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Abstract. This article presents a systematic study for structure of finite
wavelet frames over prime fields. Let p be a positive prime integer and
Wp be the finite wavelet group over the prime field Zp. We study theo-
retical frame aspects of finite wavelet systems generated by subgroups of

the finite wavelet group Wp.
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1. Introduction

Signal processing of periodic signals is the basis of digital signal process-
ing. Over the last decades, joint time-frequency (time-scale) representations of
non-stationary signals have achieved significant popularity, see [10] and refer-
ences therein. Time-frequency (resp. time-scale) representations are obtained
by analyzing the signal with respect to an overcomplete function system whose
elements are localized in time and in frequency (resp. scale). The obtained
data is interpreted using frame theory. Among various types of frames, coher-
ent or structured frames such as classic wavelet frames generated by dyadic
dilations and integer translations of a window function have been proven to
be particularly useful [1, 2, 5, 8, 13]. Similar to wavelet frames, Gabor frames
generated by a set of modulations and translations of a given single window
function have been studied at length, see [23] and references therein. Coherent
frames such as wavelet frames or Gabor frames give us time-frequency (time-
scale) representations and redundant time-frequency (time-scale) expansions.
Finite frames have found use in a variety of applications such as digital signal
processing, image analysis, filter banks, quantization, data analysis, and also
compressed sensing see [3, 4, 7, 14,23–27].
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The notion of a wavelet transform over a prime field was introduced in [11]
and extended for finite fields in [9, 21]. The current paper consists of abstract
aspects of nature of finite wavelet systems over prime fields. This paper aims
to further develop theoretical aspects of finite wavelet frames over prime fields
which has not been studied in depth when compared to finite Gabor frames.

This article contains 4 sections. Section 2 is devoted to fix notations and
a brief summary of Fourier analysis on finite cyclic groups, periodic signal
processing, and theory of finite frames. In Section 3, we present the notion
of finite wavelet groups over prime fields. Then in Section 4 we will study
theoretical frame aspects of finite wavelet systems generated by subgroups of
the finite wavelet group Wp.

2. Preliminaries and notations

Let G be a finite group and H be a finite dimensional complex inner-product
space with dimH = N . Let U(H) be the group of all unitary operators on H,
which is, up to isomorphism of groups, the matrix group of all unitary N ×N -
matrices with complex entries. A unitary group representation Γ of G on H is
a mapping Γ : G → U(H) such that

Γ(gg′) = Γ(g)Γ(g′) for g, g′ ∈ G.

For a finite group G, the finite dimensional complex vector function/signal
space CG = {x : G → C} is a |G|-dimensional vector space with complex
vector entries indexed by elements in the finite group G, where |G| denotes the
order of the group. For CZN , where ZN denotes the cyclic group of N elements
{0, . . . , N − 1}, we simply write CN at times. The notation ∥x∥0 = |{k ∈ ZN :
x(k) ̸= 0}| counts non-zero entries in x ∈ CN . The inner product of two signals

x,y ∈ CG is ⟨x,y⟩ =
∑

g∈G x(g)y(g), and the induced norm is the ∥.∥2-norm
of x, that is ∥x∥2 =

√
⟨x,x⟩.

Throughout this article we shall use the standard and traditional harmonic
analysis modeling for the linear vector space of all periodic signals or finite
size data. A given one-dimensional (1D) finite discrete data or signal x, i.e.,
a signal of a given length N ∈ N denoted by x = [x(0), . . . ,x(N − 1)], which
is a function defined on the set ZN = {0, . . . , N − 1} ⊂ Z. The translation
operator Tk : CN → CN is Tkx(s) = x(s − k) for x ∈ CN and k, s ∈ ZN .
The modulation operator Mℓ : CN → CN is given by Mℓx(s) = e−2πiℓs/Nx(s)
for x ∈ CN and ℓ, s ∈ ZN . The translation and modulation operators on the
Hilbert space CN are unitary operators in the ∥.∥2-norm. For ℓ, k ∈ ZN we
have (Tk)

∗ = (Tk)
−1 = TN−k and (Mℓ)

∗ = (Mℓ)
−1 = MN−ℓ. The circular

convolution of x,y ∈ CN is defined by

x ∗ y(k) = 1√
N

N−1∑
s=0

x(s)y(k − s) for k ∈ ZN .
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The circular involution or circular adjoint of x ∈ CN is given by x∗(s) =

x(−s) = x(N − s). The complex linear space CN equipped with the ∥.∥1-
norm, the circular convolution, and involution is a Banach ∗-algebra [12]. The
unitary discrete Fourier Transform (DFT) of a 1D discrete signal x ∈ CN is

defined by x̂(ℓ) = 1√
N

∑N−1
k=0 x(k)wℓ(k), for all ℓ ∈ ZN where for all ℓ, k ∈ ZN

we have wℓ(k) = e2πiℓk/N . The set {wℓ : ℓ ∈ ZN} is precisely the group of all

pure frequencies (characters) ẐN (i.e homomorphisms or characters into the
circle group T) on the additive group ZN . More precisely, the map ℓ 7→ wℓ

is a group isomorphism between ZN and ẐN . Therefore, wℓ+ℓ′ = wℓwℓ′ and
wℓ = wN−ℓ for all ℓ, ℓ′ ∈ ZN . Thus DFT of a 1D discrete signal x ∈ CN at
the frequency ℓ ∈ ZN is

(2.1) x̂(ℓ) = FN (x)(ℓ) =
1√
N

N−1∑
k=0

x(k)wℓ(k) =
1√
N

N−1∑
k=0

x(k)e−2πiℓk/N .

The discrete Fourier transform (DFT) is a unitary transform in ∥.∥2-norm,
i.e., for all x ∈ CN satisfies the Parseval formula ∥FN (x)∥2 = ∥x∥2. The
Polarization identity implies the Plancherel formula ⟨x,y⟩ = ⟨x̂, ŷ⟩ for x,y ∈
CN . The unitary DFT (2.1) satisfies T̂kx = Mkx̂, M̂ℓx = TN−ℓx̂, x̂∗ = x̂, and
x̂ ∗ y = x̂.ŷ, for x,y ∈ CN and k, ℓ ∈ ZN . The inverse discrete Fourier formula
(IDFT) for a 1D discrete signal x ∈ CN is

(2.2) x(ℓ) =
1√
N

N−1∑
k=0

x̂(k)wℓ(k) =
1√
N

N−1∑
k=0

x̂(k)e2πiℓk/N , 0 ≤ ℓ ≤ N − 1.

A finite system (sequence) A = {yj : 0 ≤ j ≤ M −1} ⊂ CN is called a frame
(or finite frame) for the finite dimensional complex Hilbert space CN , if there
exist positive constants 0 < A ≤ B < ∞ such that [7]

(2.3) A∥x∥22 ≤
M−1∑
j=0

|⟨x,yj⟩|2 ≤ B∥x∥22, for all x ∈ CN .

If A = {yj : 0 ≤ j ≤ M − 1} is a frame for CN , the synthesis operator

F : CM → CN is F{cj}M−1
j=0 =

∑M−1
j=0 cjyj for all {cj}M−1

j=0 ∈ CM . The adjoint

(analysis) operator F ∗ : CN → CM is F ∗x = {⟨x,yj⟩}M−1
j=0 for all x ∈ CN .

By composing F and F ∗, we get the positive and invertible frame operator
S : CN → CN given by

(2.4) x 7→ Sx = FF ∗x =

M−1∑
j=0

⟨x,yj⟩yj for all x ∈ CN ,

In terms of the analysis operator we have A∥x∥22 ≤ ∥F ∗x∥22 ≤ B∥x∥22 for
x ∈ CN . If A is a finite frame for CN , the set A spans the complex Hilbert
space CN which implies M ≥ N , where M = |A|. It should be mentioned that
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each finite spanning set in CN is a finite frame for CN . The ratio between
M and N is called the redundancy of the finite frame A (i.e., redA = M/N),
where M = |A|. If A = {yj : 0 ≤ j ≤ M − 1} is a finite frame for CN , each
x ∈ CN satisfies the following reconstruction formulas

(2.5) x =
M−1∑
j=0

⟨x, S−1yj⟩yj =
M−1∑
j=0

⟨x,yj⟩S−1yj .

In this case, the complex numbers ⟨x, S−1yj⟩ are called frame coefficients and
the finite sequence A• := {S−1yj : 0 ≤ j ≤ M − 1} which is a frame for CN as
well, is called the canonical dual frame of A. A finite frame A = {yj : 0 ≤ j ≤
M − 1} for CN is called tight if we have A = B. If A = {yj : 0 ≤ j ≤ M − 1}
is a tight frame for CN with frame bound A, then the canonical dual frame A•

is exactly {A−1yj : 0 ≤ j ≤ M − 1} and for x ∈ CM we have [7]

(2.6) x =
1

A

M−1∑
j=0

⟨x,yj⟩yj .

3. Finite Wavelet Group over Prime Fields

In this section we briefly state structure and basic properties of cyclic dilation
operators, see [11,15–19,21]. We then present the notion of finite wavelet groups
over prime fields [20].

Let p be a positive prime integer. The set

(3.1) Up := Zp − {0} = {1, . . . , p− 1},
is a finite multiplicative Abelian group of order p−1 with respect to the multi-
plication module p with the identity element 1. The multiplicative inverse for

m ∈ Up (i.e., an element mp ∈ Up with mmp
p
≡ mpm

p
≡ 1) is mp which satisfies

mpm+ np = 1 for some n ∈ Z, which can be done by Bezout lemma [20].
For m ∈ Up, define the cyclic dilation operator Dm : Cp → Cp by

Dmx(k) := x(mpk)

for all x ∈ Cp and k ∈ Zp, where mp is the multiplicative inverse of m in Up.
In the following propositions we state basic algebraic properties of cyclic

dilation operators.

Proposition 3.1. Let p be a positive prime integer. Then

(i) For (m, k) ∈ Up × Zp, we have DmTk = TmkDm.
(ii) For m,m′ ∈ Up, we have Dmm′ = DmDm′ .
(iii) For (m, k), (m′, k′) ∈ Up × Zp, we have Tk+mk′Dmm′ = TkDmTk′Dm′ .
(iv) For (m, ℓ) ∈ Up × Zp, we have DmMℓ = MmpℓDm.

The next result states analytic properties of cyclic dilations.

Proposition 3.2. Let p be a positive prime integer and m ∈ Up. Then
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(i) The dilation operator Dm : Cp → Cp is a ∗-homomorphism.
(ii) The dilation operator Dm : Cp → Cp is unitary in ∥.∥2-norm and satisfies

(Dm)∗ = (Dm)−1 = Dmp .

(iii) For x ∈ Cp, we have D̂mx = Dmp x̂.

Remark 3.3. Proposition 3.2 guarantees that cyclic dilations lead to permu-
tation of spectra as well. This property of cyclic dilations have recently been
used in implementation of algorithms for sparse fast Fourier transform (sFFT),
see [28] and references therein.

The underlying set

Up × Zp = {(m, k) : m ∈ Up, k ∈ Zp} ,

equipped with the following group operations

(3.2) (m, k)⋉ (m′, k′) := (mm′, k +mk′), (m, k)−1 := (mp,mp.(p− k)),

is a finite non-Abelian group of order p(p − 1) denoted by Wp and called as
finite affine group on p integers or the finite wavelet group associated to
the integer p or simply we call it as the p-wavelet group.

The following proposition summarizes basic properties of the finite wavelet
group.

Proposition 3.4. Let p > 2 be a positive prime integer. Then

(i) Wp is a non-Abelian group of order p(p− 1) which contains a copy of Zp

as a normal Abelian subgroup and a copy of Up as a non-normal Abelian
subgroup.

(ii) The map σ : Wp → Up×p(C) defined by (m, k) 7→ σ(m, k) := TkDm for
(m, k) ∈ Wp, is a unitary representation of the finite affine group Wp on
the finite dimensional Hilbert space Cp.

Remark 3.5. In contrast to dyadic dilations, which preserve geometry of a
signal, cyclic dilations destroy geometric features of signals by rearranging their
entries. Thus, the matrix representation of a cyclic dilation operator has a non-
localized structure. This non-localization property is not interesting from the
classical geometric signal processing points of view. But from the compressive
sensing approach such non-localized structure is beneficial when considered as
measurement matrices, while for traditional dyadic dilations this makes the
traditional discrete wavelet systems [6, 26] practically useless in compressive
sensing, see [14, 22,23].

4. Finite Wavelet Frames over Prime Fields

Throughout this section we still assume that p is a positive prime integer. A
finite wavelet system for the complex Hilbert space Cp is a family or system
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of the form

(4.1) W(y,∆) := {σ(m, k)y = TkDmy : (m, k) ∈ ∆ ⊆ Wp} ,

for some window signal y ∈ Cp and a subset ∆ of Wp.
If ∆ = Wp, we put W(y) := W(y,Wp), and it is called a full finite wavelet

system over Zp. A finite wavelet system which spans Cp is a frame and is
referred to as a finite wavelet frame over the prime field Zp.

If y ∈ Cp is a window signal, then for x ∈ Cp, we have

(4.2) ⟨x, σ(m, k)y⟩ = ⟨x, TkDmy⟩ = ⟨Tp−kx, Dmy⟩, for (m, k) ∈ Wp.

The following proposition gives us a Fourier (resp. convolution) representa-
tion of wavelet coefficients.

Proposition 4.1. Let x,y ∈ Cp and (m, k) ∈ Wp. Then,

(i) ⟨x, σ(m, k)y⟩ = √
pFp(x̂.D̂my)(p− k).

(ii) ⟨x, σ(m, k)y⟩ = √
px ∗Dmy∗(k).

Proof. Let x,y ∈ Cp and (m, k) ∈ Wp. (i) Using the Plancherel formula we
have

⟨x, σ(m, k)y⟩ = ⟨x, TkDmy⟩

= ⟨x̂, ̂TkDmy⟩

=

p−1∑
ℓ=0

x̂(ℓ) ̂TkDmy(ℓ)

=

p−1∑
ℓ=0

x̂(ℓ)MkD̂my(ℓ)

=

p−1∑
ℓ=0

x̂(ℓ)D̂my(ℓ)wk(ℓ)

=

p−1∑
ℓ=0

(
x̂.D̂my

)
(ℓ)wp−k(ℓ) =

√
pFp(x̂.D̂my)(p− k).

(ii) Similarly using the Plancherel formula, we can write

⟨x, σ(m, k)y⟩ =
p−1∑
ℓ=0

x̂(ℓ)D̂my(ℓ)wk(ℓ)

=

p−1∑
ℓ=0

x̂(ℓ) ̂(Dmy)∗(ℓ)wk(ℓ)

=

p−1∑
ℓ=0

x̂(ℓ) ̂(Dmy∗)(ℓ)wk(ℓ)
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=

p−1∑
ℓ=0

̂x ∗Dmy∗(ℓ)wk(ℓ) =
√
px ∗Dmy∗(k).

□

In the following theorem we present a concrete formulation for the ∥.∥2-norm
of wavelet coefficients.

Theorem 4.2. Let p be a positive prime integer, M be a divisor of p− 1, and
M be a multiplicative subgroup of Up of order M . Let y ∈ Cp be a window
signal and x ∈ Cp. Then,∑

m∈M

∑
k∈Zp

|⟨x, σ(m, k)y⟩|2 = pM |ŷ(0)|2|x̂(0)|2

+ p

(∑
m∈M

|ŷ(m)|2
)(∑

ℓ∈M

|x̂(ℓ)|2
)

+
∑

ℓ∈Up−M

γℓ(y,M)|x̂(ℓ)|2
 ,

where

γℓ(y,M) :=
∑
m∈M

|ŷ(mℓ)|2, for all ℓ ∈ Up −M.

Proof. Let y ∈ Cp be a window function, x ∈ Cp, and m ∈ Up. Using Propo-
sition 4.1 and Plancherel formula, we have

p−1∑
k=0

|⟨x, σ(m, k)y⟩|2 = p

p−1∑
k=0

∣∣∣∣Fp

(
x̂.D̂my

)
(p− k)

∣∣∣∣2

= p

p−1∑
k=0

∣∣∣∣Fp

(
x̂.D̂my

)
(k)

∣∣∣∣2

= p

p−1∑
ℓ=0

∣∣∣∣(x̂.D̂my

)
(ℓ)

∣∣∣∣2

= p

p−1∑
ℓ=0

|x̂(ℓ)|2|D̂my(ℓ)|2 = p

p−1∑
ℓ=0

|x̂(ℓ)|2|ŷ(mℓ)|2.

Therefore we achieve

∑
m∈M

p−1∑
k=0

|⟨x, σ(m, k)y⟩|2 = p
∑
m∈M

p−1∑
ℓ=0

|x̂(ℓ)|2|ŷ(mℓ)|2

= p

p−1∑
ℓ=0

∑
m∈M

|x̂(ℓ)|2|ŷ(mℓ)|2.
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Then we can write
p−1∑
ℓ=0

|x̂(ℓ)|2
(∑

m∈M

|ŷ(mℓ)|2
)

= |x̂(0)|2
(∑

m∈M

|ŷ(0)|2
)

+

p−1∑
ℓ=1

|x̂(ℓ)|2
(∑

m∈M

|ŷ(mℓ)|2
)
,

which implies that∑
m∈M

p−1∑
ℓ=0

|x̂(ℓ)|2|ŷ(mℓ)|2 = M |x̂(0)|2|ŷ(0)|2(4.3)

+

p−1∑
ℓ=1

|x̂(ℓ)|2
(∑

m∈M

|ŷ(mℓ)|2
)
.

Changing the summation order, we have

p−1∑
ℓ=1

|x̂(ℓ)|2
(∑

m∈M

|ŷ(mℓ)|2
)

=
∑
ℓ∈M

∑
m∈M

|x̂(ℓ)|2|ŷ(mℓ)|2

+
∑

ℓ∈Up−M

∑
m∈M

|x̂(ℓ)|2|ŷ(mℓ)|2.

For each ℓ ∈ M, replacing m by mℓp we get∑
m∈M

|x̂(ℓ)|2|ŷ(mℓ)|2 = |x̂(ℓ)|2
(∑

m∈M

|ŷ(mℓ)|2
)

= |x̂(ℓ)|2
∑
m∈M

|ŷ(m)|2

= |x̂(ℓ)|2
(∑

m∈M

|ŷ(m)|2
)
,

which implies that

(4.4)
∑
ℓ∈M

∑
m∈M

|x̂(ℓ)|2|ŷ(mℓ)|2 =

(∑
ℓ∈M

|x̂(ℓ)|2
)(∑

m∈M

|ŷ(m)|2
)
.

Then by (4.3) and (4.4), we obtain∑
m∈M

p−1∑
ℓ=0

|x̂(ℓ)|2|ŷ(mℓ)|2 = M |x̂(0)|2|ŷ(0)|2 +
p−1∑
ℓ=1

|x̂(ℓ)|2
(∑

m∈M

|ŷ(mℓ)|2
)

= M |x̂(0)|2|ŷ(0)|2 +

(∑
m∈M

|ŷ(m)|2
)(∑

ℓ∈M

|x̂(ℓ)|2
)

+
∑

ℓ∈Up−M

γℓ(y,M)|x̂(ℓ)|2,

which completes the proof. □
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As an interesting consequence of the technique inside the proof of Theorem
4.2 we have the following corollary.

Corollary 4.3. Let p be a positive prime integer. Let y ∈ Cp be a window
signal and x ∈ Cp. Then

p−1∑
m=1

p−1∑
k=0

|⟨x, σ(m, k)y⟩|2 = p(p− 1)|ŷ(0)|2|x̂(0)|2

+p

((
p−1∑
m=1

|ŷ(m)|2
)(

p−1∑
ℓ=1

|x̂(ℓ)|2
))

.

Proof. Using equation (4.3) for M = Up, we get the result. □

Applying Theorem 4.2, we can present the following characterization of a
given window signal y ∈ Cp and a subgroup of the finite wavelet group Wp to
guarantee that generated wavelet system is a frame for Cp.

Theorem 4.4. Let p be a positive prime integer, M be a divisor of p− 1, and
M be a multiplicative subgroup of Up of order M . Let ∆M := M × Zp and
y ∈ Cp be a non-zero window signal. The finite wavelet system W(y,∆M) is a
frame for Cp if and only if the following conditions hold

(i) ŷ(0) ̸= 0.
(ii) There exists an m ∈ M with ŷ(m) ̸= 0.
(iii) γℓ(y,M) ̸= 0 for all ℓ ∈ Up −M.

Proof. Let y be a non-zero window signal which satisfies conditions (i), (ii) and
(iii). Thus

γ(y,M) := min {γℓ(y,M) : ℓ ∈ Up −M} ,

is non-zero. Let 0 < A < ∞ be given by

(4.5) A := min

M

∣∣∣∣∣
p−1∑
k=0

y(k)

∣∣∣∣∣
2

, p
∑
m∈M

|ŷ(m)|2, pγ(y,M)

 .

Let x ∈ Cp. Then using Theorem 4.2, we can write∑
m∈M

∑
k∈Zp

|⟨x, σ(m, k)y⟩|2

= pM |ŷ(0)|2|x̂(0)|2 + p

(∑
m∈M

|ŷ(m)|2
)(∑

ℓ∈M

|x̂(ℓ)|2
)
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+p
∑

ℓ∈Up−M

γℓ(y,M)|x̂(ℓ)|2

≥ pM |ŷ(0)|2|x̂(0)|2 + p

(∑
m∈M

|ŷ(m)|2
)(∑

ℓ∈M

|x̂(ℓ)|2
)

+pγ(y,M) ·
∑

ℓ∈Up−M

|x̂(ℓ)|2

≥ A|x̂(0)|2 +A

(∑
ℓ∈M

|x̂(ℓ)|2
)

+A

 ∑
ℓ∈Up−M

|x̂(ℓ)|2


= A∥x̂∥22 = A∥x∥22,

which implies that the finite wavelet system W(y,∆M) is a frame for Cp.
Conversely, let y ∈ Cp be a non-zero window signal such that the finite

wavelet system W(y,∆M) is a frame for Cp. Thus there exists A′ > 0 such
that ∑

m∈M

p−1∑
k=0

|⟨x, σ(m, k)y⟩|2 ≥ A′∥x∥2, for all x ∈ Cp.

Then by Theorem 4.2, we get

(4.6)

M |ŷ(0)|2|x̂(0)|2 +

(∑
m∈M

|ŷ(m)|2
)(∑

ℓ∈M

|x̂(ℓ)|2
)

+
∑

ℓ∈Up−M

γℓ(y,M)|x̂(ℓ)|2 ≥ A′′∥x∥2,

for all x ∈ Cp, where 0 < A′′ = A′/p. Let x ∈ Cp with x̂(0) = 1 and x̂(ℓ) = 1
for 1 ≤ ℓ ≤ p − 1. Applying the equation (4.6), we get ŷ(0) ̸= 0. If x ∈ Cp

is a non-zero vector with x̂(ℓ) = 0 for ℓ ̸∈ M, then equation (4.6) guarantees
that

∑
m∈M |ŷ(m)|2 ̸= 0, and hence we have ŷ(m) ̸= 0 for some m ∈ M. Let

ℓ ∈ Up −M be given. Then pick a nonzero vector x ∈ Cp such that x̂(ℓ) = 1
and x̂(ℓ′) = 0 for all 0 ≤ ℓ′ ̸= ℓ ≤ p − 1. A similar argument implies that
γℓ(y,M) ̸= 0. □

The following result shows that for a large class of non-zero window signals
the finite wavelet system W(y) is a frame for Cp with redundancy p− 1.

Corollary 4.5. Let p be a positive prime integer and y ∈ Cp be a non-zero
window signal. The finite wavelet system W(y) constitutes a frame for Cp with
the redundancy p− 1 if and only if ŷ(0) ̸= 0 and ∥ŷ∥0 ≥ 2.

We can also deduce the following condition concerning the tight frame prop-
erty for finite wavelet systems generated by subgroups of Wp.

Proposition 4.6. Let p be a positive prime integer, M be a divisor of p − 1,
and M be a multiplicative subgroup of Up of order M . Let ∆M := M× Zp and
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y ∈ Cp be a non-zero window signal. The finite wavelet system W(y,∆M) is a
tight frame for Cp if and only if ŷ(0) ̸= 0 and

(4.7) M |ŷ(0)|2 =
∑
m∈M

|ŷ(m)|2 = γℓ(y,M),

for all ℓ ∈ Up −M. In this case

αy := pM |ŷ(0)|2 = p
∑
m∈M

|ŷ(m)|2

is the frame bound.

Proof. It can be proven by a similar argument used in Theorem 4.4. □
Corollary 4.7. Let p be a positive prime integer and y ∈ Cp be a window
signal with ŷ(0) ̸= 0 and ∥ŷ∥0 ≥ 2. The finite wavelet system W(y) is a tight
frame for Cp if and only if y satisfies ∥y∥2 =

√
p|ŷ(0)|. In this case,

(4.8) αy := (p− 1)

∣∣∣∣∣
p−1∑
k=0

y(k)

∣∣∣∣∣
2

= p(p− 1)|ŷ(0)|2 = p

p−1∑
m=1

|ŷ(m)|2,

is the frame bound.

Remark 4.8. It should be mentioned that Corollaries 4.3 and 4.7 coincide with
direct consequences of results in [11].
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