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ABSTRACT. The spectral analysis of two classes of third order boundary
value problems is investigated. For every positive integer m we construct
two classes of regular third order boundary value problems with at most
2m + 1 eigenvalues, counting multiplicity. These kinds of finite spectrum
results are previously known only for even order boundary value problems.
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1. Introduction

It is well known [5,6, 13] that the spectrum of classical self-adjoint bound-
ary value problems is unbounded and therefore infinite. These are problems
with a positive leading coefficient p and a positive weight function w. In 1964
Atkinson, in his well known book [5], weakened these conditions to 1/p > 0
and w > 0 for the second order i.e. Sturm-Liouville(S-L) case and suggested
that when 1/p and w are identically zero on subintervals of the domain interval
(which is allowed by the general theory of differential equations) there may only
be a finite number of eigenvalues. But he gave no example to illustrate this. In
2001 Kong, Wu and Zettl [1 1] constructed, for each positive integer m, regular
self-adjoint and non-self-adjoint Sturm-Liouville problems with separated and
coupled boundary conditions whose spectrum consists of exactly m eigenval-
ues. Recently, Ao et al. generalized the finite spectrum results to fourth order
boundary value problems [2, 3], and 2nth order boundary value problems [4].
However, these results are only restricted into even order problems, and there
is no such finite spectrum results for odd order problems.

As is well known that the odd order differential boundary value problems,
such as first order or third order problems arise in a variety of different areas
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of applied mathematics and physics [10, 12]. There are significant many re-
searchers study these problems in various aspects, here we only refer some of
them [1,7,10,12].

Motivated by the above results, in this paper, we construct similar finite
spectrum problems of order n = 3. As far as we know, this is the first such
examples for odd order cases. As in [l1] our construction is based on the
characteristic function whose zeros are the eigenvalues of the problem. But the
analysis of this function for n = 3 is considerably more complicated than the
n = 2 case and more generally, in this paper, we discuss two kinds of third
order problems which are generated by different equation types.The key to this
analysis is still an iterative construction of the characteristic function. At the
end of this paper we illustrate our results by two examples.

The paper is organized as follows: Following this Introduction, Section 2
contains some basic notations and preliminaries. The statements and proofs of
finite spectrum of the first class of third order problems are given in Section 3.
A brief argument of second class of third order problems and two examples are
given in Section 4 to illustrate our results.

2. Notation and preliminaries

We consider two classes of third order boundary value problems (BVPs) in
this paper. The first is the third order BVP consisting of the equation

(2.1) (py") + qy = Mwy, on J = (a,b), with —oo < a < b < +00

together with boundary conditions. The second is the third order BVP con-
sisting of the equation

(py") + qy = My, on J = (a,b), with —oco < a < b < 400

together with boundary conditions. In Sections 2 and 3 we only consider equa-
tion (2.1) and detailed analysis for class two will be presented in Section 4.

Here X is the spectral parameter and the coefficients satisfy the minimal
conditions

(2.2) r=1/p,q,w € L(J,C),

where L(J,C) denotes the complex valued functions which are Lebesgue inte-
grable on J. Condition (2.2) is minimal in the sense that it is necessary and
sufficient for all initial value problems of equation (2.1) to have unique solutions
on [a, b; see [3, 13].

Under the minimal conditions (2.2) it is convenient to use the system formu-
lation of equation (2.1) and to introduce quasi-derivatives u; as follows [6,9]:

Let u; =y, us = %', uz = py”’. Then we have the system representation of
(2.1) as follows:

(2.3) uy = ug, uy = rug, uy = (Aw — q)ui, on J.
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This can be written in the following matrix form:

0 1

0 (751
U = 0 0 5 |UU=|u | ond
AMv—q 0 0 u3

Remark 2.1. Note that condition (2.2) does not restrict the sign of any of the
coefficients r,q,w. Also, each of 7,q,w is allowed to be identically zero on
subintervals of J. If r is identically zero on a subinterval I, then there exists
a solution y which is identically zero on I, but one of its quasi-derivatives
ug = 7', uz = py” may be a nonzero constant function on I.

Definition 2.2. By a trivial solution of equation (2.1) on an interval I C J
we mean a solution y which is identically zero on I and whose quasi-derivatives
ug = 7', uz = py” are also identically zero on I.

We consider two point boundary conditions (BCs) of the form

y
(2.4) AY(a)+BY (b)) =0, Y= | v |, A BeM;C),

/!

by
where M3(C) denotes the set of square matrices of order 3 over the complex

numbers C.

Lemma 2.3. Let (2.2) hold and let ®(z,\) = [¢;j(x, X)] denote the fundamen-
tal matriz of the system (2.3) determined by the initial condition ®(a,\) = 1.
Then a complex number X is an eigenvalue of the third order problem (2.1),
(2.4) if and only if

(2.5) A(\) = det[A + BO(b,\)] = 0.

Proof. Suppose A(A\) = 0. Then [A + B ®(b, )] C = 0 has a nontrivial vector
solution. After solving the initial value problem

0 10 y
Y = 0 0 % Y,Y = y on J, Y(a) =C,
Aw—¢q 0 0 py”’

we get Y (b) = ®(b,\)Y (a) and [A+ B ®(b,\)]Y (a) = 0.

From this it follows that the top component of Y, say, y is an eigenfunction
of the third order problem (2.1), (2.4); this means A is an eigenvalue of this
problem. Conversely, if A is an eigenvalue and y an eigenfunction of A, then Y =

Y
y satisfies Y (b) = ®(b, \)Y (a) and consequently [A+ B ®(b, \)]Y (a) =
pyll
0. If Y(a) = 0, then y is the trivial solution which contradicts the fact that y
is an eigenfunction, so we have det[A + B ®(b, \)] = 0. O
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Next we find a formula for A(X) which highlights its dependence on A and
on the matrices A, B.

Lemma 2.4. Let (2.2) hold and let ®(z, \) = [¢;;(x, \)] denote the fundamen-
tal matriz of the system (2.3) determined by the initial condition ®(a,\) = I.
Then the characteristic function A(X\) = det[A + B®(b, \)] can be written as

4 4
(2.6) A(N) = det(A) + det(B) + Z Zcij‘¢ij + Z dijki1Pij ki,

i=1 j=1 1<4,5,k,1<4, j#
where ;5,1 < 4,5 <4, dijri, 1 < 4,5,k 1 < 4,5 # 1 are constants which depend
only on the matrices A and B.

Proof. This follows from a tedious but straightforward computation. O

Remark 2.5. For simplicity, in (2.6) we write ¢;; as ¢!, ¢;;¢r as ¢?, and
regardless of their subscripts just to indicate that they are products of one or
two functions of A.

The third order problem (2.1) and (2.4), or equivalently (2.3) and (2.4), is
said to be degenerate if in (2.6) either A(A) =0 for all A € C or A(X) # 0 for
every \ € C.

3. Third order problems with finite spectrum

In this section we assume (2.2) holds and there exists a partition of the
interval J

(3.1) a=ag<ar<ag<--<ap_1<a,=>o,

for some odd integer n = 2m + 1, such that

1 a2k+1
(3.2) r= E =0 on [azk, G2k+1], / w # 0,

2k

A2k41
/ w(z)zde #0, k=0,1,...,m;

a2k

a2k 42
(3.3) g=w =0 on [agk+1,a2k+2), / r#0,

a2k+1

a2k+2
/ r(z)ede #0, k=0,1,...,m— 1.

2k+1

Definition 3.1. We say that a third order equation (2.1) is of Atkinson type
if the conditions (3.1)-(3.3) hold.
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We also need some additional notations which we will state here. Given
(3.1)-(3.3), let

a2k+2 a2k+2
(3.4) Tk :/ r, g :/ r(z)xdx, k=0,1,...,m—1,

a2k+1 A2k+1

A2k +1 a2k+1

Qk:/ q, (jk:/ q(x)xdx, k=0,1,...,m;

asg ask

a2k+1 a2k+1

wk:/ w, wk:/ w(z)zde, k=0,1,...,m;
ask azi
Following [11] we determine the structure of the principal fundamental ma-

trix of system (2.3) which is basic to our results.

Lemma 3.2. Let (2.2), (3.1)-(3.3) hold. Let ®(z,\) = [¢i;(x, A)] be the funda-
mental matriz solution of the system (2.3) determined by the initial condition
®(a,\) =1 for each A € C. Let

1 xr — ag 0
(3.5) Fr(xz,\ a) = 0 1 01,
ffk (A\w — q)dt ffk Aw —q)(t —ag)dt 1
k=0,2,...,2m;
1 z—ag f:; r(z —t)dt
Fe(z,N\ap) =] 0 1 f;krdt k=1,3,...,2m — 1.
0 0 1
Then for 1 <k <2m 4+ 1 we have
(3.6) @(ak, /\) = Fk_1(ak, )\,ak_l) @(ak_l, )\)

And more simpler, if we let
To = Fo(a1, A\, a0), Tk = For(a2k+1, A, a2k) Far—1(azk, A, a2x—1), k=1,2,...,m,
then
®(a1,A) = Fo(ai, A, a0) = To, P(azk+1,A) = Tk Pazk—1,N), k=1,2,...,m.
Hence we have the following formula

D(azk+1,\) = TeTp—1---To, k=0,1,...,m.

Proof. Observe from (2.3) that us is constant on each subinterval [asg, aox+1],

k=0,1,...,m, where r is identically zero, and thus on each of these subinter-
vals we have
(3.7) uz(x) = ua(agy),

u(z) = ui(agk) + u2(azk)(z — agr),
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and
x x
U3(l‘) = U3(a2k) + U1(a2k) / ()\w — q)dt + UQ(agk)/ ()\w — q)(t — agk)dt.
a2k a2k
Similarly, because ¢ and w are identically zero, u4 is constant on each subin-
terval [agk—1,a2:], kK =1,2,...,m — 1, so we have
(38) U3(.’L‘) = U3(a2k,1),

x

ug(x) = uz(agx—1) + uz(azk—1) / rdt,

a2k —1

and

x

ul(x) = U1 (agk_l) + u2(a2k_1)(ac — agk_l) + U3(a2k_1)/ 7“(30 — t)dt.

a2k—1

We see that u;(x),i = 1,2,3 are piecewise continuous functions on [a,b]. Let
U(z) = [ur(z), uz(x), uz(x)]” on [a,b], and set UV (2, \) = Uz, \;e;), where
ej, j = 1,2, 3 are the standard unit vectors, then it is easy to see that ®(z, \) =
[UM U@ UG, This establishes (3.6). O

Note that b = agmy1. The structure of ® given in Lemma 3.2 yields the
following:

Corollary 3.3. For the fundamental matriz ® we have that
ij(0,X) = RgA™ + §ij(N), 1,5 =1,2, ori=j=3

(3.9) Gij(b,N) = RipA™ ™ + 655N, i =3, j=1,2;

ij (b, N) = RigA\™ '+ §i5(N), i = 1,2, j =3,
where R;; are constants related to vy, P,k = 0,1,...m—1, wg,wr, k=0,1,...,
m and the end points a, b, ¢;;(\) are functions of A, in which the degrees of

A are smagler then m,m+ 1, or m — 1~ respectively. For example, ¢11(b,\) =
R11A™ + ¢11(N), so the degree of X in ¢11(N) is smaller then m.

Now we construct regular third order problems with general self-adjoint and
non-self-adjoint BCs which have at most 2m + 1 eigenvalues for each m € N.

Theorem 3.4. Letm € N, and let (2.2), (3.1)-(3.3) hold. Then the third order
boundary value problem (2.1), (2.4) has at most 2m + 1 eigenvalues.

Proof. Since A(A) = det[A + B®(b,\)], where ®(b,\) = [¢;;(b,\)]. From
Lemma 2.4 and Corollary 3.3 we know that the characteristic function A(\)
is a polynomial of A and has the form of (2.6). We denote the maximum of
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degree of A in ¢;;(b, A) by dij, 1 <14,j <3, by Corollary 3.3 the maximum of
degree of X in the matrix ®(b, \) can be written as the following matrix

m m m—1
(3.10) (dij) = m m m—1
m+1 m+1 m

In term of (2.6) and (3.10), we conclude that the maximum of the degree of
Ain A(A) is 2m + 1. Thus from the Fundamental Theorem of Algebra, A())
has at most 2m + 1 roots. |

The next theorem highlights the fact that every equation of Atkinson type
is equivalent to an equation with piecewise polynomial coefficients. But first
we give a lemma which is needed later.

Lemma 3.5. Let t1,to € R and ty # to. Then for any ng,m € R, there exists
a unique polynomial P(x) = 11z + 79, such that
ta

(3.11) /ZP(iL') dx = 1o, P(z)xdx =mn.

tl tl
Proof. For the proof see [3]. O
Denote the polynomials constructed in Lemma 3.5 by x(t1, t2, 10, 71) to high-

light their dependence on these parameters. Define piecewise polynomial func-
tions p(z), ¢(x) and w(z) on J by

ﬁ(x) = Xﬁl(QQk—haZkarkﬂﬁk)y HARS [a2k—17a'2k]7 k= 1a25"'am
00, xe[a&k;aﬂc—i—l]a k:()v]-a"'7m;
| x(azk, a2k 41, Gk, Gr), T € [agk, aoky1], E=10,1,...,m
(312) q(x) N { 0) S [a‘2k?—17a2/€]7 k= 172a s
o(z) = X(@2k; Q2k41, Wiy Wi), T € [asg, asg+1], k=0,1,...,m
07 xe[GQkflaan]a k:1a27"'am~

Then we have the following Theorem.

Theorem 3.6. Let (2.2) hold. Assume equation (2.1) is of Atkinson type, and
let p(x), q(x) and w(x) on J be defined by (3.12), where v, 1, k=1,2,...,m,
and Q, Gi, Wk, Wk, k = 0,1,...,m, are given by (3.4). Then the BVP (2.1),
(2.4) has exactly the same eigenvalues as the third order BVP consisting of the
equation

(3.13) (py")' +qy = Awy, on J=(a,b),
and with the same BC (2.4).



Finite spectrum 1096

Proof. From Lemma 3.5 and (3.12) we know that the BVP (2.1), (2.4) and
the BVP (3.13), (2.4) define the same ry, 7,k = 1,2,...,n, gk, Gk, Wk, Wk, k =
0,1,2,...,n, and under the same boundary conditions, they define the same
characteristic function A(A), hence have the same eigenvalues. 0

By Theorem 3.6 and its proof we see that for a fixed BC (2.4) on a given
interval J, there is a family of problems of Atkinson type which has exactly
the same eigenvalues as the problem (3.13), (2.4), with piecewise polynomial
coefficients. Such a family is called the equivalent family of (3.13), (2.4).

4. The second class of problems and examples

In this section we discuss another class of third order BVP consisting of the
equation
(4.1) (py")" + qy = Awy, on J = (a,b), with —oco < a <b < +0co
together with boundary conditions. Although this equation is different from
equation (2.1), the argument about the finite spectrum results is similar to
the one that matches the first class of problems we mentioned in the previous
sections. Hence in the following we only claim the different aspects of the
problem briefly.

Assume that the conditions such as (2.2), (3.1)-(3.3) and so on still hold.
Let uy =y, us = py’, us = (py’)’. Then we have the following system:

(4.2) uy = rug, uy =ug, uy = (Aw —q)uy, on J.

By replacing two point boundary conditions (2.4) into

)
(4.3) AY(a)+BY (b)) =0, Y = | py , A,B e M3(C),
(')
equations (3.5) turn into
1 0 0
(4.4) Pz a)=| [, Qw—q@z—t)dt 1 z—ay |,
ffk (Aw — q)dt 0 1
k=0,2,...,2m;

L[ ordt [ or(t—ag)dt
Fr(z,\ap)=1 0 1 T — ag Jk=1,3,...,2m — 1,
0 0 1

and (3.9), (3.10), (3.13) turn into
i (b, ) = RigA™ + ¢ij(N), 0,5 = 2,3, ori=j =1;

(4.5) bij(b,A) = RjA™ ™ 4+ 0ii(N), =1, i =2,3;
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Gij(b,N) = RipA™ L 4+ 655(N), §=2,3, i =1,

m m—1 m-—1
(4.6) (dij)=1 m+1 m m ,
m—+1 m m
(4.7) (py")" + qy = Moy, on J=(a,b),

respectively.

Then we can conclude that the similar statements in Lemmas and Theorems
for the first class of third order BVPs (2.1), (2.4) still hold for the second class
of BVPs (4.1), (4.3). All the statements and proofs are similar to the previous
statements and proofs, hence is omitted here.

Now we illustrate our results by two examples for each class of problems
respectively.

Example 4.1. Consider the third order boundary value problem of first class

(py") + qy = Awy, on J = (-2,5),
(4.8) y(=2) +py"(=2) +y(5) + y'(5) + 2py”(5) = 0,
' y'(=2) + 2py"(=2) + 2y(5) + 1/24'(5) — py”(5) = 0,
y'(=2) +3y(5) + 7y'(5) + 3py” (5) = 0.
Let m =2 and p, ¢, w are piecewise polynomial functions defined as follows:

(4.9)

oo, (—2,0) z, (=2,0) 1/2 (—2,0)
122+ 1), (0,1) 0, (0,1) 0. (0.1
p(z) =4 oo, (1,3) glz) =19 2, (1,3) w(z)= -1, (1,3)
1/2, (3,4) 0, (3,4) (3, 4)
OO’ (47 5)7 17 (47 5)7 2/3 ( 75)
From the conditions given we know that
1 01 1 1 2
(4.10) A= 01 2 |,B=[ 2 1/2 -1
01 0 3 7 3

Then we can deduce that the characteristic function
(4.11) A(N) = —12250/27\% — 7463/27\? + 67787/36)\ — 69707/36.
Hence the third order BVP (4.8), (4.9) has exactly m + 1 = 3 eigenvalues

Ao = —2.7159, Ay = 1.0534 + 0.6796%, A2 = 1.0534 — 0.6796z.
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Example 4.2. Consider the third order boundary value problem
(py")" + qy = Awy, on J = (-2,5),

(4.12) y(=2) + (py")'(=2) +y(5) + (py") (5) + 2(py')"(5) = 0,
(py")(=2) +2(py")'(=2) + 2y(5) + 1/2(py")(5) — (py')'(5) =0,
(py")(—=2) + 3y(5) + 7(py')(5) + 3(py')'(5) = 0.

Still let m = 2 and p, g, w are piecewise polynomial functions defined as in

(4.9).

Then we can deduce that the characteristic function

(4.13)  A(X) = —17353/54)\3 + 44467 /54\% + 43325 /72\ — 124711/72.
Hence the third order BVP (4.12), (4.9) has exactly m + 1 = 3 eigenvalues
Ao = —1.4216, A\ = 1.5715, Ay = 2.4126.
The graphs of the characteristic functions in Examples 4.1 and 4.2 are dis-

played in Figures 1 and 2 respectively.
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FIGURE 1. Characteristic Function in Example 4.1
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FiGURE 2. Characteristic Function in Example 4.2
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