ2)
s
2
sin(tξ2)

ξ2
ψ̂(ξ)∥2

=

∫
|ξ|<1

(1 + ξ2)s
sin2(tξ2)

ξ4
|ψ̂(ξ)|2dξ +

∫
|ξ|≥1

(1 + ξ2)s
sin2(tξ2)

ξ4
|ψ̂(ξ)|2dξ

≤ t2
∫
|ξ|<1

(1 + ξ2)s|ψ̂(ξ)|2dξ +
∫
|ξ|≥1

(1 + ξ2)s
1

ξ4
|ψ̂(ξ)|2dξ

≤ 4t2
∫
|ξ|<1

(1 + ξ2)s−2|ψ̂(ξ)|2dξ + 4

∫
|ξ|≥1

(1 + ξ2)s
1

ξ4
|ψ̂(ξ)|2dξ

≤ 4(1 + t2)

∫
R

(1 + ξ2)s−2|ψ̂(ξ)|2dξ

= 4(1 + t2)∥ψ∥2Hs−2 ,

we obtain

∥u(t)∥Hs ≤ ∥ϕ∥Hs + 2(1 + t)∥ψ∥Hs−2 + 2(1 + t)

∫ t

0

∥q(τ)∥Hs−2dτ

and

∥u(t)t∥Hs−2 ≤ ∥ϕ∥Hs + ∥ψ∥Hs−2 +

∫ t

0

∥q(τ)∥Hs−2dτ.

Therefore (2.2) holds. This completes the proof of the lemma. □
Lemma 2.2. The operator Γ is bounded on Hs for all s ≥ 0 and

∥Γu∥Hs ≤ ∥u∥Hs , ∀u ∈ Hs.

Proof. For u ∈ Hs, s ≥ 0, we get

∥Γu∥2Hs =

∫
Rn

(1 + ξ2)s
ξ4

(1 + ξ2)2
| ˆu(ξ)|2dξ ≤ ∥u∥2Hs .

□
Lemma 2.3 ([1, 16]). Suppose that g(u) ∈ CN (R) is a function vanishing at
zero, where N ≥ 0 is an integer. Then for any s with 0 ≤ s ≤ N and any
u, v ∈ Hs ∩ L∞, it holds that

∥g(u)∥Hs ≤ G(∥u∥L∞)∥u∥Hs ,

∥g(u)− g(v)∥Hs ≤ Ḡ(∥u∥L∞ , ∥v∥L∞)∥u− v∥Hs ,

where G : [0,∞) → R and Ḡ : [0,∞)× [0,∞) → R are continuous function.

Proof of Theorem 1.1. Now we are going to prove the existence and uniqueness
of local solutions for the problem (1.1)-(1.2) by contraction mapping argumen-
tation. For this purpose, we define the function space

X(T ) = {C([0, T ];Hs) ∩ C1([0, T ], Hs−2)}
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with s > 1
2 , equipped with the norm defined by

∥u∥X(T ) = max
t∈[0,T ]

[∥u(·, t)∥Hs + ∥ut(·, t)∥Hs−2 ].

Since Hs ↪→ L∞ for s > 1
2 , we have u ∈ L∞ if u ∈ X(T ). We set R =

∥ϕ∥Hs + ∥ψ∥Hs−2 and

AR(T ) = {u ∈ X(T ) : ∥u∥X(T ) ≤ 2CR}.

For ϕ ∈ Hs, ψ ∈ Hs−2 and w ∈ X(T ), we consider the linear wave equation

utt + uxxxx = Γ[f(w) + w] + rΓ[wt].(2.3)

It will be shown that Θ : AR(T ) → AR(T ) is contractive if R and T are well
chosen. Define η(x, t) by

η(x, t) = Γ[f(w) + w] + rΓ[wt].

Using Lemma 2.1 and Lemma 2.3, it follows easily that

∥η(x, t)∥Hs−2 ≤ ∥f(w)∥Hs−2 + ∥w∥Hs−2 + |r|∥wt∥Hs−2

≤ G1(R)∥w∥Hs + |r|∥wt∥Hs−2 ,

where G(R) is a constant dependent on R. From the above inequality, we
obtain that η(x, t) ∈ L1([0, T ];Hs−2). From Lemma 2.1 the solution u = Θw
of the problem (1.2)-(2.3) belongs to C([0, T ];Hs) ∩ C1([0, T ],Hs−2) and

∥u(t)∥Hs + ∥ut(t)∥Hs−2 ≤ C(1 + T )(∥ϕ∥Hs + ∥ψ∥Hs−2 +

∫ t

0

∥η(τ)∥Hs−2dτ)

≤ CR+ C[1 + C(G1(R) + |r|)(1 + T )]RT.

Choosing T small enough such that

[1 + C(G1(R) + |r|)(1 + T )]T ≤ 1,(2.4)

then ∥Θw∥X(T ) ≤ 2CR. Therefore, Θ maps AR(T ) into AR(T ).
Now, we prove that for T small enough, Θ is a contractive mapping of AR(T ).

Let w, w̄ ∈ AR(T ). Then for w and w̄ there are the corresponding solutions
u = Θw and ū = Θw̄ for problems (2.3) and (1.2). Set U = u− ū,W = w− w̄,
then U satisfies

Utt + Uxxxx = Q(x, t), (x, t) ∈ R× (0, T ),(2.5)

U(x, 0) = Ut(x, 0) = 0,(2.6)

where Q(x, t) is defined by

Q(x, t) = Γ[f(w)− f(w̄)] + ΓW + rΓ[Wt].(2.7)

It is observed that Θ has the smoothness required to apply Lemma 2.1 to the
problem (2.5)-(2.6). Using Lemmas 2.1, 2.2 and 2.3, we get from equation (2.7)
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that

∥U(t)∥Hs + ∥Ut∥Hs−2

≤ C(1 + T )

∫ t

0

[∥f(w(τ))− f(w̄(τ))∥Hs−2 + ∥W∥Hs−2 + |r|∥Wt∥Hs−2 ]dτ

≤ C(1 + T )[G2(R) max
0≤t≤T

∥W (t)∥Hs + |r| max
0≤t≤T

∥Wt(t)∥Hs−2 ]T.

Thus, we get

∥U(t)∥X(T ) ≤ C(1 + T )[G2(R) + |r|]T∥W (t)∥X(T ).

By choosing T small enough equation (2.4) holds and

(1 + T )[G2(R) + |r|]T <
1

C
,(2.8)

which leads to

∥Θw −Θw̄∥X(T ) < ∥w − w̄∥X(T ).

This shows that Θ : AR(T ) → AR(T ) is strictly contractive.
From contraction mapping principle, it follows that for appropriately chosen

T > 0, Θ has a unique fixed point u(x, t) ∈ AR(T ), which is a strong solution
of the problem (1.1)-(1.2). It is easy to prove the uniqueness of the solution
which belongs to X(T ′) for each T ′ > 0.

In fact, let u1, u2 ∈ X(T ′) be two solutions of the problem (1.1)-(1.2). Let
u = u1 − u2, then we have

utt − uttxx − uxx + uxxxx − uxxxxxx − rutxx = (f(u1)− f(u2))xx

Multiplying the above equation by (−∂2x)−1ut and integrating the product with
respect to x, we get

1

2

d

dt
[∥(−∂2x)−1/2ut∥22 + ∥ut∥22 + ∥u∥22 + ∥uxx∥22 + ∥ux∥22] + r∥ut∥22

=

∫
Rn

[f(u1)− f(u2)]utdx.(2.9)

From the definition of the spaceX(T ′), s > 1/2 and Sobolev imbedding theorem
we have ∥u1(t)∥∞ ≤ C(T ′), ∥u2(t)∥∞ ≤ C(T ′) and 0 ≤ t ≤ T ′ < T , where
C(T ′) is a constant dependent on T ′. From Cauchy inequality, we obtain

|
∫
Rn

[f(u1)− f(u2)]utdx| ≤ ∥f(u1)− f(u2)∥2∥ut∥2 ≤ C(T ′)∥u∥2∥ut∥2.

We get from Young inequality that

∥(−∂2x)−1/2ut∥22 + ∥ut∥22 + ∥u∥22 + ∥uxx∥22 + ∥ux∥22 + r

∫ t

0

∥uτ∥22dτ

≤ C(T ′)

∫ t

0

[∥u∥22 + ∥ut∥22]dτ.
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So, we obtain

∥u∥22 + ∥ut∥22 ≤ [C(T ′) + 2|r|]
∫ 2

0

[∥u∥22 + ∥ut∥22]dτ.(2.10)

Making using of Gronwall’s inequality, we get from equation (2.10) that ∥u∥22+
∥ut∥22 ≡ 0 for 0 ≤ t ≤ T ′. Hence u ≡ 0, the problem (1.1)-(1.2) has at most
one solution which belongs to X(T ′).

Now, let [0, T0] be the maximal time internal of existence for u ∈ X(T0). It
remains only to show that if equation (1.7) is satisfied, T0 = ∞.

Suppose that equation (1.7) holds and T0 < ∞. For each T ′ ∈ [0, T0], we
consider the Cauchy problem

vtt + vxxxx = Γ[f(v) + rvt + v],(2.11)

v(x, 0) = u(x, T ′), vt(x, 0) = ut(x, T
′).(2.12)

By virtue of equation (1.7),

∥u(·, t)∥2,p + ∥ut(·, t)∥2,p + ∥u(·, t)∥∞ + ∥ut(·, t)∥∞ ≤ K,

is uniformly bounded about T
′ ∈ [0, T0), which allows us to choose T ∗ ∈ (0, T0)

such that for each T
′ ∈ [0, T0), the problem (2.11)-(2.12) has a unique solution

v(x, t) ∈ X(T ∗). The existence of such a T ∗ follows from the contraction
mapping principle. In particular, equation (2.4) and equation (2.8) reveal that

T ∗ can be selected independently of T
′ ∈ [0, T0). Set T

′
= T0− T∗

2 , let v denote
the corresponding solution of the problem (2.11)-(2.12) and define

ũ(x, t) =

{
u(x, t), t ∈ [0, T ′],

v(x, t− T ′), t ∈ [T ′, T0 + T ∗/2],

then ũ(x, t) is a solution of the problem (1.1)-(1.2) on interval [0, T0+T
∗/2], and

by the uniqueness, ũ(x, t) extends u. This violates the maximality to [0, T0).
Therefore, if equation (1.7) holds, then T0 = ∞. This completes the proof of
the theorem. □

3. Existence of global solutions for general nonlinear function f(u)

In this section, we study the existence of global solutions to the problem
(1.1)-(1.2).

Lemma 3.1. Suppose that f(u) ∈ C(R), G(u) =
∫ u

0
g(s)ds, ϕ ∈ H2, (−∂2x)−

1
2ψ

∈ L2 and F (ϕ) ∈ L1. Then for the solution u(x, t) of the Cauchy problem (1.1)
and (1.2), it follows that

E(t) =
1

2
[∥(−∂2x)−

1
2ut∥2 + ∥ut∥2 + ∥ux∥2 + ∥u∥2 + ∥uxx∥2]

+ r

∫ t

0

∥uτ∥2dτ +
∫
R

F (u)dx = E(0),∀t ∈ (0, T0),(3.1)
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where (−∂2x)−
1
2u = F−1[|ξ|−1Fu(ξ)], F and F−1 denote Fourier transforma-

tion and inverse transformation in R.

Proof. It follows from equation (1.1) that

d

dt
E(t) =((−∂2x)−

1
2utt, (−∂2x)−

1
2ut) + (ut, utt)

+ (u, ut) + (ux, uxt) + ((uxx, uxxt) + 2r(ut, ut) + (f(u), ut)

=⟨(−∂2x)−1utt + utt + rut + u− uxx + uxxxx + f(u), ut⟩X∗X = 0,

where ⟨·, ·⟩X∗X means the usual duality of X and X with X = H1. Integrating
the above equality with respect to t, we have (3.1). The lemma is proved. □

Proof of Theorem 1.2. From Theorem 1.1, let us prove that if

lim
t∈[0,T0)

sup ∥u(·, t)∥L∞ =M <∞,(3.2)

then T0 = ∞. Using equation (1.1), it follows that

1

2

d

dt
(∥u∥2Hs + ∥ut∥2Hs−2)

= ((I − ∂2
x)

s−2
2 utt, (I − ∂2

x)
s−2
2 ut) + ((I − ∂2

x)
s
2 u, (I − ∂2

x)
s
2 ut)

= ((I − ∂2
x)

s−2utt + (I − ∂2
x)

su, ut)

= ((I − ∂2
x)

s−2utt + (I − ∂2
x)

s−2(I − 2∂2
x + ∂4

x)u, ut)

= ((I − ∂2
x)

s−2(utt + uxxxx), ut) + ((I − ∂2
x)

s−22uxx, ut) + ((I − ∂2
x)

s−2u, ut)

= ((I − ∂2
x)

s−2
2 ∂2

x(I − ∂2
x)

−1(f(u) + u+ rut), (I − ∂2
x)

s−2
2 ut)

+((I − ∂2
x)

s−2uxx, ut) + ((I − ∂2
x)

s−2u, ut)

≤ ∥f(u) + u+ rut∥Hs−2∥ut∥Hs + ∥u∥Hs∥ut∥Hs−2 + ∥u∥Hs−2∥ut∥Hs−2 .

From Lemma 2.2 and (3.1), we obtain

∥f(u) + u+ rut∥Hs−2 ≤ G(R)∥u∥s + |r|∥ut∥s−2.

It follows from the Cauchy inequality that

1

2

d

dt
(∥u∥2Hs + ∥ut∥2Hs−2) ≤ (G(R)2 + C)∥u∥s + C(|r|+ 1)∥ut∥s−2, t ∈ (0, T ).

From Gronwall’ inequality, it holds that ∥u(t)∥2Hs +∥ut(t)∥2Hs−2 do not blow-up
in finite time. The theorem is proved. □

Proof of Theorem 1.3. According to Theorem 1.2, it is enough to ensure that
the L∞−norm of the solution u(t) to the problem (1.1)-(1.2) does not blow
up in finite time. We denote by T0 > 0 the maximal existence time of this
solution.
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If F (u) ≥ 0, then from (3.1), we get

(3.3)

∥(−∂2x)−
1
2ut∥2 + ∥uxx∥2 + ∥ux∥2 + ∥u∥2 + ∥ut∥2 ≤ 2E(0) + 2|r|

∫ t

0

∥uτ∥22dτ.

It follows from Gronwall’s inequality and the above inequality that

∥(−∂2x)−
1
2ut∥2 + ∥uxx∥2 + ∥ux∥2 + ∥u∥2 + ∥ut∥2 ≤ 2E(0)e2|r|T .(3.4)

If f ′(u) is bounded below. Let f0(u) = f(u)−k0u, where k0 = min{A0, 0}(≤ 0),
then f0(0) = 0, f ′0(u) = f ′(u)− k0 ≥ 0 and f0(u) is a monotonically increasing
function. Thus F0(u) =

∫ u

0
f0(s)ds ≥ 0. From (3.1) and the following equality

F (u) =

∫ u

0

f(s)ds =

∫ u

0

(f0(s) + k0s)ds = F0(u) +
k0
2
u2,

we obtain

∥(−∂2x)−
1
2ut∥2 + ∥uxx∥2 + ∥ux∥2 + ∥u∥2 + ∥ut∥2 + 2

∫
Rn

F0(u)dx

= 2E(0)− 2r

∫ t

0

∥uτ∥22dτ − k0∥u∥22

= 2E(0)− 2r

∫ t

0

∥uτ∥22dτ − k0∥u0∥22 +
∫ t

0

(k20∥u∥22 + ∥uτ∥22)dτ

≤ 2E(0)− k0∥u0∥22 + (2|r|+ 1 + k20)

∫ t

0

(∥u∥22 + ∥uτ∥22)dτ.

It follows from Gronwall’s inequality and the above inequality that

∥(−∂2x)−
1
2ut∥2 + ∥uxx∥2 + ∥ux∥2 + ∥u∥2 + ∥ut∥2

≤ (2E(0)− k0∥u0∥22) exp[(2|r|+ 1 + k20)T ].(3.5)

Inequality (3.4) and (3.5) ensures that Hs− norm of the solution u(t) does not
blow up in finite time. We conclude from the Sobolev embedding theorem that
the L∞-norm of the solution u(t) to the problem (1.1)-(1.2) does not blow up
in finite time and T0 = ∞. The theorem is proved. □

4. Nonexistence of global solutions for general nonlinear function
f(u)

In this section, we discuss the blow-up of the solution for the problem (1.1)-
(1.2) by the concavity method. Firstly, we give the following lemma [2] which
is a generalization of Levine’s result [5, 6].

Lemma 4.1. Suppose that for t ≥ 0, a positive, twice differential function I(t)
satisfies the inequality

I ′′(t)I(t)− (1 + ε)(I ′(t))2 ≥ −2MI(t)I ′(t)−M(I(t))2,
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where ε > and M1,M2 are constants. If I(0) > 0, I ′(0) > γ2ν
−1I(0) and

M1 +M2 > 0, then I(t) tends to infinity as

t→ t1 ≤ t2 =
1

2
√
M2

1 + νM2

ln
γ1I(0) + νI ′(0)

γ1I(0) + νI ′(0)
,

where γ1,2 = −M1 ∓
√
M2

1 + νM2. If I(0) > 0, I ′(0) > 0 and M1 = M2 = 0,
then I(t) → ∞ as t→ t1 ≤ t2 = I(0)/νI ′(0).

Proof of Theorem 1.4. Suppose T = +∞, and let

I(t) = ∥(−∂2x)−1/2u∥22 + ∥u∥22 + β(t+ τ)2,(4.1)

where β, τ ≥ 0 to be defined later. Then we have

I ′(t) = 2((−∂2x)−1/2ut, (−∂2x)−1/2u) + 2β(t+ τ) + 2(u, ut).(4.2)

So,

(I ′(t))2 ≤ 4[∥(−∂2x)−1/2u∥22 + ∥u∥22 + β(t+ τ)2][∥(−∂2x)−1/2ut∥22 + ∥ut∥22 + β]

= 4I(t)[∥(−∂2x)−1/2ut∥22 + ∥ut∥22 + β].(4.3)

By equation (1.1), we get

I ′′(t) =2∥(−∂2
x)

−1/2ut∥22 + 2((−∂2
x)

−1/2u, (−∂2
x)

−1/2utt) + 2∥ut∥22 + 2(u, utt) + 2β

=2∥(−∂2
x)

−1/2ut∥22 + 2∥ut∥22 + 2β + 2(u, (−∂2
x)

−1utt + utt)

=2∥(−∂2
x)

−1/2ut∥22 + 2∥ut∥22 + 2β − 2(u, u− uxx + uxxxx + rut + f(u))

=2∥(−∂2
x)

−1/2ut∥22 + 2∥ut∥22 + 2β

− 2∥u∥22 − 2∥ux∥22 − 2∥uxx∥22 − 2r(u, ut)− 2

∫
Rn

uf(u)dx.

(4.4)

By the aid of the Cauchy inequality, we obtain

2r(u, ut) ≤r(∥u∥22 + ∥ut∥22) = r[E(0)− ∥(−∂2x)−1/2ut∥22 − ∥ux∥22 − ∥uxx∥22

− 2r

∫ t

0

∥uτ∥22dτ − 2

∫
Rn

F (u)dx].(4.5)
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It follows from relations (4.1)–(4.5) that

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2

≥I(t)I ′′(t)− (4 + α)I(t)[∥(−∂2x)−1/2ut∥22 + ∥uxx∥22 + ∥ut∥22 + β]

≥I(t){2∥(−∂2x)−1/2ut∥22 + 2∥ut∥22 + 2β − 2∥uxx∥22 − 2∥u∥22 − 2∥ux∥22

− 2r(u, ut)− 2

∫
uf(u)dx− (4 + α)[∥(−∂2x)−1/2ut∥22 + ∥ut∥22 + β]}

≥I(t){(r − α− 2)∥(−∂2x)−1/2ut∥22 + (−2− α)∥ut∥22 + (−4− α)β

+ (r − 2)(∥ux∥22 + ∥uxx∥22) +
∫

[2rF (u)− 2uf(u)− 2u2]dx

+ 2r2
∫ t

0

∥uτ∥22dτ − rE(0)}.(4.6)

From equality (3.1), we have

(r − α− 2)∥(−∂2x)−1/2ut∥22 + (−2− α)∥ut∥22 + (r − 2)(∥ux∥22 + ∥uxx∥22)
≥ (−α− 2)(∥(−∂2x)−1/2ut∥22 + ∥ux∥22 + ∥uxx∥22 + ∥ut∥22)

= (α+ 2)(∥u∥22 + 2r

∫ t

0

∥uτ∥22dτ + 2

∫
Rn

F (u)dx− E(0)).

Thus, from the above inequality, (1.9) and (4.6), we have

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2

≥I(t){−(4 + α)β − (2 + α+ r)E(0)

+

∫
Rn

[2(2 + α+ r)F (u) + αu2 − 2uf(u)]dx+ (2r(2 + α) + 2r2)

∫ t

0

∥uτ∥22dτ}

≥ − [(4 + α)β + (2 + α+ r)E(0)]I(t).

(4.7)

If E(0) < 0, taking β = −2+α+r
4+α E(0) > 0, then we get

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2 ≥ 0.

We may choose τ so large that I ′(t) > 0. From Lemma 4.1 we know that I(t)
becomes infinite at a time T1 at moat equal to

T1 =
4I(0)

αI ′(t)
<∞.

If E(0) = 0, taking β = 0, from equation (4.7), we get

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2 ≥ 0.
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Also I ′(t) > 0 by assumption (ii). Thus, we obtain from Lemma 4.1 that I(t)
becomes infinite at a time T2 at most equal to

T2 =
4I(0)

αI ′(t)
<∞.

If E(0) > 0, then taking β = 0, inequality (4.7) becomes

I(t)I ′′(t)− (1 +
α

4
)(I ′(t))2 ≥ −(2 + α+ r)E(0)I(t).(4.8)

Define J(t) = (I(t))−λ, where λ = α/4. Then we obtain

J ′(t) = −λ(I(t))−λ−1I ′(t),

J ′′(t) = −λ(I(t))−λ−2[I(t)I ′′(t)− (1 + λ)(I ′(t))2]

≤ λ(2 + r + 4λ)E(0)(I(t))−λ−1,(4.9)

where inequality (4.8) is used. Assumption (iii) implies J ′(0) < 0. Let

t∗ = sup{t|J ′(τ) < 0, τ ∈ (0, t)}.(4.10)

By the continuity of J ′(t), t∗ is positive. Multiplying (4.9) by 2J ′(t) yields

[(J ′(t))2]′ ≥ −2λ2(2 + r + 4λ)E(0)(I(t))−2λ−2I ′(t)

= 2λ2
2 + r + 4λ

2λ+ 1
E(0)[I(t)−2λ−1]′.(4.11)

Integrate (4.11) with respect to t over [0, t) to get

(J ′(t))2 ≥2λ2
2 + r + 4λ

2λ+ 1
E(0)(I(t))−2λ−1 + (J ′(0))2

− 2λ2
2 + r + 4λ

2λ+ 1
E(0)(I(0))−2λ−1

≥(J ′(0))2 − 2λ2
2 + r + 4λ

2λ+ 1
E(0)(I(0))−2λ−1.

By assumption (iii), we get

(J ′(0))2 − 2λ2
r + 2 + 4λ

2λ+ 1
E(0)(I(0))−2λ−1 > 0.

Hence by continuity of J ′(t), we have

J ′(t) ≤ −[(J ′(0))2 − 2λ2
2 + r + 4λ

2λ+ 1
E(0)(I(0))−2λ−1]1/2(4.12)

for 0 ≤ t < t∗. By the continuity of t∗, if follows that inequality (4.12) holds
for all t ≥ 0. Therefore,

J(t) ≤ J(0)− [(J ′(0))2 − 2λ2
2 + r + 4λ

2λ+ 1
E(0)(I(0))−2λ−1]1/2t, ∀t > 0.

So J(T1) = 0 for some T1 and

0 < T1 ≤ T2 = J(0)/[(J ′(0))2 − [λ2(2 + λ+ r)/(4λ+ 8)]E(0)(I(0))−(λ+2)/2]1/2.
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Thus, I(t) becomes infinite at a time T1.
Therefore, I(t) becomes infinite at a time T1 under either assumptions. We

have a contradiction with the fact that the maximal time of existence is infinite.
Hence the maximal time of existence is finite. This completes the proof. □
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