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Abstract. In this paper, first, we investigate the construction of com-

pact sets of Ck and Ck
0 by proving “Ck, Ck

0 − version” of Arzelà-Ascoli
theorem, and then introduce new measures of noncompactness on these
spaces. Finally, as an application, we study the existence of entire solu-
tions for a class of the functional integral-differential equations by using

Darbo’s fixed point theorem associated with these new measures of non-
compactness. Further, some examples are presented to show the efficiency
of our results.
Keywords: Measure of noncompactness, Darbo’s fixed point theorem,

Arzelà-Ascoli theorem, integral-differential equations.
MSC(2010): Primary: 47H09; Secondary: 47H10.

1. Introduction

Compactness results in the spaces Lp(Rd) (1 ≤ p < ∞) and C(K) (the space
of continuous functions over a compact metric space K with values in R) are
often vital for proving existence results of differential, integral and functional
integral equations ( [1,4,15,16,20], for example). A necessary and sufficient con-
dition for a subset of Lp(Rd) (1 ≤ p < ∞) and C(K) to be compact are given
in what are often called the Kolmogorov compactness theorem and the Arzelà-
Ascoli theorem, respectively. On the other hand, measures of noncompactness
are very useful tools in functional analysis. They are also used in the studies
of functional equations, ordinary and partial differential equations, fractional
partial differential equations, integral and integral-differential equations, opti-
mal control theory, and in the characterizations of compact operators between
Banach spaces [2, 3, 5–14, 18, 19, 21, 22]. In particular, in recent years, a lot of
authors used the concept of a measure of noncompactness in conjunction with
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the Darbo’s fixed point theorem in order to prove the existence of solutions for
a wide variety of functional integral equations (cf. [3, 5, 6, 8, 9, 11, 13,14]).

The paper is organized as follows. In Section 2, we prove a “Ck−version” of
Arzelà-Ascoli theorem, and then introduce a new measure of noncompactness
in the space Ck(Ω). In Section 3, again we give a “Ck

0 − version” of Arzelà-
Ascoli theorem, and present a new measure of noncompactness in Ck

0 . Section 4
is devoted to the application of the results obtained to the functional integral-
differential equations. Finally, two examples are provided to illustrate the
efficiency and usefulness of our results.

Here, we recall some basic facts concerning measures of noncompactness,
which is defined axiomatically in terms of some natural conditions. Denote by
R the set of real numbers and put R+ = [0, + ∞). Let (E, ∥ · ∥) be a real
Banach space with zero element 0. Let B(x, r) denote the closed ball centered
at x with radius r. The symbol Br stands for the ball B(0, r). For X, a
nonempty subset of E, we denote by X and ConvX the closure and the closed
convex hull of X, respectively. Moreover, let us denote by ME the family of
nonempty bounded subsets of E and by NE the subfamily consisting of all
relatively compact subsets of E.

Definition 1.1. ([8]) A mapping µ : ME −→ R+ is said to be a measure of
noncompactness in E if it satisfies the following conditions:

1◦ The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊆
NE .

2◦ X ⊂ Y =⇒ µ(X) ≤ µ(Y ).
3◦ µ(X) = µ(X).
4◦ µ(ConvX) = µ(X).
5◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].
6◦ If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for

n = 1, 2, . . . and if lim
n→∞

µ(Xn) = 0, then X∞ = ∩∞
n=1Xn ̸= ∅.

The following Darbo’s fixed point theorem will be needed in Section 4.

Theorem 1.2. ([11, Theorem 1]) Let Ω be a nonempty, bounded, closed and
convex subset of a Banach space E and let F : Ω −→ Ω be a continuous mapping
such that there exists a constant k ∈ [0, 1) with the property

(1.1) µ(FX) ≤ kµ(X)

for any nonempty subset X of Ω. Then F has a fixed point in the set Ω.

2. Measure of noncompactness on Ck(Ω)

In this section, we characterize the compact subsets of Ck(Ω). Next we
introduce the new measure of noncompactness on Ck(Ω). Let Ω is a compact
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subset of Rn and k ∈ N, we denote by Ck(Ω) the space of functions f which
are k times continuously differentiable on Ω with the standard norm

∥f∥Ck(Ω) = max
0≤|α|≤k

∥Dαf∥u,

where ∥Dαf∥u = sup{|Dαf(x)| : x ∈ Ω}, |α| = α1 + . . . + αn and Dαf =
∂α1

∂x
α1
1

∂α2

∂x
α2
2

· · · ∂αn

∂xαn
n

f . Now we present “Ck−version” of Arzelà-Ascoli theorem.

Theorem 2.1. Let Ω be a compact subset of Rn and k ∈ N. Then F ⊂
Ck(Ω) is totally bounded if and only if Fα = {Dαf : f ∈ F} is bounded and
equicontinuous for all |α| ≤ k.

The proof relies on the following useful observation.

Lemma 2.2. ([17, Lemma 1]) Let X be a metric space. Assume that for every
ε > 0, there exists some δ > 0, a metric space W , and a mapping Φ : X −→ W
with Φ[X] totally bounded, and such that d(x, y) < ε whenever x, y ∈ X and
d(Φ(x),Φ(y)) < δ. Then X is totally bounded.

Proof. Proof of Theorem 2.1. Assume Fα are bounded and equicontinuous for
all |α| ≤ k. Let ε > 0. Combining the equicontinuity of Fα and compactness
of Ω, we can find a finite set of points y1, . . . , ym ∈ Ω with neighborhoods
U1, . . . , Um covering all of Ω so that

|Dαf(x)−Dαf(yj)| < ε

whenever f ∈ F , x ∈ Uj and |α| ≤ k. Define Φ : F −→ Rm(l+1) ({α : |α| ≤
k} = {β1, β2, β3, . . . , βl}) by

Φ(f) = (f(y1), . . . , f(ym), Dβ1f(y1), . . . , D
β1f(ym), . . . , Dβlf(ym)).

By boundedness of Fα, the image Φ[F ] is bounded, and hence totally bounded,
in Rm(l+1). Furthermore, if f, g ∈ F with ∥Φ(f)−Φ(g)∥Ck(Ω) < ε, then as any
x ∈ Ω, belongs to some Uj ,

|Dαf(x)−Dαg(x)| ≤|Dαf(x)−Dαf(xj)|+ |Dαf(xj)−Dαg(xj)|
+ |Dαg(xj)−Dαg(x)| < 3ε,

and so ∥f − g∥Ck(Ω) ≤ 3ε. By Lemma 2.2, F is totally bounded.

For the converse, assume that F is a totally bounded subset of Ck(Ω). Let
us fix α arbitrarily such that 0 ≤ |α| ≤ k. The existence of a finite ε-cover for
F , for any ε, clearly implies the boundedness of Fα.

To prove the equicontinuity of Fα, let x ∈ Ω and ε > 0 be given. Pick
an ε-cover {U1, . . . , Um} of F , and choose gj ∈ Uj for j = 1, . . . ,m. Pick a
neighborhood Vj of x so that |Dαgj(y) − Dαgj(x)| < ε whenever y ∈ Vj , for
j = 1, . . . ,m. Let V = V1 ∩ · · · ∩ Vm. If f ∈ Uj , then ∥f − gj∥Ck(Ω) < ε, and
so when y ∈ V ,

|Dαf(y)−Dαf(x)| ≤|Dαf(y)−Dαgj(y)|+ |Dαgj(y)−Dαgj(x)|
+ |Dαgj(x)−Dαf(x)| < 3ε.
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Now, since Ω is compact, we have the equicontinuity of Fα. □

Now, we are ready to define a new measure of noncompactness on Ck(Ω).

Theorem 2.3. Suppose 1 ≤ k < ∞ and F is a bounded subset of Ck(Ω). For
f ∈ F , ε > 0 and α ∈ RN such that 0 ≤ |α| ≤ k, let

ω(f, ε) = sup{|Dαf(x)−Dαf(y)| : x, y ∈ Ω, ∥x− y∥ < ε, 0 ≤ |α| ≤ k},
ω(F , ε) = sup{ω(f, ε) : f ∈ F}.

Then ω0 : MCk(Ω) −→ R given by

(2.1) ω0(F) = lim
ε→0

ω(F , ε)

defines a measure of noncompactness on Ck(Ω) and moreover, ker(ω0) = NCk(Ω).

Proof. First we show 1◦ holds. Take F ∈ MCk(Ω) such that ω0(F) = 0. Let us
fix α arbitrarily such that 0 ≤ |α| ≤ k. Let η > 0 be arbitrary. Since ω0(F) = 0,
limε→0 ω(F , ε) = 0 and thus, there exists δ > 0 such that ω(F , δ) < η. This
implies that

|Dαf(x)−Dαf(y)| < η

for all f ∈ F and x, y ∈ Ω with ∥x − y∥ < δ. Then Fα is bounded and
equicontinuous. Thus 1◦ is satisfied.

2◦ follows directly from definition of ω. We continue by showing that 3◦

holds. Suppose that F ∈ MCk(Ω) and (fm) ⊂ F such that fm → f ∈ F in

Ck(Ω). By the definition of ω(F , ε) we have

|Dαfm(x)−Dαfm(y)| ≤ ω(F , ε)

for all m ∈ N, 0 ≤ |α| ≤ k and x, y ∈ Ω with ∥x− y∥ < ε. Letting m → ∞ we
get

|Dαf(x)−Dαf(y)| ≤ ω(F , ε)

for any 0 ≤ |α| ≤ k and x, y ∈ Ω with ∥x− y∥ < ε, and hence

lim
ε→0

ω(F , ε) ≤ lim
ϵ→0

ω(F , ε).

This implies that

(2.2) ω0(F) ≤ ω0(F).

From (2.2) and 2◦ we get ω0(F) = ω0(F). Therefore ω0 satisfies the condition
3◦ of Definition 1.1.

4◦ follows directly from [Conv(F)]α = Conv(Fα) and is therefore omitted.
The proof of condition 5◦ can be carried out by using the equality

Dα(λf + (1− λ)g) = λDαf + (1− λ)Dαg

for all λ ∈ [0, 1].
It remains to prove 6◦. Suppose that {Fn} is a sequence of closed and

nonempty sets ofME such that Fn+1 ⊂ Fn for n = 1, 2, · · · , and lim
n→∞

ω0(Fn) =
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0. Now for any n ∈ N, take fn ∈ Fn and set G = {fn}.

claim: G is a compact set in Ck(Ω).
To prove the claim, we need to verify Gα is bounded and equicontinuous for

all |α| ≤ k. Let ε > 0 be fixed. Since lim
n→∞

ω0(Fn) = 0, then there exists N ∈ N
such that ω0(FN ) < ε. Hence, we can find δ1 > 0 such that

ω(FN , δ1) < ε.

Thus, for all n ≥ N , 0 ≤ |α| ≤ k and ∥x− y∥ < δ1 we have

|Dαfn(x)−Dαfn(y)| ≤ ω(FN , δ1) < ε.

Also we know that the set {x1, x2, . . . , xN} is compact. Hence there exists
δ2 > 0 such that

(2.3) |Dαfn(x)−Dαfn(y)| < ε

for all n = 1, 2, . . . , N , 0 ≤ |α| ≤ k and ∥x− y∥ < δ2, which implies that

|Dαfn(x)−Dαfn(y)| < ε

for all n ∈ N and ∥x − y∥ < min{δ1, δ2}. Therefore all the hypotheses of
Theorem 2.1 are satisfied. This completes the proof of the claim.

Applying the claim shows that there exists a subsequence {fnj} and f0 ∈
Ck(Ω) such that fnj

→ f0. Since fn ∈ Fn, Fn+1 ⊂ Fn and Fn is closed for all
n ∈ N, we get

f0 ∈
∞∩

n=1

Fn = F∞,

finishing the proof of 6◦. Finally, to prove that ker(ω0) = NCk(Ω). Suppose

that F ∈ NCk(Ω). Thus, the closure of F in Ck(Ω) is compact, and by Theorem
2.1, Fα is bounded and equicountinious for all |α| ≤ k. Let us fix an arbitrary
ε > 0. Since Fα is bounded and equicountinious for all |α| ≤ k, so there exists
δ > 0 such that

|Dαf(x)−Dαf(y)| < ε

for all 0 ≤ |α| < k, f ∈ F and ∥x− y∥ ≤ δ. Then for all f ∈ F we have

ω(f, δ) = sup{|Dαf(x)−Dαf(y)| : ∥x− y∥ < δ} ≤ ε

and

ω(F , δ) = sup{ω(f, δ) : f ∈ F} ≤ ε.

This implies that

(2.4) lim
δ→0

ω(F , δ) = 0,

and the condition ker(ω0) = NCk(Ω) holds. □
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3. Measure of noncompactness on Ck
0

In this section, we characterize the compact subsets of Ck
0 , and then intro-

duce the new measure of noncompactness on Ck
0 . Let us recall a few auxiliary

facts needed in the sequel of the paper.

Ck
0 = {f ∈ Ck(Rn) : Dαf ∈ C0 for |α| ≤ k},

C0 = {f ∈ BC(Rn) : lim
∥x∥→∞

f(x) = 0},

where BC(Rn) is the Banach space of all bounded and continuous functions

on Rn and Ck
0 is a Banach space with ∥f∥Ck

0
=

∑
0≤|α|≤k

∥Dαf∥u.

Now, we give and prove “Ck
0 − version” of Arzelà-Ascoli theorem.

Theorem 3.1. Let k ∈ N and F be a bounded set in Ck
0 . Then the following

two conditions are equivalent:

(i) Fα
|B̄T

are equicountinious on B̄T for any T > 0 and

(3.1) lim
∥x∥→∞

diamFα(x) = 0

for all |α| ≤ k, where diamFα(x) = sup{|Dαf(x)− Dαg(x)| : f, g ∈ F}
and Fα

|B̄T
denotes the restrictions to B̄T of the functions Fα.

(ii) F is totally bounded in Ck
0 .

Proof. Assume that Fα satisfies condition (i). Let ε > 0. From (3.1) for ε > 0
there exists a T > 0 such that

diamFα(x) < ε for all x ∈ Rn \ B̄T,

and by the equicontinuity of Fα
|B̄T

we can find a finite set of points y1, . . . , ym ∈
B̄T with neighborhoods U1, . . . , Um covering all of B̄T so that

|Dαf(x)−Dαf(yj)| < ε

whenever f ∈ F , x ∈ Uj and |α| ≤ k. Define Φ : F −→ Rm(l+1) ({α : |α| ≤
k} = {β1, β2, β3, . . . , βl}) by

Φ(f) = (f(y1), . . . , f(ym), Dβ1f(y1), . . . , D
β1f(ym), . . . , Dβlf(ym)).

By boundedness of Fα, the image Φ[F ] is bounded, and hence totally bounded,
in Rm(l+1). Furthermore, if f, g ∈ F with ∥Φ(f)−Φ(g)∥Ck

0
< ε, then since any

x ∈ B̄T , belongs to some Uj ,

(3.2)
|Dαf(x)−Dαg(x)| ≤|Dαf(x)−Dαf(xj)|+ |Dαf(xj)−Dαg(xj)|

+ |Dαg(xj)−Dαg(x)| < 3ε.

On the other hand, for any x ∈ Rn \ B̄T we have

(3.3) |Dαf(x)−Dαg(x)| ≤ diamFα(x) ≤ ε.
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So from (3.2) and (3.3) we get ∥f − g∥Ck
0
≤ 3lε. By Lemma 2.2, F is totally

bounded and therefore condition (ii) is satisfied.
Conversely, assume that F satisfies condition (ii). Since F is totally bounded

in Ck
0 , hence for any T > 0, F is totally bounded in Ck(B̄T ), and as an

application of Theorem 2.1, Fα
|B̄T

are equicontinuous on B̄T . On the other

hand, take an arbitrary ε > 0. Thus, there exist f1, . . . , fm ∈ F such that F ⊆∪m
i=1 B̄(fi, ε). Since fi ∈ Ck

0 , then there exists a T > 0 such that |Dαfi(x)| < ε
for all 1 ≤ i ≤ m, |α| ≤ k and ∥x∥ > T . Hence for each f ∈ F , there is an
1 ≤ i ≤ m such that f belongs to B̄(fi, ε), and therefore we get

|Dαf(x)| ≤ |Dαf(x)−Dαfi(x)|+ |Dαfi(x)|
≤ 2ε

for all ∥x∥ > T and |α| ≤ k, and consequently condition (i) is satisfied. □

The following theorem presents a new measure of noncompactness on Ck
0 .

Theorem 3.2. Suppose 1 ≤ k < ∞ and F is a bounded subset of Ck
0 . For

f ∈ F , ε > 0, T > 0 and α ∈ Rn put

ωT (f, ε) = sup{|Dαf(x)−Dαf(y)| : x, y ∈ B̄T , ∥x− y∥ < ε, 0 ≤ |α| ≤ k},
ωT (F , ε) = sup{ωT (f, ε) : f ∈ F},
ωT (F) = lim

ε→0
ωT (F , ε),

ω(F) = lim
T−→∞

ωT (F),

dα(F) = lim
∥x∥→∞

diamFα(x).

Then ω0 : MCk
0
−→ R given by

(3.4) ω0(F) = ω(F) + max
0≤|α|≤k

(dα(F))

defines a measure of noncompactness on Ck
0 and moreover, ker(ω0) = NCk

0
.

Proof. The proof 2◦, 4◦ and 5◦ are obvious. Now, we show that 1◦ holds. To
do this, take F ∈ MCk

0
such that ω0(F) = 0. Let us arbitrarily fix an α with

0 ≤ |α| ≤ k. Let η > 0 be arbitrary. Since ω0(F) = 0, then

lim
T→∞

lim
ε→0

ωT (F , ε) = 0.

Thus, there exists δ > 0 and T ′ > 0 such that ωT (F , δ) < η for all T ≥ T ′.
This yields

|Dαf(x)−Dαf(y)| < η

for all f ∈ F and x, y ∈ B̄T such that ∥x − y∥ < δ. Then Fα
|B̄T

is bounded

and equicontinuous for all T ≥ T ′. On the other hand, since Fα
|B̄T ′

is bounded

and equicontinuous, it follows that Fα
|B̄T

is bounded and equicontinuous for all
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T < T ′. Using again the fact that ω0(F) = 0, we have dα(F) = 0. Hence the
condition (3.1) is valid. Now, by Theorem 3.1 we conclude that 1◦ holds.

Next, we check that 3◦ holds. Suppose that F ∈ MCk
0
. Similar to the proof

of Theorem 2.3, we have

(3.5) ω(F) = ω(F).

Also, since diamFα
= diamFα, we get dα(F) = dα(F). This implies that

ω0(F) = ω0(F). Then condition 3◦ is satisfied.
To prove 6◦, suppose that {Fn} is a sequence of closed and nonempty sets

of MCk
0
such that Fn+1 ⊂ Fn for n = 1, 2, . . ., and lim

n→∞
ω0(Fn) = 0. For any

n ∈ N, take fn ∈ Fn and set G = {fn}. Similar to the proof of Theorem 2.3
we have ωT (G) = 0, and therefore we deduce

(3.6) ω(G) = lim
T→∞

ωT (G) = 0.

Also, since lim
n→∞

ω0(Fn) = 0, so we have lim
n→∞

dα(Fn) = 0 for all 0 ≤ |α| ≤ k.

Let ε > 0 and 0 ≤ |α| ≤ k be fixed. There exists an N ∈ N such that
dα(FN ) < ε. Hence, we can find T1 > 0 such that

diamFα
N(x) < ε,

for all ∥x∥ > T1. Thus, for all n,m ≥ N and ∥x∥ > T1 we can write

|Dαfn(x)−Dαfm(x)| < ε.(3.7)

On the other hand, since fn ∈ Ck
0 , so we have lim

∥x∥→∞
Dαfn(x) = 0 for all

0 ≤ |α| ≤ k. Hence, there exists T2 > 0 such that |Dαfn(x)| < ε for all
∥x∥ > T2 and n = 1, 2, . . . , N . Moreover, we can write

|Dαfn(x)−Dαfm(x)| ≤ |Dαfn(x)|+ |Dαfm(x)| < 2ε(3.8)

for all n,m ≤ N and ∥x∥ > T2. This implies that

|Dαfn(x)−Dαfm(x)| ≤ ε(3.9)

for all n,m ∈ N and ∥x∥ > T (T = max{T1, T2}). Now, from (3.9) we conclude
that

max
0≤|α|≤k

dα(G) = 0,(3.10)

and therefore G is a compact set in Ck
0 . Hence there exists a subsequence {fnj}

and f0 ∈ Ck
0 such that fnj → f0. Since fn ∈ Fn, Fn+1 ⊂ Fn and Fn is closed

for all n ∈ N we get

f0 ∈
∞∩

n=1

Fn = F∞,

which finishes the proof of 6◦. Since the proof of ker(ω0) = NCk
0
follows the

main lines of the proof of ker(ω0) = NCk(Ω), we omit the details. □
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4. Application

In this section, we apply the results of the previous section to study the
solvability of functional integral-differential equations on C1(Ω).

Theorem 4.1. Assume that the following conditions are satisfied:

(i) p, q ∈ C1(Ω) such that

λ := sup{∥q∥u + ∥ ∂q

∂xi
∥u : 1 ≤ i ≤ n} < 1.(4.1)

(ii) g : Ω×Rn+1 −→ R is continuous and there exists a continuous function
a : Ω −→ R+ and a continuous and nondecreasing function ζ : R+ −→
R+ such that

(4.2) |g(x, u0, u1, . . . , un)| ≤ a(x)ζ( max
0≤i≤n

|ui|).

(iii) k : Ω×Ω −→ R is continuous and has a continuous derivative of order
1 with respect to the first argument.

(iv) There exists a positive solution r0 of the inequality

(4.3) ∥p∥C1(Ω) + λr +Dζ(r) ≤ r

where

D = sup
{
{
∫
Ω

| ∂k
∂xi

(x, y)|a(y)dy : x ∈ Ω} ∪ {
∫
Ω

|k(x, y)|a(y)dy : x ∈ Ω}
}
.

Then the functional integral-differential equation
(4.4)

u(x) = p(x) + q(x)u(x) +

∫
Ω

k
(
x, y

)
g
(
y, u(y),

∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y)

)
dy

has at least one solution in the space C1(Ω).

Proof. We define the operator F : C1(Ω) −→ C1(Ω) by
(4.5)

Fu(x) = p(x)+q(x)u(x)+

∫
Ω

k
(
x, y

)
g
(
y, u(y),

∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y)

)
dy.

First notice that the continuity of Fu(x) for any u ∈ C1(Ω) is obvious. Also,
for any x ∈ Ω we have

∂(Fu)

∂xi
(x) =

∂p

∂xi
(x) +

∂q

∂xi
(x)u(x) + q(x)

∂u

∂xi
(x)

+

∫
Ω

∂k

∂xi

(
x, y

)
g
(
y, u(y),

∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y)

)
dy,
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and Fu has a continuous derivative. Thus, Fu ∈ C1(Ω). Using conditions
(i)-(iv), for arbitrarily fixed x ∈ Ω, we have

|Fu(x)| ≤|p(x)|+ |q(x)||u(x)|

+
∣∣∣ ∫

Ω

k
(
x, y

)
g
(
y, u(y),

∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y)

)
dy

∣∣∣
≤∥p∥u + ∥q∥u∥u∥u +Dζ(∥u∥C1(Ω))

and

|∂Fu

∂xi
(x)| ≤ | ∂p

∂xi
(x)|+ | ∂q

∂xi
(x)||u(x)|+ |q(x)|| ∂u

∂xi
(x)|

+
∣∣∣ ∫

Ω

∂k

∂xi

(
x, y

)
g
(
y, u(y),

∂u

∂x1
(y), . . . ,

∂u

∂xn
(y)

)
dy

∣∣∣
≤ ∥ ∂p

∂xi
∥u + ∥ ∂q

∂xi
∥u∥u∥u + ∥q∥u∥

∂u

∂xi
∥u +Dζ(∥u∥C1(Ω)).

Thus, we obtain

∥Fu∥C1(Ω) ≤ ∥p∥C1(Ω) + λ∥u∥C1(Ω) +Dζ(∥u∥C1(Ω)).

By considering condition (iv), we infer that F is a mapping from B̄r0 into B̄r0 .
Now, we show that the map F is continuous. For this, take u ∈ C1(Ω) and
ε > 0 arbitrarily, and consider v ∈ C1(Ω) with ∥u−v∥C1(Ω) < ε. Then we have

|Fu(x)− Fv(x)| ≤ |q(x)||u(x)− v(x)|

+

∫
Ω

|k(x, y)|
∣∣∣g(y, u(y), ∂u

∂x1
(y), . . . ,

∂u

∂xn
(y)

)
−g

(
y, v(y),

∂v

∂x1
(y), . . . ,

∂v

∂xn
(y)

)∣∣∣dy
≤ ∥q∥u∥u− v∥u +Dϑ(ε),

and by similar argument, we have∣∣∣∣∂(Fu)

∂xi
(x)− ∂(Fv)

∂xi
(x)

∣∣∣∣ ≤
∣∣∣∣ ∂q∂xi

(x)

∣∣∣∣ |u(x)− v(x)|+ |q(x)|
∣∣∣∣ ∂u∂xi

(x)− ∂v

∂xi
(x)

∣∣∣∣
+

∫
Ω

∣∣∣∣ ∂k∂xi
(x, y)

∣∣∣∣ ∣∣∣∣g(y, u(y), ∂u

∂x1
(y), . . . ,

∂u

∂xn
(y)

)
−g

(
y, v(y),

∂v

∂x1
(y), . . . ,

∂v

∂xn
(y)

)∣∣∣∣ dy
≤ λ |u− v|C1(Ω) +Dϑ(ε)

where

ϑ(ε) = sup{
∣∣g(y, u0, u1 . . . , un)−g(y, v0, v1, . . . , vn)

∣∣ : y ∈ Ω, ui, vi ∈ [−r0, r0],

|ui − vi| ≤ ε}.
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Since g is continuous on Ω× [−r0, r0]
n+1, then we have ϑ(ε) −→ 0 as ε −→ 0.

Thus F is a continuous operator from C1(Ω) into C1(Ω). In order to finish
the proof, we only need to verify that condition (1.1) is satisfied. Let U be a
nonempty and bounded subset of C1(Ω), and assume that ε > 0. Let us choose
u ∈ U and x1, x2 ∈ Ω with ∥x1 − x2∥ ≤ ε, thus we have

(4.6)

|Fu(x1)− Fu(x2)| =

=
∣∣∣p(x1) + q(x1)u(x1)

+

∫
Ω

k
(
x1, y

)
g
(
y, u(y),

∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y)

)
dy

−
(
p(x2) + q(x2)u(x2)

+

∫
Ω

k
(
x2, y

)
g
(
y, u(y),

∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y)

)
dy

)∣∣∣
≤|p(x1)− p(x2)|+ |q(x1)− q(x2)||u(x1)|+ |q(x2)||u(x1)− u(x2)|

+

∫
Ω

|k(x1, s)− k(x2, s)|
∣∣g(y, u(y), ∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y)

)∣∣dy
≤ω(p, ε) + r0ω(q, ε) + λω(u, ε) + Ur0m(Ω)ω(k, ε),

and by a similar argument, we deduce that

(4.7)

∣∣∣∣∂(Fu)

∂xi
(x1)−

∂(Fu)

∂xi
(x2)

∣∣∣∣
≤
∣∣∣∣ ∂p∂xi

(x1)−
∂p

∂xi
(x2)

∣∣∣∣+ ∣∣∣∣ ∂q∂xi
(x1)−

∂q

∂xi
(x2)||u(x1)

∣∣∣∣
+ |q(x2)|

∣∣∣∣ ∂u∂xi
(x1)−

∂u

∂xi
(x2)

∣∣∣∣
+

∫
Ω

∣∣∣∣ ∂k∂xi
(x1, y)−

∂k

∂xi
(x2, y)

∣∣∣∣ ∣∣∣g(y, u(y), ∂u

∂x1
(y), . . . ,

∂u

∂xn
(y)

)∣∣∣dy
≤ω(p, ε) + r0ω(q, ε) + λω(u, ε) + Ur0m(Ω)ω(

∂k

∂xi
, ε),

where m is the Lebesgue measure on Ω and

Ur0 =sup{|g(y, u0, u1 . . . , un)| : y ∈ Ω, |ui| ≤ r0},
ω(k, ε) = sup{|k(x1, y)− k(x2, y)| : y, x1, x2 ∈ Ω, ∥x1 − x2∥ ≤ ε} ,

ω(
∂k

∂xi
, ε) = sup{| ∂k

∂xi
(x1, y)−

∂k

∂xi
(x2, y)| : y, x1, x2 ∈ Ω,

∥x1 − x2∥ ≤ ε, 1 ≤ i ≤ n}.
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Since u was an arbitrary element of U in (4.6) and (4.7), so we obtain

ω(F (U), ε) ≤ω(p, ε) + r0ω(q, ε) + λω(U, ε)

+ Ur0m(Ω)max{ω(k, ε), ω( ∂k
∂x1

, ε), . . . , ω(
∂k

∂xn
, ε)}.

Now, by the uniform continuity of p, q, ∂p
∂xi

and ∂q
∂xi

on the compact set Ω for

all 1 ≤ i ≤ n, k and ∂k
∂xi

on the compact set Ω× Ω for all 1 ≤ i ≤ n, we derive

that ω(p, ε) −→ 0, ω(q, ε) −→ 0, ω(k, ε) −→ 0 and ω( ∂k
∂xi

, ε) −→ 0 as ε −→ 0.
Hence, we get

(4.8) ω0(F (U)) ≤ λω0(U),

where λ ∈ [0, 1). Finally, from (4.8) and applying Theorem 1.2, we conclude
that the functional integral-differential equation (4.4) has at least one solution
in the space C1(Ω). □

Now, we provide two examples illustrating the main result contained in
Theorem 4.1 and showing its applicability.

Example 4.2. Consider the following the functional integral-differential equa-
tion

x(t, s) =
√
t5 +

e−t−2x(t, s)

s+ 4

+

∫ 1

0

∫ 1

0

t2su cos(v)

t2 + es
tanh

(
ux(u, v)

∂x

∂t
(u, v) + v2

∂x

∂s
(u, v)

)
dudv.

(4.9)

Eq. (4.9) is a special case of Eq. (4.4) with

p(t, s) =
√
t5, q(t, s) =

e−t−2

s+ 4
, k(t, s, u, v) =

t2su cos(v)

t2 + es
,

Ω = [0, 1]× [0, 1], g(u, v, x0, x1, x2) = tanh(ux0x1 + v2x2).

It is easy to see that p, q ∈ C1(Ω) and λ = 9
16e2 . Also, g is continous, and if we

define a(t, s) = ζ(t) = 1, then condition (ii) holds. Moreover, k is continuous
and has a continuous derivative of order 1 with respect to the first argument,
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and we deduce

sup

{∫ 1

0

∫ 1

0

|k(t, s, u, v)|a(u, v)dudv : t, s ∈ [0, 1]

}
= sup

{∫ 1

0

∫ 1

0

∣∣∣∣ t2su cos(v)t2 + es

∣∣∣∣ ds : t, s ∈ [0, 1]

}
<

1

2
,

sup

{∫ 1

0

∫ 1

0

∣∣∣∣∂k∂t (t, s, u, v)
∣∣∣∣ a(u, v)dudv : t, s ∈ [0, 1]

}
= sup

{∫ 1

0

∫ 1

0

∣∣∣∣2tsu cos(v)(t2 + es)− 2t(t2su cos(v))

(t2 + es)2

∣∣∣∣ dudv : t, s ∈ [0, 1]

}
< 2,

sup

{∫ 1

0

∫ 1

0

∣∣∣∣∂k∂s (t, s, u, v)
∣∣∣∣ a(u, v)dudv : t, s ∈ [0, 1]

}
=

= sup

{∫ 1

0

∫ 1

0

∣∣∣∣ t2u cos(v)(t2 + es)− es(t2su cos(v))

(t2 + es)2

∣∣∣∣ dudv : t, s ∈ [0, 1]

}
<

1

2
(1 + e).

Thus, by choosing D < 2, it is easy to see that each number r ≥ 5 satisfies the
inequality in condition (iv), i.e.,

∥p∥C1(Ω) + λr +Dζ(r) ≤ 5

2
+

9

16e2
r + 2 ≤ r.

Hence, as the number r0 we can take r0 = 5. Consequently, all the conditions of
Theorem 4.1 are satisfied. This implies that the functional integral-differential
equation (4.9) has at least one solution which belongs to the space C1(Ω).

Example 4.3. Consider the following the functional integral-differential equa-
tion

x(t) =
x(t)

t+ 4
+

∫ 2

0

et
2−s

3
√
s2x′(s) + 3x(3)(s)

1 + x2(s)es sin(x′(s))
ds.(4.10)

Eq. (4.10) is a special case of Eq. (4.4) with

p(t) = 0, q(t) =
1

t+ 4
, k(t, s) = et

2−s, Ω = [0, 2],

g(s, x0, x1, x2, x3) =
3
√
s2x1 + 3x3

1 + x2
0e

s sin(x1)
.

It is easy to see that p, q ∈ C1(Ω) and λ =
5

16
. Also, g is continuous, and if

we define a(t) = 3
√
7 and ζ(t) = 3

√
t, then condition (ii) holds. Moreover, k is

continuous and has a continuous derivative of order 1 with respect to the first
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argument, and we have

sup

{∫ 2

0

|k(t, s)|a(s)ds : t ∈ [0, 2]

}
=

3
√
7 sup

{∫ 2

0

|et
2−s|ds : t ∈ [0, 2]

}
<

3
√
7e4,

sup

{∫ 2

0

|∂k
∂t

(t, s)|a(s)ds : t ∈ [0, 2]

}
=

3
√
7 sup

{∫ 2

0

|2tet
2−s|ds : t ∈ [0, 2]

}
<4

3
√
7e4.

Thus, by choosing D < 4 3
√
7e4, it is easy to see that each number r ≥ e10

satisfies the inequality in condition (iv), i.e.,

∥p∥C1(Ω) + λr +Dζ(r) ≤ 5

16
r + 4

3
√
7e4 3

√
r ≤ r.

Hence, as the number r0 we can take r0 = e10. Consequently, all the conditions
of Theorem 4.1 are satisfied. This show that the functional integral-differential
equation (4.10) has at least one solution which belongs to the space C1(Ω) .
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