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ON H-COFINITELY SUPPLEMENTED MODULES

Y. TALEBI, R. TRIBAK∗ AND A. R. MONIRI HAMZEKOLAEE

Communicated by Siamak Yassemi

Abstract. A module M is called H-cofinitely supplemented if for
every cofinite submodule E (i.e. M/E is finitely generated) of M
there exists a direct summand D of M such that M = E+X holds if
and only if M = D+X, for every submodule X of M . In this paper
we study factors, direct summands and direct sums of H-cofinitely
supplemented modules.

Let M be an H-cofinitely supplemented module and let N ≤M
be a submodule. Suppose that for every direct summand K of M ,
(N + K)/N lies above a direct summand of M/N . Then M/N is
H-cofinitely supplemented.

Let M be an H-cofinitely supplemented module. Let N be a
direct summand of M . Suppose that for every direct summand K
of M with M = N + K, N ∩ K is also a direct summand of M .
Then N is H-cofinitely supplemented.

Let M = M1⊕M2. If M1 is radical M2-projective (or M2 is rad-
ical M1-projective) and M1 and M2 are H-cofinitely supplemented,
then M is H-cofinitely supplemented

1. Introduction

Throughout this paper, R will be an associative ring with identity,
and all modules are unitary right R-modules. The Jacobson radical of
R is denoted by Jac(R).
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A submodule L of a module M is called small in M (written L�M)
if N + L 6= M for any proper submodule N of M . A nonzero module
H is called hollow if every proper submodule is small in H. Let M be a
module. Let N be a submodule of M . A submodule K of M is called a
(weak) supplement of N in M if, N+K = M and (N∩K �M) N∩K �
K. The module M is called H-supplemented, if for every submodule A
of M , there exists a direct summand D of M such that M = A+X holds
if and only if M = D + X for all X ≤ M . Note that H-supplemented
modules were called Goldie∗-lifting modules in [4]. A submodule N of M
is called cofinite in M if the factor module M/N is finitely generated.
The module M is called cofinitely (weak) supplemented if every cofinite
submodule of M has a (weak) supplement in M . A module M is called
H-cofinitely supplemented if for every cofinite submodule E of M , there
exists a direct summand D of M such that M = E + X holds if and
only if M = D + X for all X ≤ M . This notion was introduced by
Koşan in [15] and among others, he showed that if M is a module with
Rad(M)�M , then M is H-cofinitely supplemented if and only if every
cofinite submodule of M/Rad(M) is a direct summand and each cofinite
direct summand of M/Rad(M) lifts to a direct summand of M . Clearly,
H-supplemented modules are H-cofinitely supplemented. On the other
hand, every finitely generated H-cofinitely supplemented module is H-
supplemented. If N is a submodule of a module M , then we say that N
lies above a direct summand if there is a direct summand K of M with
K ⊆ N and N/K �M/K.
Let M and N be two modules. Then N is called radical M -projective,
if for any K ≤ M and any homomorphism f : N → M/K there exists
a homomorphism h : N → M such that Im(f − πh) � M/K, where
π : M →M/K is the natural epimorphism (see [12] and [14]).

In section 2, various properties of H-cofinitely supplemented modules
are showed. Moreover, we give some examples showing that the concept
of H-cofinitely supplemented modules is a proper generalization of the
notion of H-supplemented modules.

Section 3 is devoted to the study of factors and direct summands of
H-cofinitely supplemented modules. It is unknown if the class of H-
cofinitely supplemented modules is closed under direct summands. It is
shown that every direct summand of a finite length H-cofinitely supple-
mented module is again H-cofinitely supplemented (Corollary 3.3). It is
also shown that if M is an H-cofinitely supplemented module and N is
a direct summand of M such that for every direct summand K of M
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with M = N + K, N ∩ K is also a direct summand of M , then N is
H-cofinitely supplemented (Proposition 3.7).
Let M be an H-cofinitely supplemented module and let N ≤ M be a
submodule. Suppose that for every direct summand K of M , (N +
K)/N lies above a direct summand of M/N . Then M/N is H-cofinitely
supplemented (Proposition 3.5).

In section 4, we begin by giving an example showing that a direct
sum of two H-cofinitely supplemented modules need not be H-cofinitely
supplemented (Example 4.1). Then we prove that if M = M1 ⊕ M2

such that M1 is radical M2-projective (or M2 is radical M1-projective)
and M1 and M2 are H-cofinitely supplemented, then M is H-cofinitely
supplemented (Theorem 4.7).

We conclude the paper by giving some examples of rings whose mod-
ules are H-cofinitely supplemented.

2. Some properties of H-cofinitely supplemented modules

In this section we investigate some properties of H-cofinitely supple-
mented modules. We mainly study the relation between the notion of
H-cofinitely supplemented modules and some other notions.

A submodule N of a module M has ample supplements in M if every
submodule L of M such that M = N + L contains a supplement of N
in M . The module M is called amply (cofinitely) supplemented if every
(cofinite) submodule of M has ample supplements in M .

Note that one question still unanswered is whether an H-supplemented
module is amply supplemented (see [4] and [16]).

A module M is called (cofinitely) lifting if it is amply (cofinitely)
supplemented and every supplement of every (cofinite) submodule of M
is a direct summand (see [8] and [17]).

It is well-known that the following implications hold: lifting ⇒ H-
supplemented ⇒ H-cofinitely supplemented. It follows from [16, Corol-
lary 4.42] that if R is a semiperfect ring, then the module RR is H-
cofinitely supplemented. On the other hand, it is clear that any module
M with Rad(M) = M is H-cofinitely supplemented. This yields that
any non-supplemented moduleM with Rad(M) = M is H-cofinitely sup-
plemented but not H-supplemented. So all injective non-supplemented
modules over a Dedekind domain (e.g. the quotient field of a non-local
Dedekind domain (see [16, Proposition A.8])) are H-cofinitely supple-
mented but not H-supplemented.
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The following proposition describes the structure of finitely generated
H-(cofinitely) supplemented modules over commutative local rings.

Proposition 2.1. Let R be a commutative local ring with maximal ideal
m. The following are equivalent for a finitely generated R-module M :

(1) M is H-supplemented;
(2) Every direct summand of M is H-supplemented;
(3) M ∼= R

I1
× · · · × R

In
for some ideals I1, . . ., In of R with I1 ⊆ · · · ⊆

In  R.
If m2 = 0, then (1)-(3) are equivalent to:
(4) M is supplemented and every supplement submodule of M is a

direct summand;
(5) M is lifting.

Proof. (1) ⇒ (3) By [22, Satz 3.2].
(3)⇒ (2) By the Krull-Schmidt-Azumaya theorem, every direct sum-

mand of M has the same structure as the one given in (3). The result
follows from [22, Satz 3.2].

(2) ⇒ (1) This is immediate.
(3) ⇔ (4) ⇔ (5) follow from [17, Proposition 2.5] and the fact that

mIn ⊆ m2 ⊆ I1. �

Proposition 2.2. Let M be a module. If every cofinite submodule of
M lies above a direct summand, then M is H-cofinitely supplemented.

Proof. Let N be a cofinite submodule of M . By assumption, there exists
a direct summand K of M such that N lies above K. It is easy to check
that M = N +X if and only if M = K +X for all X ≤M . �

The converse of Proposition 2.2 is in general false. See the following
example.

Example 2.3. Let I and J be two ideals of a commutative local ring
R with maximal ideal m such that I ⊂ J ⊆ m and mJ 6⊆ I (e.g. R is
a DVR with maximal ideal m, I = m3 and J = m). We consider the
module M = R/I ×R/J . From Proposition 2.1 it follows that M is H-
supplemented. On the other hand, according to [22, Folgerung 3.3] and
the Krull-Schmidt-Azumaya theorem, M is not lifting. Hence not every
cofinite submodule of M lies above a direct summand (see [21, 41.12]).

Another example of modules showing that the class of H-supplemented
modules is properly contained in the class of H-cofinitely supplemented
modules is:
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Example 2.4. Let R be a commutative local ring which is not perfect
with maximal ideal m (e.g., we can take R to be K[[x]], ring of all power
series

∑∞
i=0 kix

i in an indeterminate x and with coefficients from a field

K). Then Rad(R
(N)
R ) is not small in R

(N)
R by [21, 43.9]. Hence M = R

(N)
R

is not supplemented by [21, 42.5]. So M is not H-supplemented. By [17,
Corollary 2.23 and Proposition 2.33], every cofinite submodule of M
lies above a direct summand. Hence M is H-cofinitely supplemented by
Proposition 2.2.

A submodule N of a module M is called projection invariant in M if
f(N) ⊆ N , for any idempotent f ∈ End(M).

Theorem 2.5. Let M be an H-cofinitely supplemented module and let
N be a cofinite projection invariant submodule of M . Then there exists
a direct summand K of M such that K ⊆ N and N/K �M/K.

Proof. Since M is H-cofinitely supplemented, there exists a direct sum-
mand K of M such that M = X + N if and only if M = X + K for
all X ≤ M . Let p : M → K be the projection of M onto K and let
i : K → M be the inclusion map. Set e = ip. Thus e(M) = K. Since
M = K + (1 − e)(M), we have M = (1 − e)(M) + N . It follows that
K = e(M) = e(N) ⊆ N since N is projection invariant. Let Y be a sub-
module of M with K ≤ Y and N/K+Y/K = M/K. Then N+Y = M .
Hence M = Y + K = Y . Therefore N/K � M/K. This proves the
theorem. �

Lemma 2.6. Let M be a cofinitely weak supplemented module and let
X be a submodule of M such that Rad(M) ⊆ X. Then every cofinite
submodule of M/X is a direct summand.

Proof. Let N ≤M be a submodule such that X ≤ N and M/X
N/X is finitely

generated. Since M/N is finitely generated, there exists a submodule
K ≤ M such that M = N + K and N ∩ K � M . Thus N ∩ K ⊆
Rad(M) ⊆ X. Therefore N ∩ (K +X) = X +N ∩K = X. So M/X =
[N/X]⊕ [(K +X)/X]. This completes the proof. �

The following result is a consequence of Lemma 2.6.

Proposition 2.7. Let M be a cofinitely weak supplemented module.
Then for every submodule X of M such that Rad(M) ⊆ X, M/X is
H-cofinitely supplemented.

A module M is called a local module if the sum of all proper submod-
ules of M is also a proper submodule of M .
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Proposition 2.8. The following statements are equivalent for an inde-
composable module M :

(1) M is H-cofinitely supplemented;
(2) Rad(M) = M or M is a local module.

Proof. (1) ⇒ (2) Suppose that Rad(M) 6= M . Then M has a maximal
submodule L. By assumption, there exists a direct summand K of M
such that M = L+X if and only if M = K+X for all X ≤M . But M is
indecomposable. Then K = 0 or K = M . It is easily seen that K 6= M
because L 6= M . Thus K = 0. So for all X ≤ M , M = L + X implies
that X = M . This gives L � M . Therefore L is the only maximal
submodule of M . It follows that L is the sum of all proper submodules
of M . Hence M is a local module.

(2) ⇒ (1) This is clear. �

Let U be a submodule of a module M and let V be a direct summand
of M . We say that V is an H-supplement of U in M if, there is a direct
summand W of M such that M = V ⊕W and M = U +X if and only
if M = W + X for all X ≤ M . Clearly, every H-supplement of U is a
supplement of U and it is a direct summand of M .

Proposition 2.9. Let M be an H-cofinitely supplemented module and
let N be a cofinite submodule of M . Then every H-supplement of N in
M is finitely generated.

Proof. Let K be an H-supplement of N in M . Then M = N + K and
N ∩K � K. Since N is cofinite, K/(N ∩K) is finitely generated. It
follows that K is finitely generated since N ∩K � K. �

The next result gives some new characterizations of H-cofinitely sup-
plemented modules. Its proof is similar to that of [14, Theorem 2.1] but
we present it for completeness.

Theorem 2.10. Let M be a module. The following are equivalent:
(1) M is H-cofinitely supplemented;
(2) For each cofinite submodule Y of M there exists a direct summand

D of M such that (Y +D)/D �M/D and (Y +D)/Y �M/Y ;
(3) For each cofinite submodule Y of M there exist a submodule X ≤

M and a direct summand D of M with Y + D ⊆ X such that X/Y �
M/Y and X/D �M/D;

(4) For each cofinite submodule Y of M there exist a supplement L
of Y and a supplement K of L such that (Y + K)/Y � M/Y , (Y +
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K)/K � M/K and every homomorphism f : M → M/(K ∩ L) can be
lifted to a homomorphism f : M →M .

Proof. (1) ⇒ (2) It is clear.
(2) ⇒ (3) Let Y be a cofinite submodule of M . Then there exists

a direct summand D of M such that (Y + D)/Y � M/Y and (Y +
D)/D �M/D. Now take X = Y +D.

(3) ⇒ (1) Let Y be a cofinite submodule of M . Then there exist a
submodule X of M and a direct summand D of M such that Y +D ⊆ X,
X/Y � M/Y and X/D � M/D. It is easy to see that M = A + D
if and only if M = A + Y for any A ≤ M . Thus, M is H-cofinitely
supplemented.

(2) ⇒ (4) Let Y be a cofinite submodule of M . Then there exist
submodules D and D′ of M such that M = D⊕D′, (Y +D)/Y �M/Y
and (Y +D)/D �M/D. It is easy to show that D′ is a supplement of
Y and D is a supplement of D′. So (4) follows by taking L = D′ and
K = D.

(4) ⇒ (2) Put S = K ∩ L. We have S � K and also S � L. Let
g : M →M/L and f : M →M/S be the natural maps. Note that there
exists an isomorphism t : M/L→ K/S. By assumption, there exists h :
M → M such that fh = tg. We have K/S = f(K) = tg(K) = fh(K).
Hence, K + Kerf = h(K) + Kerf , i.e., K + S = h(K) + S. Hence,
K = h(K) as S � K. Note that h(M) = K. Hence, K = h(K) = h(M).
Therefore, K + Kerh = M . As Kerh is contained in L and L is a
supplement of K, Kerh = L. Now L = Ker(tg) = Ker(fh) implies
Kerf = 0, i.e., S = 0. Thus, M = K⊕L. This completes the proof. �

A module M is called π-projective if for every two submodules U , V
of M such that U +V = M , there exists an endomorphism f of M with
Im(f) ⊆ U and Im(1− f) ⊆ V (see [21, p. 359]).

Let M be an R-module. A projective module P together with a small
epimorphism f : P → M is called a projective cover of M . Çalişici and
Pancar [7] introduced the concept of cofinitely semiperfect modules. A
moduleM is called cofinitely semiperfect if every finitely generated factor
module of M has a projective cover.

Proposition 2.11. The following are equivalent for a π-projective mod-
ule M :

(1) M is H-cofinitely supplemented;
(2) M is cofinitely lifting;
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(3) M is cofinitely supplemented and every supplement of every cofi-
nite submodule of M is a direct summand;

(4) Every cofinite submodule of M lies above a direct summand;
(5) Every cofinite submodule of M has a supplement that is a direct

summand.
If M is projective, then (1)-(5) are equivalent to:
(6) M is cofinitely semiperfect.

Proof. (2)⇔ (3)⇔ (4) See [17, Proposition 2.33].
(1)⇒ (4) Let N be a cofinite submodule of M . By hypothesis, there

exist submodules D and D′ of M such that M = D⊕D′ and M = D+X
if and only if M = N + X for all X ≤ M . Thus D′ is a supplement
of N in M . But M is π-projective. Then there exists a submodule
N ′ ≤ N such that M = N ′ ⊕D′ by [21, 41.14]. Now it suffices to show
that N lies above N ′. Let A be a submodule of M with N ′ ≤ A and
M/N ′ = N/N ′ +A/N ′. Hence M = N +A. Since N = N ′ ⊕ (N ∩D′),
we have M = N ′ + (N ∩D′) + A. Therefore M = (N ∩D′) + A. But
N ∩D′ � D′. Then M = A. This shows that N/N ′ �M/N ′.

(4)⇒ (1) By Proposition 2.2.
(5)⇒ (1) Let N be a cofinite submodule of M . By hypothesis, there

exist submodules K1 and K2 of M such that M = K1⊕K2 = N+K1 and
N∩K1 � K1. SinceM is π-projective, there exists a submoduleK3 ⊆ N
such that M = K3 ⊕ K1 by [21, 41.14]. It follows that M = N + X
if and only if M = K3 + X for all X ≤ M . Hence M is H-cofinitely
supplemented.

(1)⇒ (5) This is clear.
If M is projective, then (5) ⇔ (6) by [7, Theorem 2.1]. �

Now we give an example which shows that an H-cofinitely supple-
mented module need not be cofinitely lifting.

Example 2.12. Let p be any prime number. Let M denote the Z-module
Q ⊕ (Z/Zp), where Q is the field of rational numbers. By [1, Corollary
4.9], M is not amply cofinitely supplemented. It follows that M is not
cofinitely lifting. Let L be any cofinite submodule of M . Then M/L is a
noetherian Z-module. Hence Q/(Q∩L) is finitely generated. So Q ⊆ L.
It follows that L = Q⊕ [L∩ (Z/Zp)]. Then L = Q or L = M . Therefore
M is H-cofinitely supplemented.

Following [5], a module M is called w-local if it has a unique maximal
submodule.
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Remark 2.13. Note that it is easy to check that the following conditions
are equivalent for a module M :

(1) For every cofinite submodule N of M , there is a maximal submod-
ule U of M such that N ≤ U and U/N �M/N ;

(2) For every cofinite submodule N of M , M/N is a w-local module.

Proposition 2.14. Let M be a module. Suppose that for every cofi-
nite submodule N of M , M/N is a w-local module. Then the following
statements are equivalent:

(1) M is H-cofinitely supplemented;
(2) Every maximal submodule of M has an H-supplement in M .

Proof. (1)⇒ (2) This is obvious.
(2)⇒ (1) Let N ≤M be a cofinite submodule. By assumption, there

is a maximal submodule U of M such that N ≤ U and U/N � M/N .
It is easy to check that for any X ≤ M , M = N + X if and only if
M = U + X. By (2), there exists a direct summand D of M such that
M = U +X if and only if M = D+X for every X ≤M . Consequently,
M is H-cofinitely supplemented. �

Next we give an example showing that in Proposition 2.11 the im-
plication (1) ⇒ (3) does not hold, in general, if the module M is not
π-projective.

Example 2.15. (1) Let M = N ⊕ L such that Rad(N) = N and L is
a local module with maximal submodule K. It is clear that Rad(M) =
N ⊕ K is the unique maximal submodule of M . Thus M is a w-local
module. It is easily seen that M = N +X if and only if M = Rad(M)+
X for every X ≤ M . Proposition 2.14 shows that M is H-cofinitely
supplemented.

(2) Let R be a discrete valuation ring with maximal ideal m and
quotient field Q. It is proved in [17, Example 2.30] that the R-module
M = Q⊕ (R/m) does not satisfy the condition (3) of Proposition 2.11.
On the other hand, M is H-cofinitely supplemented by (1).

Recall that a module M is called coatomic if every proper submodule
is contained in a maximal submodule.

Let M =
∑

λ∈ΛMλ be a sum of submodules Mλ (λ ∈ Λ) of a mod-
ule M . Then, this sum is called irredundant if, for every λ0 ∈ Λ,∑

λ 6=λ0 Mλ 6= M .
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Proposition 2.16. Let M be an H-cofinitely supplemented module. If
M is coatomic, then M =

∑
i∈I Li is an irredundant sum of local sub-

modules Li(i ∈ I) which are direct summands of M .

Proof. This is a consequence of [9, Proposition 2.18]. �

Proposition 2.17. Let R be a right perfect ring and let M be a nonsin-
gular H-cofinitely supplemented injective R-module. Then M = ⊕i∈IMi

is a direct sum of local submodules Mi(i ∈ I).

Proof. The proof is exactly the same as that of [13, Lemma 2.19] since it
uses only the fact that every maximal submodule of M has a supplement
that is a direct summand. �

A module M is said to be refinable if for any submodules U, V of M
with U + V = M , there exists a direct summand U ′ of M with U ′ ⊆ U
and U ′ + V = M (see [8, 11.26]). Clearly, semisimple modules, hollow
modules and lifting modules are refinable.

Note that we have the following hierarchy for a module M :
M is H-cofinitely supplemented ⇒ M is cofinitely supplemented ⇒

M is cofinitely weak supplemented.

Proposition 2.18. Let M be a refinable module. Then the following
conditions are equivalent:

(1) M is H-cofinitely supplemented;
(2) M is cofinitely supplemented;
(3) M is cofinitely weak supplemented.

Proof. (1)⇒ (2)⇒ (3) are clear.
(3) ⇒ (1) Suppose that M is cofinitely weak supplemented. Let N

be any cofinite submodule of M . Then there exists a submodule K of
M such that M = N +K and N ∩K �M . Since M is refinable, there
is a direct summand L of M such that L ⊆ N and M = L + K. But
N = L + (N ∩K) and N ∩K � M . Then M = N + X if and only if
M = L+X for all X ≤M . This completes the proof. �

3. Factors and direct summands of H-cofinitely supplemented
modules

It is unknown if the properties H-cofinitely supplemented and H-
supplemented are inherited by direct summands. A module M is said to
be completely H-(cofinitely) supplemented if every direct summand of M
is H-(cofinitely) supplemented. On the other hand, Example 3.1 shows
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that a factor module of an H-(cofinitely) supplemented module is not in
general H-(cofinitely) supplemented.

A commutative ring R is a valuation ring if it satisfies one of the
following three equivalent conditions:

(i) For any two elements a and b, either a divides b or b divides a;
(ii) The ideals of R are linearly ordered by inclusion;
(iii) R is a local ring and every finitely generated ideal is principal.

Example 3.1. Let R be a commutative noetherian local ring which is
not a principal ideal ring (e.g. R = k[x2, x3]/(x4) where k is any field
or we can take R = F [[x, y]] the ring of formal power series over a field
F in the indeterminates x and y). Then R is not a valuation ring. Let
n ≥ 2. By [19, Theorem 2], there exists a submodule L of the R-module

M = R(n) such that the R-module N = M/L is indecomposable and N
cannot be generated by fewer than n elements. Thus N is not a local
R-module. So N is not H-(cofinitely) supplemented by Proposition 2.8.
However, Proposition 2.1 shows that M is H-(cofinitely) supplemented.

The following result may be proved in much the same way as [22,
Lemma 1.1(a)].

Lemma 3.2. Let M0 be a direct summand of a module M such that for
every decomposition M = N ⊕K of M , there exist submodules N ′ ≤ N
and K ′ ≤ K such that M = M0 ⊕ N ′ ⊕ K ′. If M is H-(cofinitely)
supplemented, then M/M0 is H-(cofinitely) supplemented.

Corollary 3.3. Let M be an H-cofinitely supplemented module and let
M0 be a direct summand of M . Assume

(i) R is commutative or right noetherian and M0 is a finite direct sum
of local R-modules, or

(ii) M0 is a semisimple finitely generated module, or
(iii) M0 is a finite direct sum of local projective modules, or
(iv) M0 is a finite direct sum of indecomposable injective modules, or
(v) M0 is a module of finite length.
Then M/M0 is H-cofinitely supplemented.

Proof. (i) By [10, Theorems 4.1, 4.2], [3, Lemma 26.4] and Lemma 3.2.
(ii) It is well-known that the endomorphism ring of a simple module

is a division ring. The result follows from [3, Lemma 26.4] and Lemma
3.2.

(iii) By [10, Theorem 4.4], [3, Lemma 26.4] and Lemma 3.2.
(iv) By [3, Lemmas 25.4, 26.4] and Lemma 3.2.
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(v) By [3, Proposition 10.14, Lemmas 12.8, 26.4] and Lemma 3.2. �

A module M has finite hollow dimension if for some n ∈ N, there
exists a small epimorphism from M to a direct sum of n hollow modules
(see [8, 5.2]).

Proposition 3.4. Suppose that R is commutative or right noetherian.
Let M be a finitely generated R-module. If M is H-supplemented, then
M is a direct sum of local submodules.

Proof. Suppose that M is H-supplemented. Note that M has finite
hollow dimension by [8, 18.6]. Therefore M has the ascending chain
on direct summands by [8, 5.3]. On the other hand, M has a direct
summand M0 that is local by Proposition 2.16. Let M ′0 be a submodule
of M such that M = M0⊕M ′0. By Corollary 3.3, M ′0 is H-supplemented.
If M ′0 is not local, then M ′0 has a direct summand M1 that is local and
M ′0/M1 is H-supplemented by Corollary 3.3. We continue in this fashion
to obtain an ascending chain of direct summands ofM (M0 ⊆M0⊕M1 ⊆
· · · ). It follows that M is a finite direct sum of local modules. �

Proposition 3.5. Let M be an H-cofinitely supplemented module and
let N ≤ M be a submodule. Suppose that for every direct summand K
of M , (K +N)/N lies above a direct summand of M/N . Then M/N is
H-cofinitely supplemented.

Proof. Let Y/N ≤ M/N be a cofinite submodule. Since M is H-
cofinitely supplemented, there exists a direct summandK ofM such that
M = X + Y if and only if M = X +K for all X ≤M . By assumption,
there is a submodule L of M such that N ⊆ L ⊆ K+N , L/N is a direct

summand of M/N and (K+N)/N
L/N � M/N

L/N . Let X ≤ M be a submodule

such that N ⊆ X. If M/N = X/N+L/N , then M = X+L. Thus M =
X+K+N = X+K. Hence M = X+Y . Therefore M/N = X/N+Y/N .
On the other hand, if M/N = X/N + Y/N , then M = X + Y . So
M = X + K. Thus M/N = [(X + L)/N ] + [(K + N)/N ]. It follows

that M/N
L/N = (X+L)/N

L/N + (K+N)/N
L/N . This gives M/N = X/N +L/N . This

completes the proof. �

Proposition 3.6. Suppose that R is commutative or right noetherian.
Let M be an H-cofinitely supplemented module. Let N be a cofinite direct
summand of M such that for every direct summand K of M , (K+N)/N
is a direct summand of M/N . Then N is H-cofinitely supplemented.
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Proof. Let K be a submodule of M such that M = N ⊕K. By Propo-
sition 3.5, K is H-cofinitely supplemented. By hypothesis, K is finitely
generated. It follows that K = ⊕ni=1Li is a direct sum of local submod-
ules Li(1 ≤ i ≤ n) by Proposition 3.4. Now Corollary 3.3 shows that
N ∼= M/K is H-cofinitely supplemented. �

Proposition 3.7. Let M be an H-cofinitely supplemented module. Let
N be a direct summand of M . Suppose that for every direct summand
K of M with M = N +K, N ∩K is also a direct summand of M . Then
N is H-cofinitely supplemented.

Proof. Let N ′ be a submodule of M such that M = N ⊕N ′. Let A be
a cofinite submodule of N . Then A⊕N ′ is a cofinite submodule of M .
By assumption, there is a submodule D of M such that M = Y +D if
and only if M = Y +A+N ′ for all Y ≤M . Since M = N +A+N ′, we
have M = N +D. So D ∩N is a direct summand of N . Let X ≤ N be
a submodule. If N = X +A, then M = X +A+N ′. Thus M = X +D.
Hence N = X+ (D∩N). On the other hand, if N = X+ (D∩N), then
M = X+(D∩N)+D = X+D since M = N+D. So M = X+A+N ′.
As X + A ≤ N , we have N = X + A. Consequently, N is H-cofinitely
supplemented. �

We say that a module M has (D3) if for any direct summands M1

and M2 of M with M = M1 +M2, M1 ∩M2 is a direct summand of M .
Recall that a module M is said to have the SIP (Summand Intersec-

tion Property) if the intersection of two direct summands of M is again
a direct summand of M (see [11] or [20]).

Theorem 3.8. Let M be an H-cofinitely supplemented module with (D3)
or having the SIP. Then M is a completely H-cofinitely supplemented
module.

Proof. It follows immediately from Proposition 3.7. �

The condition (D3) is not necessary in Theorem 3.8 as the following
example shows.

Example 3.9. Let I and J be two ideals of a commutative local ring
R with maximal ideal m such that I ⊂ J ⊆ m (e.g. R is a DVR with
maximal ideal m, I = m3 and J = m2). We consider the module M =
R
I ×

R
J and its submodules A = R(1̄, 0̄), B = R(1̄, 1̄) and C = R(0̄, 1̄).

Note that M = A + B = A ⊕ C = B ⊕ C. On the other hand, we have
A ∩B = J/I × 0. Hence A ∩B ⊆ Rad(M) and A ∩B �M . Therefore
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0 6= A ∩B is not a direct summand of M . So M does not satisfy (D3).
Moreover, every direct summand of M is H-supplemented by Proposition
2.1.

Proposition 3.10. Let M be a module and let N ≤M be a submodule
such that for each decomposition M = M1 ⊕M2, we have N = (N ∩
M1) ⊕ (N ∩M2). If M is H-cofinitely supplemented, then M/N is H-
cofinitely supplemented. If, moreover, N is a direct summand of M ,
then N is also H-cofinitely supplemented.

Proof. Let D and D′ be submodules of M such that M = D ⊕D′. By
assumption, we have N = (D∩N)⊕(D′∩N). Then (D+N)∩(D′+N) =
[D ⊕ (D′ ∩ N)] ∩ [(D ∩ N) ⊕ D′] = (D ∩ N) ⊕ (D′ ∩ N) = N . So
M/N = [(D+N)/N ]⊕ [(D′+N)/N ]. Proposition 3.5 shows that M/N
is an H-cofinitely supplemented module.

Now assume that N is a direct summand of M . Let D and D′ be
submodules of M such that M = D ⊕ D′ = N + D. Since N = (D ∩
N)⊕ (D′ ∩N), we have M = (D ∩N) + (D′ ∩N) +D = D⊕ (D′ ∩N).
This implies that D′ ∩ N = D′. Therefore D′ ⊆ N . It follows that
N = (D ∩N)⊕D′. The result follows from Proposition 3.7. �

Corollary 3.11. Let N be a projection invariant submodule of a module
M .

(i) If M is H-cofinitely supplemented, then M/N is H-cofinitely sup-
plemented.

(ii) If M is H-cofinitely supplemented and N is a direct summand of
M , then N is also H-cofinitely supplemented.

Proof. It is well-known that for each decomposition M = M1 ⊕M2, we
have N = (N ∩M1) ⊕ (N ∩M2). The result follows from Proposition
3.10. �

Theorem 3.12. Let M = M1 ⊕M2. If M is H-cofinitely supplemented
and M2 is M1-projective, then M1 is H-cofinitely supplemented.

Proof. Let D be a direct summand of M such that M = M1 +D. Since
M2 is M1-projective, we have M = M1⊕D′ for some submodule D′ ≤ D
by [8, 4.12]. Thus D = (M1 ∩D)⊕D′. So M1 ∩D is a direct summand
of M . Consequently, M1 is H-cofinitely supplemented by Proposition
3.7. �

Corollary 3.13. Every π-projective (in particular, every projective) H-
cofinitely supplemented module is completely H-cofinitely supplemented.
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Proof. By [8, 4.14(4)] and Theorem 3.8. �

Recall that a module M is called radical if M has no maximal submod-
ules. Let M be any module. We denote by P (M) the sum of all radical
submodules of M . Clearly, if M = K⊕L, then P (M) = P (K)⊕P (L) =
[K ∩ P (M)]⊕ [L ∩ P (M)].

Proposition 3.14. Suppose that R is a right noetherian ring. Let M
be an H-cofinitely supplemented module such that P (M) is a cofinite
submodule of M . Then M = P (M)⊕K such that P (M) and K are H-
cofinitely supplemented and K = ⊕ni=1Ki is a finite direct sum of local
submodules Ki(1 ≤ i ≤ n).

Proof. Since P (M) is a cofinite submodule of M , there exist submodules
D and D′ of M such that M = D ⊕ D′ and M = P (M) + X if and
only if M = D + X for all X ≤ M . Then D′ is an H-supplement of
P (M) in M . Thus M = P (M) + D′ and P (M) ∩ D′ � D′. Since
P (M) = P (D) ⊕ P (D′), we have M = P (D) ⊕ D′. So P (D) = D
and P (M) = D ⊕ [D′ ∩ P (M)]. Hence P (D′) = D′ ∩ P (M) � D′.
But D′/P (D′) ∼= M/P (M) is a finitely generated module. Then D′ is
finitely generated and P (D′) = 0. So P (M) = D. Therefore, M =
P (M)⊕D′. Moreover, by Proposition 3.10, P (M) and D′ are both H-
cofinitely supplemented. Now Proposition 3.4 shows that D′ is a finite
direct sum of local submodules. �

Lemma 3.15. Any direct summand of a refinable module is again re-
finable.

Proof. Let M be a refinable module. Let N and K be submodules of
M such that M = N ⊕ K. Let U , V be two submodules of N with
U + V = N . Then M = U + V + K. Since M is refinable, there is a
direct summand U ′ of M with U ′ ⊆ U and M = U ′ + V +K. It is easy
to see that U ′ + V = N and U ′ is a direct summand of N . It follows
that N is a refinable module. �

Proposition 3.16. Let M be a refinable H-cofinitely supplemented mod-
ule. Then M is completely H-cofinitely supplemented.

Proof. By [2, Proposition 2.5], Lemma 3.15 and Proposition 2.18. �

4. Direct sums of H-cofinitely supplemented modules

The following example shows that the class of H-cofinitely supple-
mented modules is not closed under finite direct sums.
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Example 4.1. Let R be a commutative noetherian local ring which is
not a principal ideal ring (see Example 3.1). Then R is not a valuation
ring. Therefore R contains two ideals I1 and I2 such that I1 6⊆ I2 and
I2 6⊆ I1. It follows from Proposition 2.1 and the Krull-Schmidt-Azumaya
theorem that the module R/I1 ⊕ R/I2 is not H-cofinitely supplemented.
However, R/I1 and R/I2 are local modules.

Proposition 4.2. Let R be a commutative local ring. The following
statements are equivalent:

(1) Every direct sum of two local R-modules is H-cofinitely supple-
mented; (2) R is a valuation ring.

Proof. By Proposition 2.1 and the Krull-Schmidt-Azumaya theorem.�
Definition 4.3. (See [12] and [14]) Let M and N be two modules. Then
N is called radical M -projective, if for any K ≤M and any homomor-
phism f : N → M/K, there exists a homomorphism h : N → M such
that Im(f − πh)�M/K, where π : M →M/K is the natural epimor-
phism.

Lemma 4.4. Let M = M1 ⊕M2. Consider the following conditions:
(i) M1 is radical M2-projective.
(ii) For every K ≤ M such that K +M2 = M , there exists M3 ≤ M

such that M = M2 ⊕M3 and (K +M3)/K �M/K.
Then (i) ⇒ (ii).

Proof. See [14, Theorem 3.5]. �
Lemma 4.5. Let M = M1 ⊕M2 be the direct sum of two H-cofinitely
supplemented modules M1 and M2. Let N be a cofinite submodule of M
with M1 ⊆ N . Then there exists a direct summand D2 of M2 such that
M = X +N if and only if M = X +M1 +D2 for all X ≤M .

Proof. Since M/M1 is H-cofinitely supplemented and N/M1 is a cofinite
submodule of M/M1, there exists a submodule D of M containing M1

such that D/M1 is a direct summand of M/M1 and M/M1 = X/M1 +
N/M1 if and only if M/M1 = X/M1 + D/M1 for all X ≤ M with
M1 ⊆ X. Let D′ be a submodule of M such that M1 ⊆ D′ and (D/M1)⊕
(D′/M1) = M/M1. Since D = M1⊕ (M2∩D), we have D′+(M2∩D) =
M . But D′ ∩ (M2 ∩ D) ≤ M1 ∩M2 = 0. Then D′ ⊕ (M2 ∩ D) = M .
Let D2 = M2 ∩D. It is clear that D2 is a direct summand of M2. Now
let X be a submodule of M . If M = X + N , then M = X + M1 + N .
So M = X + M1 + D = X + M1 + D2. On the other hand, if M =
X +M1 +D2, then M = X +M1 +D. So M = X +M1 +N = X +N .
This completes the proof. �
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Lemma 4.6. Let K, L and N be submodules of a module M . Assume
that K+L = M and (K∩L)+N = M . Then K+(L∩N) = L+(K∩N) =
M .

Proof. See [8, Lemma 1.24]. �

Theorem 4.7. Let M = M1⊕M2. If M1 is radical M2-projective (or M2

is radical M1-projective) and M1 and M2 are H-cofinitely supplemented,
then M is H-cofinitely supplemented.

Proof. Let Y be a cofinite submodule of M . Then M/Y is cofinitely
weak supplemented by [2, Propositions 2.5 and 2.12]. Therefore there
exists a submodule L of M such that Y ⊆ L, M/Y = (L/Y ) + [(Y +
M2)/Y ] and [L∩(Y +M2)]/Y �M/Y . Then M = L+M2. Lemma 4.4
shows that there is no loss of generality in assuming that (L+M1)/L�
M/L. By Lemma 4.5, there is a direct summand D1 of M1 such that
X + Y + M2 = M if and only if X + D1 + M2 = M for all X ≤ M .
Again by Lemma 4.5, there is a direct summand D2 of M2 such that
X + L + M1 = M if and only if X + M1 + D2 = M for all X ≤ M .
We put D = D1 ⊕D2 = (D1 ⊕M2) ∩ (M1 ⊕D2). Clearly, D is a direct
summand of M . Let X ≤M be a submodule. Thus,

M = X +D ⇔ M = X + [(D1 ⊕M2) ∩ (M1 ⊕D2)].

⇔
{
M = (D1 ⊕M2) + [X ∩ (M1 ⊕D2)], and
M = X + (M1 ⊕D2) by Lemma 4.6.

⇔
{
M = (Y +M2) + [X ∩ (M1 ⊕D2)], and
M = X + (M1 ⊕D2).

⇔
{
M = (M1 ⊕D2) + [X ∩ (Y +M2)], and
M = X + Y +M2 by Lemma 4.6.

⇔
{
M = (L+M1) + [X ∩ (Y +M2)], and
M = X + Y +M2.

⇔
{
M = L+ [X ∩ (Y +M2)], and
M = X + Y +M2 since (L+M1)/L�M/L.

⇔
{
M = X + [L ∩ (Y +M2)] by Lemma 4.6
and using the fact that M = L+M2.

⇔ M = X + Y since [L ∩ (Y +M2)]/Y �M/Y .
Therefore M is H-cofinitely supplemented. �

Corollary 4.8. Let M = M1 ⊕M2.
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(i) If M1 is M2-projective (or M2 is M1-projective) and M1 and M2

are H-cofinitely supplemented, then M is H-cofinitely supplemented.
(ii) If M1 is H-cofinitely supplemented and M2 is a projective H-

cofinitely supplemented module, then M is H-cofinitely supplemented.
(iii) If M1 is H-cofinitely supplemented and M2 is semisimple, then

M is H-cofinitely supplemented.

Proof. These are consequences of Theorem 4.7. �

Theorem 4.9. If P =
⊕

i∈I Pi is a direct sum of projective H-cofinitely
supplemented modules Pi (i ∈ I), then P is H-cofinitely supplemented.

Proof. By [7, Theorem 2.9], Proposition 2.11 and the fact that the class
of projective modules is closed under direct sums. �

Proposition 4.10. Let M =
∑

i∈IMi be a refinable module. If each
Mi (i ∈ I) is H-cofinitely supplemented, then M is H-cofinitely supple-
mented.

Proof. Assume that each Mi (i ∈ I) is H-cofinitely supplemented. Then
each Mi is cofinitely weak supplemented. By [2, Proposition 2.12], M
is a cofinitely weak supplemented module. Since M is refinable, M is
H-cofinitely supplemented by Proposition 2.18. �

Proposition 4.11. Let a module M = ⊕i∈IMi be a direct sum of sub-
modules Mi(i ∈ I). If for every submodule N of M, we have N =
⊕i∈I(N ∩Mi), then M is (completely) H-cofinitely supplemented if and
only if all Mi(i ∈ I) are (completely) H-cofinitely supplemented.

Proof. Clear. �

5. Rings whose modules are H-cofinitely supplemented

We conclude this paper by studying some examples of rings whose
modules are H-cofinitely supplemented.

Theorem 5.1. The following are equivalent for a ring R:
(1) R is semiperfect;
(2) Every finitely generated free R-module is H-cofinitely supplemented;
(3) RR is H-supplemented;
(4) RR is H-cofinitely supplemented;
(5) Every free R-module is H-cofinitely supplemented.

Proof. By [6, Theorem 2.9] and Proposition 2.11. �
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We conclude from Theorem 5.1 that if R is a ring over which all
R-modules are H-cofinitely supplemented, then R is semiperfect. But
there is a semiperfect ring having an R-module which is not H-cofinitely
supplemented as shows the following example.

Example 5.2. Let R = F [[x, y]] be the ring of formal power series over
a field F in the indeterminates x and y. Then R is a commutative
noetherian local domain with maximal ideal J = Rx + Ry. Therefore
the ring R is semiperfect and the ideal J is finitely generated. Since R
is a domain, JR is a uniform R-module. So JR is not a direct sum of
cyclic R-modules. By Proposition 2.1, the module JR is not H-cofinitely
supplemented.

Recall that a ring R is called semilocal provided R/Jac(R) is a right
semisimple ring.

Proposition 5.3. Let R be a semilocal ring such that every R-module
is refinable. Then every R-module is H-cofinitely supplemented.

Proof. By [2, Corollary 2.22], every R-module is cofinitely weak supple-
mented. So every R-module is H-cofinitely supplemented by Proposition
2.18. �

A module M is uniserial if its submodules are linearly ordered by
inclusion and it is serial if it is a direct sum of uniserial submodules.
The ring R is right (left) serial if the right (left) R-module RR (RR) is
serial and it is serial if it is both right and left serial.

In the next example we give a ring which satisfies the conditions of
Proposition 5.3.

Example 5.4. Let R be an artinian serial ring with (Jac(R))2 = 0.
It is well-known that R is a semilocal ring. By [13, Theorem 3.15],
every R-module is lifting. Therefore every R-module is a refinable H-
supplemented module.

Recall that a module M is called coseparable if for every cofinite sub-
module U of M , there exists a cofinite submodule U ′ of M such that
U ′ ⊆ U and U ′ is a direct summand of M (see [22] and [23]) .

Proposition 5.5. Let R be a complete discrete valuation ring. Then
every R-module is H-cofinitely supplemented.

Proof. By [23, Lemma 1.2 and Satz 1.8], every R-module is cosepa-
rable. Therefore every R-module is H-cofinitely supplemented by [22,
Folgerung 2.8]. �
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In [18, Proposition 3.1], it is shown that a commutative ring R is
an artinian principal ideal ring if and only if every R-module is H-
supplemented. Proposition 5.5 shows that the implication “every mod-
ule is H-cofinitely supplemented ⇒ every module is H-supplemented”
does not hold.

Proposition 5.6. Let R = R1 ⊕ · · · ⊕ Rn be a commutative ring such
that each Ri is either a complete discrete valuation ring or an artinian
principal ideal ring. Then every R-module is H-cofinitely supplemented.

Proof. We can write 1R = e1 + e2 + · · · + en, where ei is the identity
element of the ring Ri and 1R is the identity element of the ring R.
Let M be any R-module. Then M = e1M ⊕ e2M ⊕ · · · ⊕ enM . Let
1 ≤ i ≤ n. Note that eiM can be regarded as an Ri-module as well as
an R-module, and its submodules are the same in both cases, because
(r1 + r2 + · · · + rn)eix = rieix, where rj ∈ Rj for 1 ≤ j ≤ n and x ∈
M . Following [18, Proposition 3.1], every module over a commutative
artinian principal ideal ring is H-supplemented. The result follows from
Propositions 4.11 and 5.5. �
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[15] M. T. Koşan, H-Cofinitely supplemented modules, Vietnam J. Math. 35 (2007),
no. 2, 1–8.

[16] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London
Math. Soc. Lecture Note Ser., 147, Cambridge University Press, Cambridge,
1990.

[17] R. Tribak, On cofinitely lifting and cofinitely weak lifting modules, Comm. Al-
gebra 36 (2008), no. 12, 4448–4460.

[18] R. Tribak, H-Supplemented modules with small radical, East-West J. Math. 11
(2009), no. 2, 211–221.

[19] R. B. Warfield, Jr., Decomposability of finitely presented modules, Proc. Amer.
Math. Soc. 25 (1970) 167–172.

[20] G. V. Wilson, Modules with the summand intersection property, Comm. Algebra
14 (1986), no. 1, 21–38.

[21] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach
Science Publishers, Philadelphia, 1991.
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