Structure of finite wavelet frames over prime fields

Document Type: Research Paper

Author

Numerical Harmonic Analysis Group (NuHAG)‎, ‎Faculty of Mathematics‎, ‎University of Vienna‎, ‎Oskar-Morgenstern-Platz 1‎, ‎A-1090 Vienna‎, ‎Austria.

Abstract

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $\mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $\mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $\mathbb{W}_p$.

Keywords

Main Subjects


A. A. Arefijamaal and R. A. Kamyabi-Gol, On the square integrability of quasi regular representation on semidirect product groups, J. Geom. Anal. 19 (2009), no. 3, 541--552.

A. A. Arefijamaal and R. A. Kamyabi-Gol, On construction of coherent states associated with semidirect products, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), no. 5, 749--759.

A. A. Arefijamaal and E. Zekaee, Signal processing by alternate dual Gabor frames, Appl. Comput. Harmon. Anal. 35 (2013) 535--540.

A. A. Arefijamaal and E. Zekaee, Image processing by alternate dual Gabor frames, Bull. Iranian Math. Soc. 42 (2016), no. 6, 1305--1314.

J. J. Benedetto and G. Pfander, Periodic wavelet transforms and periodicity detection, SIAM J. Appl. Math. 62 (2002), no. 4, 1329--1368.

G. Caire, R. L. Grossman and H. Vincent Poor, Wavelet transforms associated with finite cyclic Groups, IEEE Trans. Inform. Theory 39 (1993), no. 4, 1157--1166.

P. Casazza and G. Kutyniok, Finite Frames, Theory and Applications, Appl. Numer. Harmon. Anal. Birkhauser, Boston, 2013.

I. Daubechies, Ten Lectures on Wavelets, (SIAM), Philadelphia, PA, 1992.

F. Fekri, R. M. Mersereau and R. W. Schafer, Theory of wavelet transform over finite fields, IEEE 3 (1999) 1213--1216.

P. Flandrin, Time-Frequency/Time-Scale Analysis, Wavelet Analysis and its Applications, 10, Academic Press, San Diego, 1999.

K. Flornes, A. Grossmann, M. Holschneider and B. Torresani, Wavelets on discrete fields, Appl. Comput. Harmon. Anal. 1 (1994), no. 2, 137--146.

G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1995.

H. Fuhr, Abstract Harmonic Analysis of Continuous Wavelet Transforms, Springer- Verlag, 2005.

S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Appl. Numer. Harmon. Anal. Birkhauser/Springer, New York, 2013.

A. Ghaani Farashahi, Wave packet transforms over finite cyclic groups, Linear Algebra Appl. 489 (2016) 75--92.

A. Ghaani Farashahi, Wave packet transform over finite fields, Electron. J. Linear Algebra 30 (2015) 507--529.

A. Ghaani Farashahi, Cyclic wavelet systems in prime dimensional linear vector spaces, Wavelets and Linear Algebra 2 (2015), no. 1, 11--24.

A. Ghaani Farashahi, Cyclic wave packet transform on finite Abelian groups of prime order, Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), no. 6, Article ID 1450041, 14 pages.

A. Ghaani Farashahi and M. Mohammad-Pour, A unified theoretical harmonic analysis approach to the cyclic wavelet transform (CWT) for periodic signals of prime dimensions, Sahand Commun. Math. Anal. 1 (2014), no. 2, 1--17.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, New York, 1979.

C. P. Johnston, On the pseudodilation representations of ornes, grossmann, holschneider, and torresani, J. Fourier Anal. Appl. 3 (1997), no. 4, 377--385.

G. Pfander, Gabor Frames in Finite Dimensions, in: G. E. Pfander, P. G. Casazza, and G. Kutyniok (eds.), Finite Frames, pp. 193--239, Appl. Numer. Harmon. Anal. Birkauser/Springer, New York, 2013.

G. Pfander and H. Rauhut, Sparsity in time-frequency representations, J. Fourier Anal. Appl. 16 (2010), no. 2, 233--260.

G. Pfander, H. Rauhut and J. Tropp, The restricted isometry property for time-frequency structured random matrices, Probab. Theory Related Fields (156) (2013), no. 3-4, 707--737.

G. Pfander, H. Rauhut and J. Tanner, Identification of matrices having a sparse representation, IEEE Trans. Signal Process, 56 (2008), no. 11, 5376--5388.

S. Sarkar and H. Vincent Poor, Cyclic wavelet transforms for arbitrary finite data lengths, Signal Processing 80 (2000) 2541--2552.

G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, MA, 1996.

B. Sun, Q. Chen, X. Xu, Y. He and J. Jiang, Permuted & filtered spectrum compressive sensing, IEEE Signal Process. Lett. 20 (2013), no. 7, 685--688.


Volume 43, Issue 1
January and February 2017
Pages 109-120
  • Receive Date: 12 July 2015
  • Revise Date: 19 October 2015
  • Accept Date: 19 October 2015