The associated measure on locally compact cocommutative KPC-hypergroups

Document Type: Research Paper

Authors

1 Department of Mathematics‎, ‎The University of Qom‎, ‎3716146611‎, ‎Iran.

2 Department of Mathematics‎, ‎The University of Qom‎, ‎371614newline 6611‎, ‎Iran.

Abstract

We study harmonic analysis on cocommutative KPC-hyper-groups‎, which is a generalization of DJS-hypergroups‎, ‎introduced by Kalyuzhnyi‎, ‎Podkolzin and Chapovsky‎. ‎We prove that there is a relationship between‎ ‎the associated measures $\mu$ and $\gamma \mu$‎, ‎where $\mu$ is‎ ‎a Radon measure on KPC-hypergroup $Q$ and $\gamma$ is a character on $Q$.

Keywords

Main Subjects


W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, Walter de Gruyter, Berlin, 1995.

Y. M. Berezansky and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex Systems, Kluwer Academic Publishers, Dordrecht, 1998.

C. F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973) 331--348.

R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), no. 1, 1--101.

A. A. Kalyuzhnyi, G. B. Podkolzin and Y. A. Chapovski, Harmonic analysis on a locally compact hypergroup, Methods Funct. Anal. Topology 16 (2010), no. 4, 304--332.

A. R. Medghalchi and S. M. Tabatabaie, Contraction semigroups on hypergroup algebras, Sci. Math. Jpn. 69 (2008), no. 1, 59--72.

R. Spector, Measures invariantes sur les hypergroupes, Trans. Amer. Math. Soc. 239 (1978) 147--165.


Volume 43, Issue 1
January and February 2017
Pages 1-15
  • Receive Date: 08 February 2015
  • Revise Date: 23 September 2015
  • Accept Date: 03 October 2015