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HYERS-ULAM-RASSIAS STABILITY OF A COMPOSITE
FUNCTIONAL EQUATION IN VARIOUS NORMED
SPACES

H. AZADI KENARY

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. In this paper, we prove the generalized Hyers-Ulam (or
Hyers-Ulam-Rassias) stability of the following composite functional
equation

fU@) = fW) + f@) + fly) = fle+y) + flz—v),

in various normed spaces.

1. Introduction and preliminaries

Let I'" denote the set of all probability distribution functions F : R U
[—00, +00] — [0, 1] such that F' is left-continuous and nondecreasing on
R and F(0) = 0, F(+c0) = 1. It is clear that the set DT = {F € I'" :
I"F(—o00) = 1}, where [~ f(x) = lim,_,,— f(t), is a subset of I'". The
set I'" is partially ordered by the usual point-wise ordering of functions,
that is, F' < G if and only if F(t) < G(t) for all t € R. For any a > 0,
the element H,(t) of DT is defined by H,(t) = { (1): ﬁ i E Z’
Definition 1.1. A function T : [0,1]2 — [0, 1] is a continuous triangular
norm (briefly, a t-norm) if 7" satisfies the following conditions:

(a) T is commutative and associative;
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(b) T is continuous;

(¢) T(xz,1) = x for all z € [0,1];
(d)

(X

(a: y) < T(z,w) whenever z < z and y < w for all z,y, z,w € [0, 1].

Definition 1.2. A random normed space (briefly, RN-space) is a triple

i, T), where X is a vector space, T is a continuous ¢-norm and
i X — DT is a mapping such that the following conditions hold:
(a) pz(t) = Ho(t) for all x € X and t > 0 if and only if z = 0;
(D) paz(t) = <|t—‘>forallaeRwitha#O,:I:EXandtZO;
(€) pasy(t +8) > T(pe(t), py(s)) for all z,y € X and t,s > 0.
Definition 1.3. By a non-Archimedean field we mean a field K equipped

with a function (valuation) |- | : K — [0,00) such that for all r,s € K,

the following conditions hold:
(7) |r| =0 if and only if r = 0;

(id) [rs| = [r|ls];
(13i) |r + s| < max{|r|,|s|}.
Remark 1.4. Clearly |[1| =|—1] =1 and |n| <1 for alln € N.

Definition 1.5. Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation |-|. A function ||-|| : X — R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:
() ||z|| = 0 if and only if x = 0;

(i3) lIrall = rllz]] ( € K.z € X);

(tit) The strong triangle inequality (ultrametric); namely ||z + y|| <
maz{lall, lyll}, 2y € X.

Then (X,|| - |]) is called a non-Archimedean space.

Definition 1.6. A sequence {z,} is Cauchy if and only if {xn+1 — xn}
converges to zero in a mon-Archimedean space. By a complete non-
Archimedean space we mean one in which every Cauchy sequence is
convergent.

The most important examples of non-Archimedean spaces are p-adic
numbers. A key property of p-adic numbers is that they do not satisfy
the Archimedean axiom: “for z,y > 0, there exists n € N such that
x < ny’.

Example 1.7. Fiz a prime number p. For any nonzero rational number
x, there exists a unique integer n, € Z such that x = 3p"* , where a
and b are integers not divisible by p. Then |z|, := p~"™ defines a non-
Archimedean norm on Q. The completion of Q with respect to the metric
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d(z,y) = |x—ylp is denoted by Q, which is called the p-adic number field.
In fact, Q, is the set of all formal series x = ZZ‘;M app® where |ag| <
p — 1 are integers. The addition and multiplication between any two
elements of Q, are defined naturally. The norm \ZZC;W arpkl, =p"

is a non-Archimedean norm on Q, and it makes Q, a locally compact
filed.

Arriola and Beyer [1] investigated the Hyers-Ulam stability of approx-
imate additive functions f : Q, — R. They showed that if f : Q, -+ R
is a continuous function for which there exists a fixed e:

|fx+y)— flz) - fly)| <e

for all z,y € Qp, then there exists a unique additive function 7' : Q, — R
such that

[f(z) =T(z)| < e
for all x € Q.

However, the following example shows that similar result is not true in
non-Archimedean normed spaces.

Example 1.8. Let p > 2 and let f : Q, — Q, be defined by f(z) =
Then for e =1,

[fle+y) = flz) - fly)|=1<¢
forallz,y € Qp. However, the sequences {f } and {an<2ln> };’;1

are not C’auchy In fact, by using the fact that |2| ; 1, we have
2 2n+1
n on+1

and

X X

for all z,y € Q, and n € N. Hence these sequences are not convergent

in Qp.

Definition 1.9. Let X be a set. A functiond: X x X — [0, 00] is called
a generalized metric on X if d satisfies the following conditions:

(a) d(z,y) =0 if and only if x =y for all z,y € X;

(b) d(z,y) = d(y,z) for allz,y € X;

(c) d(z, z) < d(z,y) + d(y, z) for all z,y,z € X.
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Theorem 1.10. Let (X,d) be a complete generalized metric space and
let J: X — X be a strictly contractive mapping with Lipschitz constant
L < 1. Then, for all x € X, either

1.1 d(J"x, J"2) = o
(1.1) (J"z,

for all nonnegative integers n, or there exists a positive integer ng such
that

(a) d(J"z, J"2) < 0o for all ng > no;

(b) the sequence {J"x} converges to a fized point y* of J;

(c) y* is the unique fixed point of J in the set Y = {y € X : d(J™z,y) <
0o}

(d) d(y,y*) < t=d(y, Jy) for ally €Y.

A classical question in the theory of functional equations is the fol-
lowing: “When is it true that a function which approximately satisfies a
functional equation must be close to an exact solution of the equation?”.
If the problem admits a solution, we say that the equation is stable. The
first stability problem concerning group homomorphisms was raised by
Ulam [31] in 1940. In the following year, Hyers [10] gave a positive
answer to the above question for additive groups under the assump-
tion that the groups are Banach spaces. In 1978, Rassias [19] proved a
generalization of Hyers’ theorem for additive mappings. The result of
Rassias has provided a significant influence during the last three decades
in the development of a generalization of the Hyers-Ulam stability con-
cept. This new concept is known as generalized Hyers-Ulam stability or
Hyers-Ulam-Rassias stability of functional equations. Furthermore, in
1994, a generalization of Rassias’s theorem was obtained by Gavruta [8]
by replacing the bound e(||z||” + |ly||”) by a general control function
o(z,y). In 1897, Hensel [9] introduced a normed space which does not
have the Archimedean property. It turned out that non-Archimedean
spaces have many nice applications [11,12].

The stability problems of several functional equations have been ex-
tensively investigated by a number of authors and there are many inter-
esting results concerning this problem ( [2]- [8], [14]- [29]).

In Sections 2 and 3, we adopt the usual terminology, notions and con-
ventions of the theory of random normed spaces as in [30].
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In this paper, we prove the Hyers-Ulam-Rassias stability of the func-
tional equation

(1.2) f(f(x)—fy) + f@)+ fly) = flz+y) + flz—y)

in random and non-Archimedean normed spaces.

2. Random stability of the functional equation (1.2): a direct
method

In this section, using a direct method, we prove the Hyers-Ulam-
Rassias stability of the functional equation (1.2) in random normed
spaces.

Theorem 2.1. Let X be a real linear space, (Z, i/, min) an RN-space
and ¢ : X% — Z a function such that there exists 0 < o < % with

(2'1) M;( %)(t) 2 /”L:mp(a:,y) (t)

x
2

forallz € X andt > 0 and

lim g/ L

St (7)) =
for all z,y € X and t > 0. Let (Y, p, min) be a complete RN-space. If
f: X =Y is a mapping such that

(22)  Hp(r@) - f@) - far) - a1 ) () 2 By ()
forallx,y € X andt > 0. Then the limit

A(z) = lim 2" f (2%)

n—oo

exists for all x € X and defines a unique additive mapping A : X — Y
such that and

(2.3) ff () —A@) () = o) <

forallz € X and t > 0.

(1 —2a)t> .

a

Proof. Putting y = z in (2.2), we see that
(2.4) Pf(2a)—2f(2) () = pr(x,x) (t).
Replacing 2 by $ in (2.4), we obtain

2.5 2y () > e oy (t
(2.5) H2f(%) f(:c)()f/ﬂp(iﬂ)()
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for all z € X. Replacing x by 5 in (2.5) and using (2.1), we obtain

t t
g >/
) 2 f(T)( ) _Map(#,#) <2n> —'ujél’(ffw) <2nan+1)

Hant1 p( ot

and so

k  k+1
Mgnf % _ <22 t) Mzz;é2k+lf(2kﬁ-1 —

This implies that

, t
@0 sty s oo e )

Replacing by 55 in (2.6), we obtain

/‘L2n+Pf ( 27;1

t
)y >
)-wi(s) D 2 e (zz+g-1zkak+l>

(2.7) — 1 when n — +o0,

o} {2” f (2n) } » is a Cauchy sequence in a complete RN-space
(Y, u, min) and so there exists a point A(x) € Y such that

lim 2"f( ) = A(x).

n—oo

Fix x € X and put p =0 in (2.7). Then we obtain

, t
and so, for any § > 0,

MA(x)—f(x)(t+5) > T(N A(z)— 2nf(in)(5)7:uznf(in)ff(x)(t))

2

t
2.8 > T () O] E——
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Taking n — oo in (2.8), we get

(1 —2a)t
(2.9) [A@)— ) (E+0) = By ( '

(07

Since ¢ is arbitrary, by taking 6 — 0 in (2.9), we get

(1 —2a)t> '

a

HA(z)—f(z) (t) > :u:p(z,x) <
Replacing = and y by 57 and 55 in (2.2), respectively, we get

, t
Han [ (£ ()—F(2))~F ()~ 1 (52 (o) +5(20)) D) Z ot ) <2n>
forall z,y € X and ¢ > 0. Since lim,, oo 1/
that A satisfies (1.2). On the other hand,

24 (g) — A(z) = lim 21 f (znﬁl) lim 2”f< ) =0.

n—0o0

(535 (2%) = 1, we conclude
T QI

This implies that A : X — Y is an additive mapping. To prove the
uniqueness of the additive mapping A, assume that there exists another
additive mapping L : X — Y which satisfies (2.3). Then we have

A~ () = T fion g2y gnp (2 (1)

2

R G COR 2"f<2n><t> et ( >}

> i (1 —2a)t > lim (1 —2a)t
e Msa(%@%) oty ) = altn “@( 2n+1an+1 :
Since lim,,—y00 % = o0, we get lim, ,uLP(x 2) (%) 1.
Therefore, it follows that pig(z)—r(z)(t) = 1 for all ¢ > 0 and so A(x)
L(x). This completes the proof.

Ol

Corollary 2.2. Let X be a real normed linear space, (Z, ', min) an
RN-space and (Y, p, min) a complete RN-space. Let r be a positive real
number withr > 1, 20 € Z and f: X — Y a mapping satisfying
(2:10)  y(r @) s )~ )~ F@—u) @)+ 1) (8) Z B+ )z ()
for all z,y € X and t > 0. Then the limit A(z) = lim, 00 2" f (2%
exists for all x € X and defines a unique additive mapping A : X — Y
such that

(2" —2)t
i@ -A@) () Z Bz, (2
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forallx € X and t > 0.

Proof. Let = 27" and let ¢ : X? — Z be a mapping defined by
o(x,y) = (||lz||” + |lyl")z0. Then, from Theorem 2.1, the conclusion
follows. 0

Theorem 2.3. Let X be a real linear space, (Z,u',min) an RN-
space and ¢ : X?> — Z a function such that there exists 0 < a <
2 such that M;(2x72y)(t) > ,u’wp(x’y)(t) for all x € X and t > 0 and
limy, 00 ufp<2nx’2ny)(2”t) =1 forallz,y € X andt > 0. Let (Y, u, min)
be a complete RN-space. If f : X — Y is a mapping satisfying (2.2).
Then the limit A(x) = limy 00 f(;:a:) exists for all x € X and defines a
unique additive mapping A : X —'Y such that and

(2.11) ff (@) —A@) (1) = By (2 = @)t)

forallz € X andt > 0.

Proof. Putting y = x in (2.2), we see that

Replacing = by 2™z in (2.12), we obtain that

2n+1t
1
(2.13) Priemle) sana () > tlppang ona) (27) 2 p(aa) < o > :

The rest of the proof is similar to the proof of Theorem 2.1. O

Corollary 2.4. Let X be a real normed linear space, (Z, ', min) an
RN-space and (Y, p, min) a complete RN-space. Let r be a positive real
number with 0 <r <1, 20 € Z and f: X — Y a mapping satisfying
(2.10). Then the limit A(x) = lim,_ oo % exists for all x € X and
defines a unique additive mapping A : X — 'Y such that

(2—2r)t
M) -a@) () 2 Koz, <2
forallx € X and t > 0.

Proof. Let a = 2" and let ¢ : X2 — Z be a mapping defined by ¢(z,y) =
(llzlI” + |lyll")2z0. Then, from Theorem 2.3, the conclusion follows. [
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3. Random stability of the functional equation (1.2): a fixed
point method

Throughout this section, using a fixed point method, we prove Hyers-
Ulam-Rassias stability of functional equation (1.2) in RN-spaces.

Theorem 3.1. Let X be a linear space, (Y, pu, Thr) a complete RN-space
and ® a mapping from X? to DV such that there exists 0 < a < % such
that
(3.1) (I)ngy(t) S @Ly(at)
forallz,y € X andt >0 (®(x,y)is denoted by®P, ). Let f: X =Y be
a mapping satisfying
(3:2) (@)~ F @)~ Fat) —F @)+ @)+ () (E) 2 Pay(t)
forallz,y € X andt > 0. Then, for allz € X
i
A(z) := lim 2 f<2n>

n—o0

exists and A : X — Y is a unique additive mapping such that

(1 —2a)t
(3.3) B (a)-Ax) () = Pa <a)
forallz € X andt > 0.
Proof. Putting y = x in (3.2) and replacing = by 3, we have

(3.4) H2p(z)—f(z)(t) = Pz 2 (t)
for all x € X and ¢t > 0. Consider the set S := {g : X — Y} and the
generalized metric d in S defined by

(35) d(f: g) = uel(%foo) {Mg(a:)—h(x) (Ut) > (I)z,w(t)a Vee X, t> 0} )

where inf () = +o00. It is easy to show that (S,d) is complete (see [14],
Lemma 2.1). Now, we consider a linear mapping J : (S,d) — (.59, d) such
that

(3.6) Jh(z) = 2h (g)

for all x € X.

First, we prove that J is a strictly contractive mapping with the
Lipschitz constant 2«. In fact, let g,h € S be such that d(g,h) < e.
Then we have

:U'g(:p)fh(:r) (Gt) > (Da:,x(t)
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for all z € X and ¢t > 0 and so

[7g(z)—Th(z) (20€t) = piog(z)_on(z)(20€t) = pug(z)_p(z)(aet)

I
(I)% z(at)

D, (1)

for all x € X and t > 0. Thus d(g,h) < € implies that d(Jg, Jh) < 2ce.

This means that d(Jg, Jh) < 2ad(g,h) for all g,h € S. It follows from
(3.4) that

z
2

>
>

a(f, Jf) < o

By Theorem 1.10, there exists a mapping A : X — Y satisfying the
following:
(1) A is a fixed point of J, that is,

T 1
(3.7) A(3) = 7A@
for all x € X. The mapping A is a unique fixed point of J in the
set @ = {h € S : d(g,h) < oo}. This implies that A is a unique
mapping satisfying (3.7) such that there exists u € (0,00) satisfying
f(2)—A(z) (ut) > @y o (t) for all x € X and ¢ > 0.
(2) d(J™f, A) — 0 as n — oco. This implies the equality

lim 2”f(2%> = A(x)

n—oo
for all x € X
(3) d(f,A) < ) with f € Q, which implies the inequality
o
A) <
and so

at
Hf (@)~ Ale) <1 . 2a> > Pua(t)

for all x € X and ¢ > 0. This implies that the inequality (3.3) holds.
On the other hand, replacing z,y by 5 and 2‘%, respectively, in (3.2),
we have

t
T T z—y > z Y
ol 0) (80 £ )5t 150+ 1(a0) O Z P (55)
for all z,y € X, ¢ > 0 and n > 1 and so, from (3.1), it follows that

t t
%in (2) > Ppy <2nan) —1 as n— 4o
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for all x,y € X and t > 0. Therefore

HA(A(m)— A(y)) - A(s+y)— A(z—y)+A(z)+Ay) (1) =1

for all x,y € X and ¢ > 0. Thus the mapping A : X — Y satisfies (1.2).
Furthermore, since for all x,y € X, we have

A20) = 24() = lim 2"f (5) =2 lim 2f (57)
= 2[lim 2"7f (5 ) — Jim 2°f (57 )]
— 0,

we conclude that A : X — Y is additive. This completes the proof. [
Corollary 3.2. Let X be a real normed space, 8 > 0 and let r be a real
number with r > 1. Let f: X — Y be a mapping satisfying

t
"+ llyl")

forallz,y € X andt > 0. Then A(z) = lim, 2”f<%) exists for all
reX and A: X =Y is a unique additive mapping such that

(25 —2)t
z)—Az)(t) =
Hr@-a@ ) 2 G oy gl

B8 Hig@-se)-ter-se-vsesw® = g

forallx € X andt > 0.

Proof. The proof follows from Theorem 3.1 if we take

t
P, (1) =
WO = e < T9l)

for all z,y € X and t > 0. In fact, if we choose @ = 27", then we get
the desired result. O

Theorem 3.3. Let X be a linear space, (Y,u,Thr) a complete RN-
space and ® a mapping from X? to Dt such that for some 0 < o < 2,
CD%,%(t) < @,y (at) for all z,y € X andt > 0. Let f : X =Y bea

mapping satisfying (3.2). Then the limit A(x) = lim,_, f(;:x) exists

forallx € X and A: X — Y is a unique additive mapping such that

(3.9) Pf(@)—A) () > P z((2 — a)t)
forallz € X and t > 0.
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Proof. Putting y = z in (3.2), we have
(3.10) [5en) g () 2 Poa(28)
2 f(x)

for all z € X and ¢t > 0. Let (S5,d) be the generalized metric space

defined in the proof of Theorem 2.1. Now, we consider a linear mapping
J : (S,d) = (S,d) such that Jh(z) := $h(2z) for all z € X. It follows
from (3.10) that

1

By Theorem 1.10, there exists a mapping A : X — Y satisfying the
following:

(1) A is a fixed point of J, that is,
(3.11) A(2x) = 2A(x)

for all x € X. The mapping A is a unique fixed point of J in the
set @ = {h € S : d(g,h) < oo}. This implies that A is a unique
mapping satisfying (3.11) such that there exists u € (0,00) satisfying
f(2)—A(z) (ut) > @y o (t) for all x € X and ¢ > 0.

(2) d(J™f, A) — 0 as n — oo. This implies the equality

f(2 )

lim = A(x)
n—00 on
for all x € X.
(3) d(f,A) < LI with f € Q, which implies the inequality

i

t
K (@)= A) <2 - a) > Paa(t)

for all z € X and ¢ > 0. This implies that the inequality (3.9) holds.
The rest of the proof is similar to the proof of Theorem 3.1. g

Corollary 3.4. Let X be a real normed space, 8 > 0 and let v be a

real number with 0 < r < 1. Let f : X — Y be a mapping satisfying
(3.8). Then the limit A(x) = lim, f(gnx) exists for all v € X and
A: X =Y is a unique additive mapping such that

(2 - 2"\t
2 — 2t + 20| z||"

Lf(@)—Az) (1) = (

forallxz € X and t > 0.
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Proof. The proof follows from Theorem 3.3 if we take

t
D, () =
v = el T Tl

for all x,y € X and t > 0. In fact, if we choose a = 2", then we get the
desired result. O

4. Non-Archimedean stability of functional equation (1.2): a
fixed point method

In this section, using a fixed point approach, we prove the Hyers-
Ulam-Rassias stability of functional equation (1.2) in non-Archimedean
normed spaces.

Throughout this section, X is a non-Archimedean normed spaces and
that Y is a complete non-Archimedean normed spaces. Also we assume
that 2] # 1.

Theorem 4.1. Let ¢ : X2 — [0,00) be a function such that there exists
L <1 with

(4.1) 21 (5.5) < L¢(.y)
forallz,ye X. If f: X =Y is a mapping satisfying
(42) |[1(@) = F@) = (@ +9) = fl@ =)+ f(2) + [w)]| < (@)

for all z,y € X, then there is a unique additive mapping A : X — Y
such that

L
(4.3 @) = A < e
Proof. Putting y = x in (4.2), we have
(44) |£e2) —27@)| < ¢ @)
for all z € X. Replacing = by J in (4.4), we obtain
x T x
(45) |27(3) - r@ << (5-3)

for all x € X. Consider the set S* := {g : X — Y} and the generalized
metric d* in S* defined by

(4.6)  d*(f,g) =inf {p € RT : g(x) — h(@)|| < p(w,2), Vo € X },
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where inf () = +o00. It is easy to show that (S*, d*) is complete (see [14],
Lemma 2.1). Now, we consider a linear mapping J* : S* — S* such that

(4.7) J*h(z) == 2h<g)

for all x € X. Let g,h € S* be such that d*(g,h) = e. Then we have
lg(x) — h(z)|| < e((x,z) for all z € X and so
r x
20 (53)
2lec (L.

I gta) b = 29 (£) ~ 20 (2)]
2l ()

2]

for all x € X. Thus d*(g,h) = € implies that d*(J*g, J*h) < Le. This
means that d*(J*g, J*h) < Ld*(g,h) for all g,h € S*. Tt follows from
(4.5) that

IN

L
12|
By Theorem 1.10, there exists a mapping A : X — Y satisfying the
following;:
(1) A is a fixed point of J*, that is,

T 1
(4.9) A<2> = JA(@)
for all x € X. The mapping A is a unique fixed point of J* in the
set @ = {h € S* : d*(g,h) < oo}. This implies that A is a unique
mapping satisfying (4.9) such that there exists u € (0,00) satisfying
|f(x) — A(z)|| < pl(z,x) for all z € X.
(2) d*(J*"f, A) — 0 as n — oo. This implies the equality

Jim 21 (57) = A

(4.8) d*(f, J°f) <

for all x € X. o
(3) d*(f, 4) < T with f € Q, which implies the inequality
L
(4.10) d*(f,A) < m————.
2] —[2|L

This implies that the inequality (4.3) holds. By (4.2), we have
127 17 (5 () = £ (GR)) = (53) = 1 (5 + £ (GF) + £ GR|

< 27¢ (& &) < [2" - B (a,y)
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for all z,y € X and n > 1 and so || f(f(x) — f(y)) — f(x +y) — f(z —
y) + f(x) + f(y)]| =0 for all z,y € X. On the other hand

24(3) = A@) = lim 2" f (507 ) — lim 277 () = 0.

n—oo n—oo

Therefore, the mapping A : X — Y is additive. This completes the
proof. O

Corollary 4.2. Let 6 > 0 and let p be a real number with 0 < p < 1.
Let f : X =Y be a mapping satisfying

(4.11)

1f(f(@) = f() = fl@+y) = flz—y)+ flx) + F)l <0zl + [lyl”)

for all x,y € X. Then the limit A(x) = limy, 0 2”f<2%) exists for all
reX and A: X =Y is a unique additive mapping such that

2|20 ||”
2[PHt — |22

1f(z) = A(z)]| <
forallz e X.

Proof. The proof follows from Theorem 4.1 if we take {(x,y) = 0(||x||P +
lly|[P) for all z,3y € X. In fact, if we choose L = |2|'~P, then we get the
desired result. g

Similarly, we have the following results for which we sketch the proofs.

Theorem 4.3. Let ( : X2 — [0,00) be a function such that there exists
an L < 1 with ((2x,2y) < |2|L{(x,y) for allz,y € X. Let f : X - Y
be a mapping satisfying (4.2). Then there is a unique additive mapping
A: X =Y such that

((z, z)
Proof. Tt follows from (4.4) that
fQ2z)| _ ()
- 152] <55

for all z € X. The rest of the proof is similar to the proof of Theorem
4.1. O

Corollary 4.4. Let 0 > 0 and let p be a real number with p > 1. Let
f X — Y be a mapping satisfying (4.11). Then the limit A(x) =
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lim,,— o0 f(gzz) exists for all x € X and A: X — Y is a unique additive

mapping such that

20]][”

I£) =A@ < 5

forallx € X.

Proof. The proof follows from Theorem 4.3 if we take ((z,y) = 6(]||z||P +
|y||P) for all z,y € X. In fact, if we choose L = |2|P~! then we get the
desired result. g

5. Non-Archimedean stability of functional equation (1.2): a
direct method

In this section, using a direct method, we prove the Hyers-Ulam-
Rassias stability of the functional equation (1.2) in non-Archimedean
space. Throughout this section, GG is an additive semigroup and X is a
non-Archimedean Banach space.

Theorem 5.1. Let ( : G x G — [0, +00) be a function such that

vy _
(5.1) Tim [2]" <( ) =0
for all x,y € G. Suppose that, for any x € G, the limit
. x x
(5.2) U(z) = nh_{go max{|2|k+lc (W’ W> c0<k< n}

exists and f : G — X is a mapping satisfying
(5:3) ||/(f@) = F@) = S @+ 1) = flo =) + F@) + [w)]| < @),

Then, for all x € G, T'(x) := limy 00 2”f<2%> erists and satisfies the

inequality

(5-4) [f(x) =T ()] < |2‘ V().

Moreover, if

x x , ,
(5.5) JlirglonlgngomaX{l2!k+1C (W’ W) J<k< n+]} =0,

then T is the unique additive mapping satisfying (5.4).
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Proof. By (4.5), we get
x T T

- 2/ (3) - 1@ <<(3:3)
(5.6) 27 (5) - r@)| << (5.3
for all z € G. Replacing = by 5 in (5.6), we obtain

il T nelT n T T
2 f(2n+1) -2 f(?n)“ < [2l C<2n+1’2n+1)'

Thus, it follows from (5.1) and (5.7) that the sequence {2”]‘(%) }

(5.7)

n>

is
1
a Cauchy sequence. Since X is complete, it follows that {2” f (2%)} .
n>
is convergent. Set T'(x) := lim,, o0 2" f(5%). By induction, one can show
that

max {2/ (557, 557) : 0 <k <n}

2y (2%> N ﬂx)” = B

for all n > 1 and = € G. By taking n — oo in (5.8) and using (5.2), one
obtains (5.4). By (5.1) and (5.3), we get

(5.8)

|7@@) - T) - T@+y) - T -y + T@) + T()|

= g (1 () -1 () - (%) -7 (55

# (i) +4 (5]

< Jim 1< 5e) =0

for all x,y € G. Therefore, the mapping T : G — X satisfies (1.2).

To prove the uniqueness property of T, let S be another mapping satis-
fying (5.4). Then we have

frioy—sta] = i 2 (2) - (3)|

i mer(5) 1))

. .1 kil T x N . .
S}L%o,ﬁbﬂsommax{m (gerr i)+ dsk<n+ )

=0

)

for all x € G. Therefore, T'=S. This completes the proof. O
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Corollary 5.2. Let £ : [0,00) — [0,00) be a function satisfying

() =<(@)eo (@) <p

forallt > 0. Let k >0 and f: G — X be a mapping such that
(5.9)

| @ = 1) — F@+y) — F@ =y + @)+ )| < 5D +E(yD)

forallx,y € G. Then there exists a unique additive mapping T : G — X

such that
(@) - T(@)] < 2mf(|'j|'>.

Proof. If we define ¢ : G x G — [0,00) by ((z,y) := &(&(|x]) + £(Jy|)),
then we have

a2 ) < i (12 (7)) [otethed + €] =0

for all x,y € G. On the other hand, for all x € G,

) z x
U(z) = nhﬁngomax{mkﬂc (W’W) c0<k< n}

= 12¢(5:5) = 2x¢(lal)
exists. Also, we have

Jim i max {|20*¢ (7 g )s G k< n ot

— e )_
= Jim 21 (g7 1) =0

Thus, applying Theorem 5.1, we have the conclusion. This completes
the proof. O

Theorem 5.3. Let ( : G X G — [0,4+00) be a function such that

(5.10) i $28:2")

n—o00 ’2|”

for all x,y € G. Suppose that, for every x € G, the limit

(5.11) U(z) = lim maX{W t0<k< n}

n—00 |2’k
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exists and let f : G — X be a mapping satisfying (5.3), then, the limit

T(z) ;= limy 00 f(gz:c) exists for all x € G and satisfies the inequality

(5.12) 1£(x) - T(2)] < |§|w<x>.
Moreover, if

(5.13) lim lim max
Jj—00 N—00

{C(Qkx, 2kz)

2[F ;j§k<n+j}=0,

then T is the unique mapping satisfying (5.12).

Proof. By (4.4), we have

2x)
2

_ )
=R

(5.14) Hf(w) A

for all z € G. Replacing = by 2"z in (5.14), we obtain

Hf(Q”w) f2rtta) ‘ < C(2"z,2"x)
2n =

(5.15) © ontl |2‘n+1

Thus it follows from (5.10) and (5.15) that the sequence {%} . is

convergent. Set T'(z) := limy, o0 ! (§:$). On the other hand, it follows
from (5.15) that

H f(2Px) — f(2%)

‘ _ ‘lef@kx) (2

2p 24 ok 9k+l
k=p
f2kl’ f2k+1$
< maX{H (Qk )— (2k+1) p<k<yq
1 C(2Fz, 2F )
< o et sh<a

for all x € G and all integers p,q > 0 with ¢ > p > 0. Letting p = 0,
taking ¢ — oo in the last inequality and using (5.11), we obtain (5.12).

The rest of the proof is similar to the proof of Theorem 5.1. This
completes the proof. O

Corollary 5.4. Let £ :[0,00) — [0,00) be a function satisfying
&(12[t) < &(12)€@),  &(12]) < [2|
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for allt > 0. Let kK > 0 and let f : G — X be a mapping satisfying
(5.9). Then there exists a unique additive mapping T : G — X such
that

2r€(|x|)
Proof. 1f we define ¢ : G x G — [0,00) by ((z,y) := c(&(|z]) + £(|y]))
and apply Theorem 5.3, then we get the conclusion. ]
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