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Abstract. We study harmonic analysis on cocommutative KPC-hyper-
groups, which is a generalization of DJS-hypergroups, introduced by Ka-

lyuzhnyi, Podkolzin and Chapovsky. We prove that there is a relationship
between the associated measures µ and γµ, where µ is a Radon measure
on KPC-hypergroup Q and γ is a character on Q.
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1. Introduction

Hypergroups were introduced in a series of papers by Dunkle [3], Jewett [4],
and Spector [7] in the 70’s (we refer to this definition of hypergroups as DJS-
hypergroups). For more details about DJS-hypergroups we refer to [1].

In 2010, Kalyuzhnyi, Podkolzin, and Chapovsky [5] introduced new axioms
for hypergroups. This is an extension of DJS-hypergroups, on the one hand,
and generalizes a normal hypercomplex system with a basis unity to the nonuni-
modular case, on the other. We refer to this notion as KPC-hypergroup. They
studied harmonic analysis on these hypergroups and showed that there is an
example of a compact KPC-hypergroup related to the generalized Tchebycheff
polynomials, which is not a DJS-hypergroup [5]. Medghalchi and Tabatabaie [6]
have studied periodicity on locally compact commutative DJS-hypergroups.

In this paper we study harmonic analysis on locally compact cocommutative
KPC-hypergroups. In Section 2, we recall the definition and basic properties of
KPC-hypergroups. Periodicity of locally compact KPC-hypergroups and our
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main theorem is presented in Section 3. We show that there is a relationship
between the associated measures of µ and γµ, where µ is a Radon measure on
KPC-hypergroup Q and γ is a character of Q.

Let Q be a locally compact cocommutative KPC-hypergroup. We denote
the set of all complex Radon measures on Q, bounded measures, compact sup-
ported measures and positive measures by M(Q), Mb(Q), Mc(Q) and M+(Q),
respectively. We denote the spaces of all complex-valued bounded continu-
ous functions and continuous functions with compact supports by Cb(Q) and
Cc(Q), respectively.

2. Cocommutative KPC-hypergroups

In this section we recall the definition and basic properties of locally compact
KPC-hypergroups and study positive definite functions and measures on them.

Definition 2.1. Let Q be a locally compact second countable Hausdorff space
with an involutive homeomorphism ⋆ : Q −→ Q and let e ∈ Q satisfy e∗ = e.
Suppose the following conditions hold.

(H1) There is a C-linear mapping ∆ : Cb(Q) → Cb(Q×Q) such that
i. ∆ is coassociative, that is,

(2.1) (∆× id) ◦∆ = (id×∆) ◦∆;

ii. ∆ is positive, that is, ∆f ≥ 0 for all f ∈ Cb(Q) such that f ≥ 0;
iii. ∆ preserves the identity, that is, (∆1)(p, q) = 1 for all p, q ∈ Q;
iv. For all f, g ∈ Cc(Q) we have (1⊗ f).(∆g) ∈ Cc(Q×Q) and (f ⊗ 1).(∆g) ∈
Cc(Q×Q).

(H2) The homomorphism ϵ : Cb(Q) → C defined on Cb(Q) by ϵ(f) = f(e)
satisfies the counit property, that is,

(2.2) (ϵ× id) ◦∆ = (id× ϵ) ◦∆ = id,

in other words, (∆f)(e, p) = (∆f)(p, e) = f(p) for all p ∈ Q.

(H3) The function f− defined by f−(q) = f(q⋆) for f ∈ Cb(Q) satisfies

(2.3) (∆f−)(p, q) = (∆f)(q⋆, p⋆).

(H4) there is a positive measure m on Q, such that supp m = Q, and

(2.4)

∫
Q

(∆f)(p, q)g(q)dm(q) =

∫
Q

f(q)(∆g)(p⋆, q)dm(q)

for all f ∈ Cb(Q) and g ∈ Cc(Q), or f ∈ Cc(Q) and g ∈ Cb(Q), where p ∈ Q;
(such a measure m will be called a left Haar measure on Q.)
Then (Q, ⋆, e,∆,m), or simplyQ, is called a locally compact KPC-hypergroup.
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Notation. In the above definition, we have used the following notations:

[[(∆× id) ◦∆(f)](p, q, r)](.) := ∆(∆f(p, ·))(q, r),
[[(id×∆) ◦∆(f)](p, q, r)](.) := ∆(∆f(·, q))(p, r),
[(ϵ× id) ◦∆(f)](p) := ϵ(∆f(p, ·)) = ∆f(p, e),

[(id× ϵ) ◦∆(f)](p) := ϵ(∆f(·, p)) = ∆f(e, p),

(f ⊗ 1)(p, q).(∆g)(p, q) := f(p)1(q).∆g(p, q),

(1⊗ f)(p, q).(∆g)(p, q) := 1(p)f(q).∆g(p, q).

A KPC-hypergroup Q is called cocommutative if ∆f(p, q) = ∆f(q, p), for
all f ∈ Cb(Q) and all p, q ∈ Q and it is called Hermitian if q⋆ = q for all q ∈ Q;
By (H3), every Hermitian hypergroup is cocommutative.

Throughout this paper Q is a locally compact cocommutative KPC-hyper-
group and m is a left Haar measure on Q.

Definition 2.2. Let µ, ν ∈ M(Q) be such that the linear functional µ ∗ ν
defined by

(2.5) (µ ∗ ν)(f) =
∫
Q2

∆(f)(p, q)dµ(p)dν(q), (f ∈ Cc(Q))

is a measure. Then the measures µ and ν are called convolvable. In particular,
we have (δp ∗ δq)(f) = (∆f)(p, q), where p, q ∈ Q.

If µ, ν ∈ Mb(Q), then µ and ν are convolvable. [5, Lemma 3.3]

Definition 2.3. The convolution of f, g ∈ Cc(Q) is denoted by f ∗ g and is
defined by (fm) ∗ (gm) = (f ∗ g)m, where the convolution of measures is given
by (2.5). For each f, g ∈ Cc(Q), we have f ∗ g ∈ Cc(Q), and by [5],

(2.6) (f ∗ g)(q) =
∫
Q

f(p)(∆g)(p⋆, q)dm(p).

Similarly, we define f ∗ g for f, g ∈ Cb(Q).

Remark 2.4. If m is a left Haar measure and p ∈ Q, then m ∗ δp is a left Haar
measure. Since a left Haar measure is unique up to strictly positive scalar
mutiples, m ∗ δp⋆ = δ(p)m for a positive number δ(p). (This number does not
depend on the left Haar measure m). The function δ : Q −→ C is called the
modular function of the locally compact KPC-hypergroup Q.

Definition 2.5. A measure µ ∈ M(Q) is called positive definite if for any

g ∈ Cc(Q), we have
∫
g ∗ g⋆dµ ≥ 0, where g⋆(p) = g(p⋆)δ(p⋆), and δ is the

modular function. The set of all positive definite measures on Q is denoted by
Mp(Q). The set of all bounded positive definite measures is denoted byMp

b (Q).
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A function f ∈ Cb(Q) is called positive definite if for any g ∈ Cc(Q), we
have

∫
f(g ∗ g⋆)dm ≥ 0. We denote the set of all positive definite functions by

P (Q).

For each µ ∈ M(Q), we define µ− by
∫
Q
f(t)dµ−(t) =

∫
f(t⋆)dµ(t).

Definition 2.6. The convolution of f ∈ Cc(Q) and µ ∈ Mb(Q) is defined by

(2.7) (µ ∗ f)(q) :=
∫
Q

∆f(p⋆, q)dµ(p), (q ∈ Q)

if the integral exists.

Definition 2.7. A measure µ ∈ M(Q) is called shift-bounded if µ ∗ f ∈ Cb(Q)

for all f ∈ Cc(Q), and weakly shift-bounded if µ ∗ f ∗ f̃ ∈ Cb(Q) for all
f ∈ Cc(Q).

Lemma 2.8. i. For any p ∈ Q, we have δ(p) = 1, where δ is the modular
function of Q.

ii. For each f, g ∈ Cc(Q), f ∗ g = g ∗ f .

Proof. i. Let f ∈ Cc(Q) and p ∈ Q. Then

δ(p)m(f) = (m ∗ δp⋆)(f) (by 2.5)

=

∫
Q

∫
Q

∆f(q, t)dm(q)dδp⋆(t)

=

∫
Q

∆f(q, p⋆)dm(q) (Q is cocommutative)

=

∫
Q

∆f(p⋆, q)1(q)dm(q) (by 2.4)

=

∫
Q

∆1(p, q)f(q)dm(q) (by H1 iii)

=

∫
Q

f(q)dm(q) = m(f).
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Thus δ(p) = 1 for any p ∈ Q.
ii. If f, g ∈ Cc(Q), for any q ∈ Q, we have

(f ∗ g)(q) =
∫
Q

f(p)∆g(p⋆, q)dm(p) (by 2.3)

=

∫
Q

f(p)∆g−(q⋆, p)dm(p) (by 2.4)

=

∫
Q

∆f(q, p)g−(p)dm(p) (Q is cocommutative)

=

∫
Q

∆f(p, q)g(p⋆)dm(p) (p := p⋆)

=

∫
Q

∆f(p⋆, q)g(p)δ(p⋆)dm(p) (by i)

=

∫
Q

∆f(p⋆, q)g(p)dm(p) (by 2.6)

= (g ∗ f)(q).
□

The proof of the following proposition is different from the case of DJS-
hypergroups.

Proposition 2.9. If f ∈ Cc(Q) and µ ∈ Mb(Q), then µ ∗ f ∈ C(Q).

Proof. Since Q is a second countable space, we can use sequences for the proof.
Let (qn)

∞
n=1 be a sequence inQ, such that qn → q. We should show (µ∗f)(qn) →

(µ ∗ f)(q). By [5, Lemma 3.1], ∆ is a continuous mapping from Cb(Q) to
Cb(Q × Q). Thus for any f ∈ Cc(Q), ∆f(p⋆, qn) → ∆f(p⋆, q). Also, since
∆f(., q) ∈ Cb(Q), we have

|
∫

|∆f(p⋆, q)|dµ(p)| ≤ sup
p∈Q

|∆f(p⋆, q)|.||µ|| < ∞.

So by the dominated convergence theorem, we have∫
∆f(p⋆, qn)dµ(p) →

∫
∆f(p⋆, q)dµ(p).

Therefore (µ ∗ f)(qn) → (µ ∗ f)(q), and hence µ ∗ f ∈ C(Q). □

Proposition 2.10. If µ is a bounded positive definite measure on Q and f ∈
Cc(Q), then µ ∗ f ∗ f̃ ∈ Pb(Q).

Proof. Let µ ∈ Mb(Q) and f ∈ Cc(Q). By [5, Lemma 5.2] we have f ∗ f̃ ∈
Cc(Q). So by Proposition 2.8, µ ∗ (f ∗ f̃) ∈ C(Q). By [5, corollary 5.3], Cc(Q)
is an involutive algebra with the multiplication and involution defined by (2.6)

and f⋆(p) = f̄(p⋆)δ(q⋆), respectively. Define g := f ∗ f̃ . Then



The associated measure on KPC-hypergroups 6

|(µ ∗ g)(q)| = |
∫

∆g(p⋆, q)dµ(p)|

≤
∫

|∆g(p⋆, q)|d|µ|(p)

≤ ||∆g||
∫

d|µ|(p)

≤ ||∆||||g|||µ|(Q) (5, Lemma 3.1)

= ||g|||µ|(Q) < ∞.

Therefore µ ∗ (f ∗ f̃) is bounded. Now we have∫
(µ ∗ f ∗ f̃)(q)(g̃ ∗ g)(q)dm(q) =

∫ ∫
∆(f ∗ f̃)(t⋆, q)(g̃ ∗ g)(q)dµ(t)dm(q)

=

∫ ∫
∆(f ∗ f̃)−(q⋆, t)(g̃ ∗ g)(q)dµ(t)dm(q)

=

∫
[(g̃ ∗ g) ∗ (f ∗ f̃)−](t)dµ(t)

=

∫
[(f− ∗ g) ∗ (f− ∗ g)̃](t)dµ(t).

Since µ ∈ Mp(Q), the last integral is nonnegative. So by [5, Lemma 8.3],

µ ∗ (f ∗ f̃) is positive definite which completes the proof. □

Definition 2.11. A function χ ∈ Cb(Q) is called a character of the KPC-

hypergroup Q if (∆χ)(p, q) = χ(p)χ(q) and χ(p⋆) = χ(p), for all p, q ∈ Q.

Definition 2.12. For any f ∈ L1(Q) and µ ∈ M(Q), the Fourier-Stieltjes

transform µ̂ of µ and the Fourier transform f̂ of f are defined by

µ̂(ξ) =

∫
Q

ξ(t)dµ(t) and f̂(ξ) =

∫
Q

ξ(t)f(t)dm(t),

respectively, where ξ ∈ Q̂, [5].

Definition 2.13. Let f ∈ L1(Q̂) and µ ∈ M(Q̂). The inverse Fourier trans-
form f̌ and µ̌ of f and µ are defined by

f̌(p) =

∫
Q̂

ξ(p)f(ξ)dρ(ξ) and µ̌(p) =

∫
Q̂

ξ(p)dµ(ξ),

respectively, where p ∈ Q.
Note that ρ is the Plancherel measure and Q̂ = supp ρ.

In fact Q̂ is not a KPC-hypergroup in general. But under some conditions
it is a KPC-hypergroup (see Theorem 3.7)



7 Tabatabaie and Haghighifar

Lemma 2.14. For any f ∈ Cc(Q), (f⋆)̂ = f̂ .

Proof. Let ξ ∈ Q̂. Then

(f⋆)̂(ξ) =

∫
Q

ξ(p)f⋆(p)dm(p)

=

∫
Q

ξ(p)f(p⋆)δ(p⋆)dm(p) (Lemma 2.8i)

=

∫
Q

ξ(p)f̄(p⋆)dm(p) (p := p⋆)

=

∫
Q

ξ(p⋆)f(p)dm(p⋆) (Lemma 2.8i)

=

∫
Q

ξ(p⋆)f(p)dm(p) = f̂(ξ).

□

Lemma 2.15. For any f, g ∈ Cc(Q), (f ∗ g)̂ = f̂ ĝ.

Proof. Let f, g ∈ Cc(Q). For any ξ ∈ Q̂

(f ∗ g)̂(ξ) =
∫
Q

ξ(p)(f ∗ g)(p)dm(p)

=

∫
Q

∫
Q

ξ(p)f(q)∆g(q⋆, p)dm(q)dm(p)

=

∫
Q

f(q)(

∫
Q

ξ(p)∆g(q⋆, p)dm(p))dm(q) (H4)

=

∫
Q

f(q)(

∫
Q

∆ξ(q, p)g(p)dm(p))dm(q) (H3)

=

∫
Q

f(q)(

∫
Q

∆ξ(p⋆, q⋆)g(p)dm(p))dm(q)

=

∫
Q

f(q)(

∫
Q

ξ(p⋆)ξ(q⋆)g(p)dm(p))dm(q)

=

∫
Q

ξ(q⋆)f(q)dm(q)

∫
Q

ξ(p⋆)g(p)dm(p)

= f̂(ξ)ĝ(ξ).

□

Lemma 2.16. For any g ∈ Cc(Q) and σ ∈ M(Q̂), we have σ̌ ∗ (|ĝ|2)̌ = (|ĝ|2σ)̌.
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Proof. By Lemma 2.15, for any g ∈ Cc(Q), (g ∗ g⋆)̂ = |ĝ|2. We define h :=
(g ∗ g⋆). For any p ∈ Q we have

(|ĝ|2σ)̌(p) = (ĥσ)̌(p)

=

∫
Q̂

ξ(p)ĥ(ξ)dσ(ξ)

=

∫
Q̂

ξ(p)(

∫
Q

ξ(q)h(q)dm(q))dσ(ξ)

=

∫
Q̂

∫
Q

ξ(p)ξ(q⋆)h(q)dm(q)dσ(ξ)

=

∫
Q̂

∫
Q

∆ξ(p, q⋆)h(q)dm(q)dσ(ξ) (Q is cocommutative)

=

∫
Q̂

∫
Q

∆ξ(q⋆, p)h(q)dm(q)dσ(ξ) (H3)

=

∫
Q̂

∫
Q

∆ξ(p, q⋆)h(q)dm(q)dσ(ξ) (H4)

=

∫
Q̂

∫
Q

∆h(p, q)ξ(q)dm(q)dσ(ξ) (q := q⋆)

=

∫
Q̂

∫
Q

∆h(p, q⋆)ξ(q)δ(q⋆)dm(q)dσ(ξ) (Lemma 2.8)

=

∫
Q̂

∫
Q

∆h(q⋆, p)ξ(q)dm(q)dσ(ξ)

=

∫
Q

σ̌(q)∆h(q⋆, p)dm(q))

= (σ̌ ∗ h)(p).

□

Theorem 2.17. Every µ ∈ Mp(Q) corresponds to a unique σ ∈ M+(Q̂) such
that for all g, h ∈ Cc(Q) and p ∈ Q,
i.

∫
|ĝ|2dσ < ∞,

ii. (µ ∗ g ∗ g⋆)(p) =
∫
Q̂
ξ(p)|ĝ(ξ)|2dσ(ξ),

where ξ ∈ Q̂.

The measure σ is called the associated measure of µ.

Proof. In Proposition 2.10 we proved that µ ∗ (g ∗ g̃) ∈ Pb(Q). Therefore

by [5, Theorem 10.4], there is a σg ∈ M b
+(Q̂) satisfying µ ∗ (g ∗ g̃) = σ̌g. By
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Lemma 2.16,

(|ĝ|2σf )̌ = σ̌f ∗ (|ĝ|2)̌

= σ̌f ∗ ((g ∗ g⋆)̂)̌
= (µ ∗ f ∗ f⋆) ∗ (g ∗ g⋆) (Lemma 2.8)

= (µ ∗ g ∗ g⋆) ∗ (f ∗ f⋆)

= σ̌g ∗ (|f̂ |2)̌

= (|f̂ |2σg )̌

By the uniqueness of the inverse Fourier transform, we have

(2.8) |ĝ|2σf = |f̂ |2σg.

For any σ ∈ M+(Q̂) satisfying (i) and (ii), we should have |ĝ|2σ = σg where
g ∈ Cc(Q) and define σ accordingly. We will show that σ is well defined.
Choose g ∈ Cc(Q) such that ĝ ̸= 0 on supp(h) [2], so that∫

Q̂

hdσ =

∫
Q̂

h

|ĝ|2
dσg

where h
|ĝ|2 is defined to be zero where ĝ(ξ) = 0. By (2.8),

∫
Q̂
hdσ is independent

from the choice of g. Clearly h 7→
∫
Q̂
hdσ is positive and linear on Cc(Q̂), and

σ ∈ M+(Q̂). □

Definition 2.18. Let µ ∈ M(Q). If there is σ ∈ M+(Q̂) such that for all
f ∈ Cc(Q) ∫

Q

|f̂ |2dσ < ∞ and

∫
Q

f ∗ f⋆dµ =

∫
Q̂

|f̂ |2dσ,

then Fµ := σ is called the generalized Fourier transform of µ.

Corollary 2.19. Let Q be a cocommutative KPC-hypergroup. If µ ∈ Mp
b (Q),

and σ ∈ M+(Q̂), then following statements are equivalent
i. σ = Fµ;

ii.
∫
Q
g ∗ g⋆dµ =

∫
Q̂
|(g−)̂|2dσ (g ∈ Cc(Q)).

Proof. The proof is similar to the case of DJS-hypergroups. Let σ = Fµ. By
using polarization, we have∫

Q

f ∗ g⋆dµ =

∫
Q

f̂ ¯̂g, (f, g ∈ Cc(Q)).

If we replace f by δp ∗ f̄ , and g by f̄ , we get

(µ ∗ f ∗ f⋆)(p) =

∫
Q̂

ξ(p)|f̂(ξ)|2dσ(ξ).
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Thus σ is the associated measure of µ. Now if we replace p by e,∫
Q

ξ(e)|(f−)̂|2(ξ)dσ(ξ) =
∫
Q

|(f−)̂|2(ξ)dσ(ξ) (Theorem 2.17 ii)

= (µ ∗ f− ∗ (f−)⋆)(e) (by 2.7)

=

∫
Q

∆(f− ∗ (f−)⋆)(p⋆, e)dµ(p) (by H2)

=

∫
Q

f− ∗ (f−)⋆(p⋆)dµ(p) (by H3)

=

∫
Q

(f− ∗ (f−)⋆)−(p)dµ(p) (by Lemma 3.1)

=

∫
Q

(f⋆ ∗ f)(p)dµ(p) (by Lemma 2.8 ii)

=

∫
Q

(f ∗ f⋆)(p)dµ(p).

Therefore
∫
Q
|(f−)̂|2dσ =

∫
Q
f ∗f⋆dµ. The converse is proved similarly by using

the polarization. □
Corollary 2.20. The following statements are equivalent

i. µ ∈ Mp(Q).

ii. There exists σ ∈ M+(Q̂) such that∫
Q

g ∗ g⋆dµ =

∫
Q̂

|(g−)̂|2dσ (g ∈ Cc(Q)).

3. Main results

In this section we present the main theorem of this paper.

Lemma 3.1. Let f, g ∈ Cc(Q). Then (f ∗ g)− = g− ∗ f−.

Proof. Let f, g ∈ Cc(Q). We have

(f ∗ g)−(p) = (f ∗ g)(p⋆) (by 2.6)

=

∫
f(q)∆g(q⋆, p⋆)dm(q) (by 2.3)

=

∫
f(q)∆g−(p, q)dm(q) (by 2.4)

=

∫
g−(q)∆f(p⋆, q)dm(q) (by 2.3)

=

∫
g−(q)∆f−(q⋆, p)dm(q) (by 2.6)

= (g− ∗ f−)(p).
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Therefore (f ∗ g)− = g− ∗ f−. □

Lemma 3.2. Let f, g, h ∈ Cc(Q). Then (f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof. For f, g, h ∈ Cc(Q) by [5, Proposition 3.4] we have (fm ∗ gm) ∗ hm =
fm ∗ (gm ∗ hm). On the other hand by Definition 2.3, we have

(fm ∗ gm) ∗ hm = (f ∗ g)m ∗ hm = [(f ∗ g) ∗ h]m,

fm ∗ (gm ∗ hm) = fm ∗ (g ∗ h)m = [f ∗ (g ∗ h)]m.

Thus by uniqueness in the Riesz representation theorem, (f ∗ g) ∗ h = f ∗ (g ∗
h). □

Theorem 3.3. Let f, g, h ∈ Cc(Q). Then∫
[(f ∗ g)h]dm =

∫
f(h ∗ g−)dm.

Proof. By Definition 2.1, we have e⋆ = e. Thus by H2,∫
Q

[(f ∗ g)h](p)dm(p) =

∫
Q

(f ∗ g)(p)∆h(e, p)dm(p) (by 2.3 and e⋆ = e)

=

∫
Q

(f ∗ g)(p)∆h−(p⋆, e)dm(p) (by 2.6)

= [(f ∗ g) ∗ h−](e) (Lemma 3.2)

= [f ∗ (g ∗ h−)](e) (Lemma 3.1)

= [f ∗ (h ∗ g−)−](e) (by 2.6)

=

∫
Q

f(p)∆(h ∗ g−)−(p⋆, e)dm(p) (by 2.3)

=

∫
Q

f(p)∆(h ∗ g−)(e⋆, p)dm(p) (by H2 and e⋆ = e)

=

∫
Q

f(p)(h ∗ g−)(p)dm(p),

where f, g, h ∈ Cc(Q). □

Lemma 3.4. Let η be a character of Q. Then for any f ∈ Cb(Q) and q ∈ Q,
we have

(3.1) (η ∗ f)(q) =
∫
Q

η(q)(ηf)(p⋆)dm(p).
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Proof. By (2.6) for any q ∈ Q

(η ∗ f)(q) =
∫
Q

η(p)∆f̄(p⋆, q)dm(p) (by 2.3)

=

∫
Q

η(p)∆(f̄)−(q⋆, p)dm(p) (by 2.4)

=

∫
Q

∆η(q, p)(f̄)−(p)dm(p) (by H3)

=

∫
Q

∆η(q, p)f̄(p⋆)dm(p)

=

∫
Q

η(q)η(p)f̄(p⋆)dm(p)

=

∫
Q

η(q)η̄(p⋆)f̄(p⋆)dm(p)

=

∫
Q

η(q)(ηf)(p⋆)dm(p).

□

Remark 3.5. In the following theorem, we will assume that the approximate
identity (en) (which is introduced in [5, Theorem 5.9]) satisfies the following
properties: en ∈ C+

c (Q) and supp(en) ⊆ Vn, where (Vn)n∈N is a fundamental
system of open relatively compact neighborhoods of e such that ∩n∈NVn = {e}
and Vn ⊇ Vn+1.

We recall the following lemma and theorem from [5] without proof. In the
following lemma, we denote the space of bounded characters on Q by Xh.

Lemma 3.6. Let χ1.χ2 be a positive definite function on Q for all χ1, χ2 ∈ Q̂.
Then there exists a nonnegative finite regular Borel measure ρχ1,χ2

on Xh such
that

(3.2) χ1(p)χ2(p) =

∫
Xh

χ(p)dρχ1,χ2(χ).

Theorem 3.7. Let Q be a cocommutative hypergroup satisfying the following
properties:

(1) the character ϵ defined in (H2) belongs to Q̂;

(2) the product of two characters χ1, χ2 ∈ Q̂ is a positive defnite function,

and the support of the measure ρχ1,χ2 defined by (3.2) is contained in Q̂;
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(3) the comultiplication ∆̂ : Cb(Q̂) −→ Cb(Q̂× Q̂) defined by

∆̂(F )(χ1, χ2) =

∫
Q̂

F (χ)dρχ1,χ2(χ), F ∈ Cb(Q̂),

satisfies axiom (H1)(iv). Then Q̂ is also a locally compact cocommutative KPC-
hypergroup, called dual hypergroup, that satisfies the conditions of this theorem,

and the hypergroup
ˆ̂
Q coincides with Q. The dual of a compact hypergroup

is a discrete hypergroup, and the dual of a discrete hypergroup is a compact
hypergroup.

Theorem 3.8. Let Q be as above and µ be a shift-bounded positive definite
measure on Q with associated measure σ. For every γ in Q̂, the measure γµ is
also a positive definite measure with associated measure δγ ∗ σ.
Proof. Let g ∈ C+

c (Q) and put h− := g ∗ g̃. For each f ∈ Cc(Q), we have∫
Q

[γ(f ∗ f̃) ∗ h](p)dµ(p)

=

∫
Q

∫
Q

γ(q)(f ∗ f̃)(q)∆h(q⋆, p)dm(q)dµ(p)

=

∫
Q

γ(q)(f ∗ f̃)(q)
∫
Q

∆h(q⋆, p)dµ(p)dm(q) (by 2.3)

=

∫
Q

γ(q)(f ∗ f̃)(q)
∫
Q

∆h−(p⋆, q)dµ(p)dm(q) (by 2.7)

=

∫
Q

γ(q)(f ∗ f̃)(q)(µ ∗ h−)(q)dm(q)

=

∫
Q

γ(q)(f ∗ f̃)(q)(µ ∗ g ∗ g̃)(q)dm(q) (Theorem 2.17)

=

∫
Q

∫
Q̂

γ(q)(f ∗ f̃)(q)ξ(q)|ĝ(ξ)|2dσ(ξ)dm(q)

=

∫
Q̂

∫
Q̂

|ĝ(ξ)|2
∫
Q

(f ∗ f̃)(q)η(q)dm(q)dργ,ξ(η)dσ(ξ) (Theorem 3.3)

=

∫
Q̂

∫
Q̂

|ĝ(ξ)|2
∫
Q

f(q)(η ∗ (f̃)−)(q)dm(q)dργ,ξ(η)dσ(ξ)

=

∫
Q̂

∫
Q̂

|ĝ(ξ)|2
∫
Q

f(q)(η ∗ f̄)(q)dm(q)dργ,ξ(η)dσ(ξ) (by 3.1)

=

∫
Q̂

∫
Q̂

|ĝ(ξ)|2
∫
Q

∫
Q

(ηf)(q)(ηf)(p⋆)dm(p)dm(q)dργ,ξ(η)dσ(ξ)

=

∫
Q̂

∫
Q̂

|ĝ(ξ)|2(ηf )̂(1)(ηf )̂(1)dργ,ξ(η)dσ(ξ)

=

∫
Q̂

∫
Q̂

|ĝ(ξ)|2 | (ηf )̂(1) |2 dργ,ξ(η)dσ(ξ)
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If we put j(η) =| (ηf )̂(1) |2, then by Theorem 3.7 (iii), we have∫
Q̂

∫
Q̂

|ĝ(ξ)|2 | (ηf )̂(1) |2 dργ,ξ(η)dσ(ξ) =

∫
Q̂

|ĝ(ξ)|2∆̂j(γ, ξ)dσ(ξ).

Now we replace g by en in the above relations (the net (en) has been intro-
duced in [5, Theorem 5.9]). By Urysohn’s lemma, there is an h0 ∈ Cc(Q)
such that h0 ≡|| f ||∞ on the compact set supp(f) ∗ U , where U is a com-
pact neighborhood of the identity e ∈ Q that contains a fundamental system
of neighborhoods {Vn} as in the above remark. By [5, Lemma 4.5] we have
|| | f | ∗en ||∞≤|| f ||∞|| en ||1=|| f ||∞. Since (en) is an approximate identity,
by [5, Theorem 5.9] e⋆n = en and | en |= en. Now since Q is a cocommutative
KPC-hypergroup, by Lemma 2.8, we have

| γ(f ∗ f̃) ∗ (en ∗ en) | ≤| γ | (|f | ∗ |f̃ |) ∗ (en ∗ en)
≤ (|f | ∗ en) ∗ (|f | ∗ en)−

≤ h0 ∗ h−
0 ∈ L1(Q,m).

For any ξ ∈ Q̂,

| ên(ξ) |≤
∫
Q

| ξ(p) | en(p)dm(p) ≤|| en ||1= 1.

Thus for any ξ ∈ Q̂, we have | ên(ξ) | ∆j(γ, ξ) ≤ ∆j(γ, ξ). Also∫
Q̂

∆̂j(γ, ξ)dσ(ξ) =

∫
Q

∫
Q̂

γ(q)(f ∗ f̃)(q)ξ(q)dσ(ξ)dm(q)

=

∫
Q

γ(q)(f ∗ f̃)(q)σ̌(q)dm(q) < ∞,

since σ̌ ∈ C(Q), and so that γ(f ∗ f̃)σ̌ ∈ Cc(Q). Thus ∆̂j(γ, ξ) ∈ L1(Q̂, σ).
Therefore, applying the dominated convergence theorem in both sides of the
equality ∫

Q

[γ(f ∗ f̃) ∗ (en ∗ ẽn)](p)dµ(p) =
∫
Q̂

| ên(ξ) |2 ∆̂j(γ, ξ)dσ(ξ),

we have ∫
Q

[γ(f ∗ f̃)](p)dµ(p) =
∫
Q̂

∆̂j(γ, ξ)dσ(ξ) (by 2.5)

=

∫
Q̂

j(q)d(δγ ∗ σ)(q).

Thus

(ηf )̂(1) =

∫
Q

f(p)η(p)dm(p) =

∫
Q

f(p∗)η(p∗)dm(p∗)
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=

∫
Q

f(p⋆)η(p⋆)dm(p) = (f−)̂(η).

Therefore j(η) =| (ηf )̂(1) |2=| (f−)̂(η) |2 . Thus∫
Q

(f ∗ f̃)d(γµ) =
∫
Q̂

| (f−)̂ |2 d(δγ ∗ σ).

This completes the proof. □
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