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ON H-COFINITELY SUPPLEMENTED MODULES
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ABSTRACT. A module M is called H-cofinitely supplemented if for
every cofinite submodule F (i.e. M/E is finitely generated) of M
there exists a direct summand D of M such that M = E+ X holds if
and only if M = D+ X, for every submodule X of M. In this paper
we study factors, direct summands and direct sums of H-cofinitely
supplemented modules.

Let M be an H-cofinitely supplemented module and let N < M
be a submodule. Suppose that for every direct summand K of M,
(N 4+ K)/N lies above a direct summand of M/N. Then M/N is
H-cofinitely supplemented.

Let M be an H-cofinitely supplemented module. Let N be a
direct summand of M. Suppose that for every direct summand K
of M with M = N + K, NN K is also a direct summand of M.
Then N is H-cofinitely supplemented.

Let M = M1 @® Ms. If M; is radical Ma-projective (or M> is rad-
ical Mi-projective) and Mi and My are H-cofinitely supplemented,
then M is H-cofinitely supplemented

1. Introduction

Throughout this paper, R will be an associative ring with identity,
and all modules are unitary right R-modules. The Jacobson radical of
R is denoted by Jac(R).
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A submodule L of a module M is called small in M (written L < M)

if N+ L # M for any proper submodule N of M. A nonzero module
H is called hollow if every proper submodule is small in H. Let M be a
module. Let IV be a submodule of M. A submodule K of M is called a
(weak) supplementof N in M if, N+ K = M and (NNK < M) NNK <
K. The module M is called H-supplemented, if for every submodule A
of M, there exists a direct summand D of M such that M = A+ X holds
if and only if M = D + X for all X < M. Note that H-supplemented
modules were called Goldie*-lifting modules in [4]. A submodule N of M
is called cofinite in M if the factor module M /N is finitely generated.
The module M is called cofinitely (weak) supplemented if every cofinite
submodule of M has a (weak) supplement in M. A module M is called
H-cofinitely supplemented if for every cofinite submodule FE of M, there
exists a direct summand D of M such that M = F + X holds if and
only if M = D + X for all X < M. This notion was introduced by
Kosan in [15] and among others, he showed that if M is a module with
Rad(M) <« M, then M is H-cofinitely supplemented if and only if every
cofinite submodule of M/Rad(M) is a direct summand and each cofinite
direct summand of M/Rad(M) lifts to a direct summand of M. Clearly,
H-supplemented modules are H-cofinitely supplemented. On the other
hand, every finitely generated H-cofinitely supplemented module is H-
supplemented. If N is a submodule of a module M, then we say that N
lies above a direct summand if there is a direct summand K of M with
K CNand NJK < M/K.
Let M and N be two modules. Then N is called radical M-projective,
if for any K < M and any homomorphism f : N — M/K there exists
a homomorphism h : N — M such that Im(f — 7h) < M/K, where
m: M — M/K is the natural epimorphism (see [12] and [14]).

In section 2, various properties of H-cofinitely supplemented modules
are showed. Moreover, we give some examples showing that the concept
of H-cofinitely supplemented modules is a proper generalization of the
notion of H-supplemented modules.

Section 3 is devoted to the study of factors and direct summands of
H-cofinitely supplemented modules. It is unknown if the class of H-
cofinitely supplemented modules is closed under direct summands. It is
shown that every direct summand of a finite length H-cofinitely supple-
mented module is again H-cofinitely supplemented (Corollary 3.3). It is
also shown that if M is an H-cofinitely supplemented module and N is
a direct summand of M such that for every direct summand K of M
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with M = N + K, NN K is also a direct summand of M, then N is
H-cofinitely supplemented (Proposition 3.7).

Let M be an H-cofinitely supplemented module and let N < M be a
submodule. Suppose that for every direct summand K of M, (N +
K)/N lies above a direct summand of M/N. Then M /N is H-cofinitely
supplemented (Proposition 3.5).

In section 4, we begin by giving an example showing that a direct
sum of two H-cofinitely supplemented modules need not be H-cofinitely
supplemented (Example 4.1). Then we prove that if M = M; & Ms
such that M is radical My-projective (or My is radical Mj-projective)
and M; and My are H-cofinitely supplemented, then M is H-cofinitely
supplemented (Theorem 4.7).

We conclude the paper by giving some examples of rings whose mod-
ules are H-cofinitely supplemented.

2. Some properties of H-cofinitely supplemented modules

In this section we investigate some properties of H-cofinitely supple-
mented modules. We mainly study the relation between the notion of
H-cofinitely supplemented modules and some other notions.

A submodule N of a module M has ample supplements in M if every
submodule L of M such that M = N + L contains a supplement of N
in M. The module M is called amply (cofinitely) supplemented if every
(cofinite) submodule of M has ample supplements in M.

Note that one question still unanswered is whether an H-supplemented
module is amply supplemented (see [4] and [16]).

A module M is called (cofinitely) lifting if it is amply (cofinitely)
supplemented and every supplement of every (cofinite) submodule of M
is a direct summand (see [8] and [17]).

It is well-known that the following implications hold: lifting = H-
supplemented = H-cofinitely supplemented. It follows from [16, Corol-
lary 4.42] that if R is a semiperfect ring, then the module Rp is H-
cofinitely supplemented. On the other hand, it is clear that any module
M with Rad(M) = M is H-cofinitely supplemented. This yields that
any non-supplemented module M with Rad(M) = M is H-cofinitely sup-
plemented but not H-supplemented. So all injective non-supplemented
modules over a Dedekind domain (e.g. the quotient field of a non-local
Dedekind domain (see [16, Proposition A.8])) are H-cofinitely supple-
mented but not H-supplemented.
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The following proposition describes the structure of finitely generated
H-(cofinitely) supplemented modules over commutative local rings.

Proposition 2.1. Let R be a commutative local ring with maximal ideal
m. The following are equivalent for a finitely generated R-module M :

(1) M is H-supplemented;

(2) Every direct summand of M is H-supplemented;

(3) M = %x---x %forsome ideals I, ..., I of R with I, C--- C
I, ¢ R.

If m? =0, then (1)-(3) are equivalent to:

(4) M is supplemented and every supplement submodule of M is a
direct summand;

(5) M s lifting.

Proof. (1) = (3) By [22, Satz 3.2].

(3) = (2) By the Krull-Schmidt-Azumaya theorem, every direct sum-
mand of M has the same structure as the one given in (3). The result
follows from [22, Satz 3.2].

(2) = (1) This is immediate.

(3) & (4) < (5) follow from [17, Proposition 2.5] and the fact that
ml, Cm? C I. O

Proposition 2.2. Let M be a module. If every cofinite submodule of
M lies above a direct summand, then M is H-cofinitely supplemented.

Proof. Let N be a cofinite submodule of M. By assumption, there exists
a direct summand K of M such that N lies above K. It is easy to check
that M = N + X if and only if M = K + X for all X < M. O

The converse of Proposition 2.2 is in general false. See the following
example.

Example 2.3. Let I and J be two ideals of a commutative local ring
R with mazimal ideal m such that I C J Cm and mJ € I (e.g. R is
a DVR with mazimal ideal m, I = m® and J = m). We consider the
module M = R/I x R/J. From Proposition 2.1 it follows that M is H-
supplemented. On the other hand, according to [22, Folgerung 3.3] and
the Krull-Schmidt-Azumaya theorem, M is not lifting. Hence not every
cofinite submodule of M lies above a direct summand (see [21, 41.12]).

Another example of modules showing that the class of H-supplemented
modules is properly contained in the class of H-cofinitely supplemented
modules is:
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Example 2.4. Let R be a commutative local Ting which is not perfect
with maximal ideal m (e.g., we can take R to be K|[[z]], ring of all power
series Y ooq kix® in an indeterminate x and with coefficients from a field
K). Then Rad(Rg)) is not small in Rg) by [21, 43.9]. Hence M = R%\])
is not supplemented by [21, 42.5]. So M is not H-supplemented. By [17,
Corollary 2.23 and Proposition 2.33], every cofinite submodule of M
lies above a direct summand. Hence M is H-cofinitely supplemented by
Proposition 2.2.

A submodule N of a module M is called projection invariant in M if
f(N) C N, for any idempotent f € End(M).

Theorem 2.5. Let M be an H-cofinitely supplemented module and let
N be a cofinite projection invariant submodule of M. Then there exists
a direct summand K of M such that K C N and N/JK < M/K.

Proof. Since M is H-cofinitely supplemented, there exists a direct sum-
mand K of M such that M = X + N if and only if M = X + K for
all X < M. Let p: M — K be the projection of M onto K and let
i : K — M be the inclusion map. Set e = ip. Thus e(M) = K. Since
M =K+ (1 —e¢e)(M), we have M = (1 —e)(M) + N. It follows that
K =e(M) =e(N) C N since N is projection invariant. Let Y be a sub-
module of M with K <Y and N/K +Y/K = M/K. Then N+Y = M.
Hence M =Y + K =Y. Therefore N/JK <« M/K. This proves the
theorem. O

Lemma 2.6. Let M be a cofinitely weak supplemented module and let
X be a submodule of M such that Rad(M) C X. Then every cofinite
submodule of M/X is a direct summand.

Proof. Let N < M be a submodule such that X < N and ]\]\/,[//))(( is finitely
generated. Since M/N is finitely generated, there exists a submodule
K < M such that M = N+ K and NN K <« M. Thus NN K C
Rad(M) C X. Therefore NN(K +X)=X+NNK =X. So M/X =

[N/X] @ [(K + X)/X]. This completes the proof. O

The following result is a consequence of Lemma 2.6.

Proposition 2.7. Let M be a cofinitely weak supplemented module.
Then for every submodule X of M such that Rad(M) C X, M/X is
H-cofinitely supplemented.

A module M is called a local module if the sum of all proper submod-
ules of M is also a proper submodule of M.
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Proposition 2.8. The following statements are equivalent for an inde-
composable module M :

(1) M is H-cofinitely supplemented;

(2) Rad(M) = M or M is a local module.

Proof. (1) = (2) Suppose that Rad(M) # M. Then M has a maximal
submodule L. By assumption, there exists a direct summand K of M
such that M = L+ X ifand only if M = K+ X forall X < M. But M is
indecomposable. Then K =0 or K = M. It is easily seen that K # M
because L # M. Thus K = 0. So for all X < M, M = L 4+ X implies
that X = M. This gives L <« M. Therefore L is the only maximal
submodule of M. It follows that L is the sum of all proper submodules
of M. Hence M is a local module.

(2) = (1) This is clear. O

Let U be a submodule of a module M and let V' be a direct summand
of M. We say that V is an H-supplement of U in M if, there is a direct
summand W of M such that M =V & W and M = U + X if and only
if M =W 4+ X for all X < M. Clearly, every H-supplement of U is a
supplement of U and it is a direct summand of M.

Proposition 2.9. Let M be an H-cofinitely supplemented module and
let N be a cofinite submodule of M. Then every H-supplement of N in
M s finitely generated.

Proof. Let K be an H-supplement of N in M. Then M = N + K and
NNK <« K. Since N is cofinite, K/(N N K) is finitely generated. It
follows that K is finitely generated since NN K < K. O

The next result gives some new characterizations of H-cofinitely sup-
plemented modules. Its proof is similar to that of [14, Theorem 2.1] but
we present it for completeness.

Theorem 2.10. Let M be a module. The following are equivalent:

(1) M is H-cofinitely supplemented;

(2) For each cofinite submodule Y of M there ezists a direct summand
D of M such that (Y +D)/D < M/D and (Y +D)/Y < M]Y;

(3) For each cofinite submodule Y of M there exist a submodule X <
M and a direct summand D of M with Y + D C X such that X/Y <
M/Y and X/D < M/D;

(4) For each cofinite submodule Y of M there ezist a supplement L
of Y and a supplement K of L such that (Y + K)/Y < M/Y, (Y +
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K)/K < M/K and every homomorphism f : M — M/(K N L) can be
lifted to a homomorphism f: M — M.

Proof. (1) = (2) It is clear.

(2) = (3) Let Y be a cofinite submodule of M. Then there exists
a direct summand D of M such that (Y + D)/Y < M/Y and (Y +
D)/D <« M/D. Now take X =Y + D.

(3) = (1) Let Y be a cofinite submodule of M. Then there exist a
submodule X of M and a direct summand D of M such that Y+D C X,
X/Y <« M/Y and X/D <« M/D. 1t is easy to see that M = A+ D
if and only if M = A+ Y for any A < M. Thus, M is H-cofinitely
supplemented.

(2) = (4) Let Y be a cofinite submodule of M. Then there exist
submodules D and D" of M such that M = D@ D', (Y+D)/Y < MY
and (Y + D)/D <« M/D. Tt is easy to show that D’ is a supplement of
Y and D is a supplement of D’. So (4) follows by taking L = D’ and
K=D.

(4) = (2) Put S = KN L. We have S < K and also S < L. Let
g: M — M/L and f: M — M/S be the natural maps. Note that there
exists an isomorphism ¢t : M /L — K/S. By assumption, there exists h :
M — M such that fh =tg. We have K/S = f(K) = tg(K) = fh(K).
Hence, K + Kerf = h(K) + Kerf, ie., K+ 5 = h(K) 4+ S. Hence,
K = h(K)as S < K. Note that h(M) = K. Hence, K = h(K) = h(M).
Therefore, K + Kerh = M. As Kerh is contained in L and L is a
supplement of K, Kerh = L. Now L = Ker(tg) = Ker(fh) implies
Kerf =0,ie.,5=0. Thus, M = K& L. This completes the proof. [

A module M is called w-projective if for every two submodules U, V
of M such that U +V = M, there exists an endomorphism f of M with
Im(f) CU and Im(1 — f) CV (see [21, p. 359)]).

Let M be an R-module. A projective module P together with a small
epimorphism f : P — M is called a projective cover of M. Calisici and
Pancar [7] introduced the concept of cofinitely semiperfect modules. A
module M is called cofinitely semiperfect if every finitely generated factor
module of M has a projective cover.

Proposition 2.11. The following are equivalent for a m-projective mod-
ule M :

(1) M is H-cofinitely supplemented;

(2) M is cofinitely lifting;
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(3) M is cofinitely supplemented and every supplement of every cofi-
nite submodule of M is a direct summand,;

(4) Every cofinite submodule of M lies above a direct summand;

(5) Every cofinite submodule of M has a supplement that is a direct
summand.

If M is projective, then (1)-(5) are equivalent to:

(6) M 1is cofinitely semiperfect.

Proof. (2) < (3) < (4) See [17, Proposition 2.33].

(1) = (4) Let N be a cofinite submodule of M. By hypothesis, there
exist submodules D and D’ of M such that M = D& D' and M = D+ X
if and only if M = N + X for all X < M. Thus D’ is a supplement
of N in M. But M is m-projective. Then there exists a submodule
N’ < N such that M = N’ @& D’ by [21, 41.14]. Now it suffices to show
that N lies above N'. Let A be a submodule of M with N < A and
M/N'= N/N'+ A/N'. Hence M = N + A. Since N =N'® (NnD'),
we have M = N’ + (NN D’) 4+ A. Therefore M = (NN D')+ A. But
NND' <« D' Then M = A. This shows that N/N' < M/N'.

(4) = (1) By Proposition 2.2.

(5) = (1) Let N be a cofinite submodule of M. By hypothesis, there
exist submodules K7 and K5 of M such that M = K1®& K9 = N+ K7 and
NNK; < Ky. Since M is m-projective, there exists a submodule K3 C NV
such that M = K3 & K; by [21, 41.14]. It follows that M = N + X
if and only if M = K3+ X for all X < M. Hence M is H-cofinitely
supplemented.

(1) = (5) This is clear.

If M is projective, then (5) < (6) by [7, Theorem 2.1]. O

Now we give an example which shows that an H-cofinitely supple-
mented module need not be cofinitely lifting.

Example 2.12. Let p be any prime number. Let M denote the Z-module
Q@ (Z/Zp), where Q is the field of rational numbers. By [1, Corollary
4.9], M is not amply cofinitely supplemented. It follows that M is not
cofinitely lifting. Let L be any cofinite submodule of M. Then M/L is a
noetherian Z-module. Hence Q/(QN L) is finitely generated. So Q C L.
It follows that L = Q& [LN(Z/Zp)]. Then L =Q or L = M. Therefore
M is H-cofinitely supplemented.

Following [5], a module M is called w-local if it has a unique maximal
submodule.
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Remark 2.13. Note that it is easy to check that the following conditions
are equivalent for a module M :

(1) For every cofinite submodule N of M, there is a mazimal submod-
ule U of M such that N <U and U/N < M/N;

(2) For every cofinite submodule N of M, M/N is a w-local module.

Proposition 2.14. Let M be a module. Suppose that for every cofi-
nite submodule N of M, M/N is a w-local module. Then the following
statements are equivalent:

(1) M is H-cofinitely supplemented;

(2) Every maximal submodule of M has an H-supplement in M.

Proof. (1) = (2) This is obvious.

(2) = (1) Let N < M be a cofinite submodule. By assumption, there
is a maximal submodule U of M such that N < U and U/N <« M/N.
It is easy to check that for any X < M, M = N + X if and only if
M =U + X. By (2), there exists a direct summand D of M such that
M =U+ X if and only if M = D+ X for every X < M. Consequently,
M is H-cofinitely supplemented. O

Next we give an example showing that in Proposition 2.11 the im-
plication (1) = (3) does not hold, in general, if the module M is not
m-projective.

Example 2.15. (1) Let M = N & L such that Rad(N) = N and L is
a local module with maximal submodule K. It is clear that Rad(M) =
N & K is the unique mazimal submodule of M. Thus M is a w-local
module. It is easily seen that M = N + X if and only if M = Rad(M) +
X for every X < M. Proposition 2.14 shows that M is H-cofinitely
supplemented.

(2) Let R be a discrete valuation ring with maximal ideal m and
quotient field Q. It is proved in [17, Example 2.30] that the R-module
M = Q& (R/m) does not satisfy the condition (3) of Proposition 2.11.
On the other hand, M is H-cofinitely supplemented by (1).

Recall that a module M is called coatomic if every proper submodule
is contained in a maximal submodule.

Let M = ) \cpx My be a sum of submodules My (A € A) of a mod-
ule M. Then, this sum is called irredundant if, for every Ay € A,
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Proposition 2.16. Let M be an H-cofinitely supplemented module. If
M is coatomic, then M = ) .. L; is an irredundant sum of local sub-
modules L;(i € T) which are direct summands of M.

Proof. This is a consequence of [9, Proposition 2.18]. O

Proposition 2.17. Let R be a right perfect ring and let M be a nonsin-
gular H-cofinitely supplemented injective R-module. Then M = @®;c1 M;
is a direct sum of local submodules M;(i € I).

Proof. The proof is exactly the same as that of [13, Lemma 2.19] since it
uses only the fact that every maximal submodule of M has a supplement
that is a direct summand. 0

A module M is said to be refinable if for any submodules U,V of M
with U +V = M, there exists a direct summand U’ of M with U’ C U
and U' +V = M (see [8, 11.26]). Clearly, semisimple modules, hollow
modules and lifting modules are refinable.

Note that we have the following hierarchy for a module M:

M is H-cofinitely supplemented = M is cofinitely supplemented =
M is cofinitely weak supplemented.

Proposition 2.18. Let M be a refinable module. Then the following
conditions are equivalent:

(1) M is H-cofinitely supplemented;

(2) M is cofinitely supplemented;

(3) M is cofinitely weak supplemented.

Proof. (1) = (2) = (3) are clear.

(3) = (1) Suppose that M is cofinitely weak supplemented. Let N
be any cofinite submodule of M. Then there exists a submodule K of
M such that M = N+ K and NN K < M. Since M is refinable, there
is a direct summand L of M such that L C N and M = L + K. But
N=L+(NNnK)and NNK < M. Then M = N + X if and only if
M =L+ X for all X < M. This completes the proof. O

3. Factors and direct summands of H-cofinitely supplemented
modules

It is unknown if the properties H-cofinitely supplemented and H-
supplemented are inherited by direct summands. A module M is said to
be completely H-(cofinitely) supplemented if every direct summand of M
is H-(cofinitely) supplemented. On the other hand, Example 3.1 shows
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that a factor module of an H-(cofinitely) supplemented module is not in
general H-(cofinitely) supplemented.

A commutative ring R is a wvaluation ring if it satisfies one of the
following three equivalent conditions:

(i) For any two elements a and b, either a divides b or b divides a;

(ii) The ideals of R are linearly ordered by inclusion;

(iii) R is a local ring and every finitely generated ideal is principal.

Example 3.1. Let R be a commutative noetherian local ring which s
not a principal ideal ring (e.g. R = k[z?,23]/(x) where k is any field
or we can take R = F[[z,y]] the ring of formal power series over a field
F' in the indeterminates x and y). Then R is not a valuation ring. Let
n > 2. By [19, Theorem 2|, there exists a submodule L of the R-module
M = R"™ such that the R-module N = M/L is indecomposable and N
cannot be generated by fewer than n elements. Thus N is not a local
R-module. So N is not H-(cofinitely) supplemented by Proposition 2.8.
However, Proposition 2.1 shows that M is H-(cofinitely) supplemented.

The following result may be proved in much the same way as [22,
Lemma 1.1(a)].

Lemma 3.2. Let My be a direct summand of a module M such that for
every decomposition M = N & K of M, there exist submodules N' < N
and K' < K such that M = My & N' & K'. If M is H-(cofinitely)
supplemented, then M /My is H-(cofinitely) supplemented.

Corollary 3.3. Let M be an H-cofinitely supplemented module and let
My be a direct summand of M. Assume

(i) R is commutative or right noetherian and My is a finite direct sum
of local R-modules, or

(il) My is a semisimple finitely generated module, or

(iii) My is a finite direct sum of local projective modules, or

(iv) My is a finite direct sum of indecomposable injective modules, or

(v) My is a module of finite length.

Then M /My is H-cofinitely supplemented.

Proof. (i) By [10, Theorems 4.1, 4.2], [3, Lemma 26.4] and Lemma 3.2.

(ii) It is well-known that the endomorphism ring of a simple module
is a division ring. The result follows from [3, Lemma 26.4] and Lemma
3.2.

(iii) By [10, Theorem 4.4], [3, Lemma 26.4] and Lemma 3.2.

(iv) By [3, Lemmas 25.4, 26.4] and Lemma 3.2.
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(v) By [3, Proposition 10.14, Lemmas 12.8, 26.4] and Lemma 3.2. [

A module M has finite hollow dimension if for some n € N, there
exists a small epimorphism from M to a direct sum of n hollow modules
(see [8, 5.2]).

Proposition 3.4. Suppose that R is commutative or right noetherian.
Let M be a finitely generated R-module. If M is H-supplemented, then
M is a direct sum of local submodules.

Proof. Suppose that M is H-supplemented. Note that M has finite
hollow dimension by [8, 18.6]. Therefore M has the ascending chain
on direct summands by [8, 5.3]. On the other hand, M has a direct
summand M that is local by Proposition 2.16. Let M/, be a submodule
of M such that M = My® M|,. By Corollary 3.3, M{, is H-supplemented.
If M/ is not local, then M has a direct summand M; that is local and
M(/M; is H-supplemented by Corollary 3.3. We continue in this fashion
to obtain an ascending chain of direct summands of M (My C My@®M; C
--+). It follows that M is a finite direct sum of local modules. O

Proposition 3.5. Let M be an H-cofinitely supplemented module and
let N < M be a submodule. Suppose that for every direct summand K
of M, (K 4+ N)/N lies above a direct summand of M/N. Then M/N is
H-cofinitely supplemented.

Proof. Let Y/N < M/N be a cofinite submodule. Since M is H-
cofinitely supplemented, there exists a direct summand K of M such that
M =X +Y if and only if M = X + K for all X < M. By assumption,
there is a submodule L of M such that N C L C K+ N, L/N is a direct

summand of M /N and (KJLF%\;/ N <« J\LJ//ZJ\\; Let X < M be a submodule
such that N C X. If M/N = X/N +L/N, then M = X + L. Thus M =
X+K+N = X+K. Hence M = X+Y. Therefore M/N = X/N+Y/N.
On the other hand, if M/N = X/N + Y/N, then M = X +Y. So
M =X+ K. Thus M/N = [(X + L)/N] + [(K + N)/N]. It follows
that 375 = LR 4 CCRUN This gives M/N = X/N + L/N. This
completes the proof. O

Proposition 3.6. Suppose that R is commutative or right noetherian.
Let M be an H-cofinitely supplemented module. Let N be a cofinite direct
summand of M such that for every direct summand K of M, (K+N)/N
is a direct summand of M/N. Then N is H-cofinitely supplemented.
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Proof. Let K be a submodule of M such that M = N & K. By Propo-
sition 3.5, K is H-cofinitely supplemented. By hypothesis, K is finitely
generated. It follows that K = @[, L; is a direct sum of local submod-
ules L;(1 < i < n) by Proposition 3.4. Now Corollary 3.3 shows that
N = M/K is H-cofinitely supplemented. O

Proposition 3.7. Let M be an H-cofinitely supplemented module. Let
N be a direct summand of M. Suppose that for every direct summand

K of M with M = N+ K, NN K is also a direct summand of M. Then
N s H-cofinitely supplemented.

Proof. Let N’ be a submodule of M such that M = N @ N’. Let A be
a cofinite submodule of N. Then A @& N’ is a cofinite submodule of M.
By assumption, there is a submodule D of M such that M =Y + D if
andonly if M =Y + A+ N'forall Y < M. Since M = N+ A+ N’, we
have M = N + D. So DN N is a direct summand of N. Let X < N be
a submodule. If N = X + A, then M = X + A+ N'. Thus M = X + D.
Hence N = X + (DN N). On the other hand, if N = X + (DN N), then
M=X+(DNN)+D=X+Dsince M =N+D. SoM =X+A+N".
As X + A < N, we have N = X + A. Consequently, N is H-cofinitely
supplemented. O

We say that a module M has (Ds3) if for any direct summands M;
and My of M with M = My + My, My N M, is a direct summand of M.

Recall that a module M is said to have the SIP (Summand Intersec-
tion Property) if the intersection of two direct summands of M is again
a direct summand of M (see [11] or [20]).

Theorem 3.8. Let M be an H-cofinitely supplemented module with (Ds)
or having the SIP. Then M is a completely H-cofinitely supplemented
module.

Proof. 1t follows immediately from Proposition 3.7. 0

The condition (Ds3) is not necessary in Theorem 3.8 as the following
example shows.

Example 3.9. Let I and J be two ideals of a commutative local ring
R with mazimal ideal m such that I C J C m (e.g. R is a DVR with
mazimal ideal m, I = m3 and J = m?). We consider the module M =
& x B and its submodules A = R(1,0), B = R(1,1) and C = R(0,1).
Note that M = A+ B=A®C = B® C. On the other hand, we have
ANB=J/Ix0. Hence ANB C Rad(M) and AN B < M. Therefore
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0 # AN B is not a direct summand of M. So M does not satisfy (Ds).
Moreover, every direct summand of M is H-supplemented by Proposition
2.1.

Proposition 3.10. Let M be a module and let N < M be a submodule
such that for each decomposition M = M; & My, we have N = (N N
M) @ (N N Ms). If M is H-cofinitely supplemented, then M/N is H-
cofinitely supplemented. If, moreover, N is a direct summand of M,
then N is also H-cofinitely supplemented.

Proof. Let D and D’ be submodules of M such that M = D @& D’. By
assumption, we have N = (DNN)&(D'NN). Then (D+N)N(D'+N) =
[De (D'NnN)N[(DNN)e D] = (DNN)®&(D'NN)=N. So
M/N =[(D+ N)/N|&[(D’+ N)/N]. Proposition 3.5 shows that M/N
is an H-cofinitely supplemented module.

Now assume that N is a direct summand of M. Let D and D’ be
submodules of M such that M = D @ D' = N + D. Since N = (DN
N)® (D'NN), wehave M = (DNN)+ (D'NN)+D =D& (D'NN).
This implies that D’ " N = D’. Therefore D' C N. It follows that
N =(DNN)® D'. The result follows from Proposition 3.7. O

Corollary 3.11. Let N be a projection invariant submodule of a module
M.

(i) If M is H-cofinitely supplemented, then M /N is H-cofinitely sup-
plemented.

(i) If M is H-cofinitely supplemented and N is a direct summand of
M, then N is also H-cofinitely supplemented.

Proof. It is well-known that for each decomposition M = My & Ms, we
have N = (N N M;) & (N N Ms). The result follows from Proposition
3.10. -

Theorem 3.12. Let M = My ® Msy. If M is H-cofinitely supplemented
and Moy is My-projective, then My is H-cofinitely supplemented.

Proof. Let D be a direct summand of M such that M = M; + D. Since
My is Mi-projective, we have M = M@ D’ for some submodule D’ < D
by [8, 4.12]. Thus D = (M; N D) @& D’. So M; N D is a direct summand
of M. Consequently, My is H-cofinitely supplemented by Proposition
3.7. O

Corollary 3.13. Every m-projective (in particular, every projective) H-
cofinitely supplemented module is completely H-cofinitely supplemented.
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Proof. By [8, 4.14(4)] and Theorem 3.8. O

Recall that a module M is called radical if M has no maximal submod-
ules. Let M be any module. We denote by P(M) the sum of all radical
submodules of M. Clearly, if M = K& L, then P(M) = P(K)®P(L) =
[KNP(M)] @ [LNP(M)].

Proposition 3.14. Suppose that R is a right noetherian ring. Let M
be an H-cofinitely supplemented module such that P(M) is a cofinite
submodule of M. Then M = P(M) & K such that P(M) and K are H-
cofinitely supplemented and K = @©_K; is a finite direct sum of local
submodules K;(1 <1i <mn).

Proof. Since P(M) is a cofinite submodule of M, there exist submodules
D and D’ of M such that M = D @& D’ and M = P(M) + X if and
only if M = D + X for all X < M. Then D’ is an H-supplement of
P(M) in M. Thus M = P(M)+ D' and P(M)N D" < D'. Since
P(M) = P(D)@® P(D'), we have M = P(D) ® D'. So P(D) = D
and P(M) = D @ [D'n P(M)]. Hence P(D') = D'NP(M) < D'
But D'/P(D') =2 M/P(M) is a finitely generated module. Then D’ is
finitely generated and P(D’) = 0. So P(M) = D. Therefore, M =
P(M) @ D'. Moreover, by Proposition 3.10, P(M) and D’ are both H-
cofinitely supplemented. Now Proposition 3.4 shows that D’ is a finite
direct sum of local submodules. O

Lemma 3.15. Any direct summand of a refinable module is again re-
finable.

Proof. Let M be a refinable module. Let N and K be submodules of
M such that M = N @& K. Let U, V be two submodules of N with
U+4+V =N. Then M =U +V + K. Since M is refinable, there is a
direct summand U’ of M with U/ CU and M =U'+V + K. It is easy
to see that U’ +V = N and U’ is a direct summand of N. It follows
that N is a refinable module. O

Proposition 3.16. Let M be a refinable H-cofinitely supplemented mod-
ule. Then M is completely H-cofinitely supplemented.

Proof. By [2, Proposition 2.5], Lemma 3.15 and Proposition 2.18. ]

4. Direct sums of H-cofinitely supplemented modules

The following example shows that the class of H-cofinitely supple-
mented modules is not closed under finite direct sums.
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Example 4.1. Let R be a commutative noetherian local ring which is
not a principal ideal ring (see Example 3.1). Then R is not a valuation
ring. Therefore R contains two ideals Iy and Iy such that I € I and
Is & I. It follows from Proposition 2.1 and the Krull-Schmidt-Azumaya
theorem that the module R/I; ® R/Iy is not H-cofinitely supplemented.
However, R/I, and R/I5 are local modules.

Proposition 4.2. Let R be a commutative local ring. The following
statements are equivalent:

(1) BEwvery direct sum of two local R-modules is H-cofinitely supple-
mented; (2) R is a valuation ring.

Proof. By Proposition 2.1 and the Krull-Schmidt-Azumaya theorem.[]
Definition 4.3. (See [12] and [14]) Let M and N be two modules. Then
N is called radical M -projective, if for any K < M and any homomor-
phism f: N — M/K, there exists a homomorphism h : N — M such
that Im(f — mh) < M/K, where 7 : M — M/K is the natural epimor-
phism.

Lemma 4.4. Let M = M; ® Ms. Consider the following conditions:

(i) My is radical My-projective.

(ii) For every K < M such that K + My = M, there exists M3 < M
such that M = My & M3z and (K + M3)/K < M/K.

Then (i) = (ii).

Proof. See [14, Theorem 3.5]. O
Lemma 4.5. Let M = M; ® My be the direct sum of two H-cofinitely
supplemented modules My and Ms. Let N be a cofinite submodule of M
with M1 C N. Then there exists a direct summand Do of Ms such that
M =X+ N if and only if M = X + My + Do for all X < M.

Proof. Since M /M is H-cofinitely supplemented and N/Mj is a cofinite
submodule of M /Mj, there exists a submodule D of M containing M;
such that D/M; is a direct summand of M /M; and M/M; = X/M; +
N/M; if and only if M/M; = X/M; + D/M; for all X < M with
M; C X. Let D' be a submodule of M such that My C D’ and (D/M;)&
(D//Ml) = M/M1 Since D = M & (MQQD), we have D’ + (MQQD) =
M. But D'n(M;nN D) < MiN My =0. Then D'® (Ma N D) = M.
Let Dy = Mo N D. 1t is clear that D5 is a direct summand of M>. Now
let X be a submodule of M. If M = X + N, then M = X + M; + N.
So M =X+ M +D =X+ M; + Ds. On the other hand, if M =
X + M+ Dy, then M =X+ M +D. SoM=X+M +N=X+N.
This completes the proof. O
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Lemma 4.6. Let K, L and N be submodules of a module M. Assume
that K+L = M and (KNL)+N = M. Then K+(LNN) = L+(KNN) =
M.

Proof. See [8, Lemma 1.24]. O

Theorem 4.7. Let M = Mi®Ms. If My is radical Ma-projective (or Mo
is radical My -projective) and My and My are H-cofinitely supplemented,
then M is H-cofinitely supplemented.

Proof. Let Y be a cofinite submodule of M. Then M/Y is cofinitely
weak supplemented by [2, Propositions 2.5 and 2.12]. Therefore there
exists a submodule L of M such that Y C L, M/Y = (L/Y) + [(Y +
Ms)/Y] and [LN(Y +M>)]/Y < M/Y. Then M = L+ Ms. Lemma 4.4
shows that there is no loss of generality in assuming that (L+ M;)/L <
M/L. By Lemma 4.5, there is a direct summand D; of M; such that
X+Y + My, =M if and only if X + D1 + My = M for all X < M.
Again by Lemma 4.5, there is a direct summand Do of My such that
X+ L+ M =M ifand only if X + My + Dy = M for all X < M.
We put D = D1 @ Dy = (D1 @ M) N (M @ Ds). Clearly, D is a direct
summand of M. Let X < M be a submodule. Thus,

N M = (D1 @& M) + [X N (M; & Ds)], and
M = X + (M1 @ D2) by Lemma 4.6.

Y + Mg) [X N (Ml SV DQ)], and
M X + (M, & Do).

M1 & DQ) [X N (Y + Mg)] and
M X+Y+M2byLemma46

= (L+ M)+ [X N (Y + M,)], and
M X +Y + M,.

M =L+ XN (Y + M)], and
M =X+Y + My since (L+ M,;)/L < M/L.

M =X+ [LN (Y + M,)] by Lemma 4.6
and using the fact that M = L 4+ Mo.

& M=X+Ysince [ LN(Y +M)]/Y < M/Y.
Therefore M is H-cofinitely supplemented.

Corollary 4.8. Let M = My & Ms.

=4
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(i) If My is Ma-projective (or My is Mi-projective) and My and Mo
are H-cofinitely supplemented, then M 1is H-cofinitely supplemented.

(ii) If My is H-cofinitely supplemented and Ms is a projective H-
cofinitely supplemented module, then M is H-cofinitely supplemented.

(iii) If My is H-cofinitely supplemented and M is semisimple, then
M is H-cofinitely supplemented.

Proof. These are consequences of Theorem 4.7. O

Theorem 4.9. If P = @,; P; is a direct sum of projective H-cofinitely
supplemented modules P; (i € I), then P is H-cofinitely supplemented.

Proof. By [7, Theorem 2.9], Proposition 2.11 and the fact that the class
of projective modules is closed under direct sums. ([l

Proposition 4.10. Let M = )_,_; M; be a refinable module. If each
M; (i € I) is H-cofinitely supplemented, then M is H-cofinitely supple-
mented.

Proof. Assume that each M; (i € I) is H-cofinitely supplemented. Then
each M; is cofinitely weak supplemented. By [2, Proposition 2.12], M
is a cofinitely weak supplemented module. Since M is refinable, M is
H-cofinitely supplemented by Proposition 2.18. [l

Proposition 4.11. Let a module M = P;c;M; be a direct sum of sub-
modules M;(i € I). If for every submodule N of M, we have N =
@ier(N N M;), then M is (completely) H-cofinitely supplemented if and
only if all M;(i € I) are (completely) H-cofinitely supplemented.

Proof. Clear. O

5. Rings whose modules are H-cofinitely supplemented

We conclude this paper by studying some examples of rings whose
modules are H-cofinitely supplemented.

Theorem 5.1. The following are equivalent for a ring R:
(1) R is semiperfect;
(2) Every finitely generated free R-module is H-cofinitely supplemented;
(3) Rp is H-supplemented;
(4) Rp is H-cofinitely supplemented;
(5) Every free R-module is H-cofinitely supplemented.

Proof. By [6, Theorem 2.9] and Proposition 2.11. O
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We conclude from Theorem 5.1 that if R is a ring over which all
R-modules are H-cofinitely supplemented, then R is semiperfect. But
there is a semiperfect ring having an R-module which is not H-cofinitely
supplemented as shows the following example.

Example 5.2. Let R = F'[[z, y]] be the ring of formal power series over
a field F' in the indeterminates x and y. Then R is a commutative
noetherian local domain with maximal ideal J = Rx + Ry. Therefore
the ring R is semiperfect and the ideal J is finitely generated. Since R
is a domain, Jg is a uniform R-module. So Jg is not a direct sum of
cyclic R-modules. By Proposition 2.1, the module Jg is not H-cofinitely
supplemented.

Recall that a ring R is called semilocal provided R/Jac(R) is a right
semisimple ring.

Proposition 5.3. Let R be a semilocal ring such that every R-module
is refinable. Then every R-module is H-cofinitely supplemented.

Proof. By [2, Corollary 2.22], every R-module is cofinitely weak supple-
mented. So every R-module is H-cofinitely supplemented by Proposition
2.18. O

A module M is uniserial if its submodules are linearly ordered by
inclusion and it is serial if it is a direct sum of uniserial submodules.
The ring R is right (left) serial if the right (left) R-module Rg (rR) is
serial and it is serial if it is both right and left serial.

In the next example we give a ring which satisfies the conditions of
Proposition 5.3.

It is well-known that R is a semilocal ring. By [13, Theorem 3.15
every R-module is lifting. Therefore every R-module is a refinable H-
supplemented module.

Example 5.4. Let R be an artinian serial ring with (Jac(R))? = 0.
],

Recall that a module M is called coseparable if for every cofinite sub-
module U of M, there exists a cofinite submodule U" of M such that
U’ CU and U’ is a direct summand of M (see [22] and [23]) .

Proposition 5.5. Let R be a complete discrete valuation ring. Then
every R-module is H-cofinitely supplemented.

Proof. By [23, Lemma 1.2 and Satz 1.8|, every R-module is cosepa-
rable. Therefore every R-module is H-cofinitely supplemented by [22,
Folgerung 2.8]. O
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In [18, Proposition 3.1], it is shown that a commutative ring R is
an artinian principal ideal ring if and only if every R-module is H-
supplemented. Proposition 5.5 shows that the implication “every mod-
ule is H-cofinitely supplemented = every module is H-supplemented”
does not hold.

Proposition 5.6. Let R = R & --- & R, be a commutative ring such
that each R; is either a complete discrete valuation Ting or an artinian
principal ideal ring. Then every R-module is H-cofinitely supplemented.

Proof. We can write 1p = e; + es + - -+ + e,, wWhere ¢; is the identity
element of the ring R; and 1g is the identity element of the ring R.
Let M be any R-module. Then M = etM & eoM & --- ® e, M. Let
1 <7 < n. Note that e;M can be regarded as an R;-module as well as
an R-module, and its submodules are the same in both cases, because
(ri+re+ -+ ry)eix = regx, where r; € Rj for 1 < j <nandx €
M. Following [18, Proposition 3.1], every module over a commutative
artinian principal ideal ring is H-supplemented. The result follows from
Propositions 4.11 and 5.5. U
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